use crate::solver::Solver; use crate::structs::GapHeights; /// Solve for a given N and return the resulting wall pub struct NormalSolver { pub n: u32, /// calculated height [might not be correct!] pub h: u32, /// width pub w: u32, /// Use to store already used blocks as a bitmask solve_stack: Vec>, permutations: Vec>, } // used during row creation, will get deprecated static mut COUNT: u32 = 0; /// Save the current state for each row #[derive(Clone, Copy)] pub struct SaveState { /// Mask of all currently used stones pub bitmask: T, /// sum of all placed stones pub sum: u32, /// the row index pub row: u32, } impl SaveState { pub fn new() -> Self { Self { bitmask: T::zero(), sum: 0, row: unsafe { COUNT += 1; COUNT }, } } #[allow(dead_code)] pub fn set_bit(&mut self, stone: u32) { self.bitmask = self.bitmask | T::from(1 << stone).expect("Stone placing index out of bounds"); } #[allow(dead_code)] pub fn get_bit(&self, stone: u32) -> T { self.bitmask & T::from(1 << stone).expect("Requested stone index out of bounds") } #[allow(dead_code)] pub fn bridges_gap(&self, gap: u32) -> bool { self.get_bit(gap - self.sum) == T::zero() } #[allow(dead_code)] pub fn bridge_gap(mut self, gap: u32) -> Self { self.set_bit(gap - self.sum); self.sum = gap; self } } impl NormalSolver { pub fn new(n: u32) -> Self { let h = n / 2 + 1; let w = h * (n - 1); let mut heap = (1..=n).collect::>(); let heap = permutohedron::Heap::new(&mut heap); let n_f = permutohedron::factorial(n as usize); let mut permutations = Vec::with_capacity(n_f); println!("Generating permutations"); for data in heap { permutations.push(data.clone()); } Self { n, h, w, solve_stack: vec![SaveState::new(); h as usize], permutations, } } pub fn solve(&mut self) { //for (n, i) in self.permutations.iter().enumerate() { // println!("perm {}: {:?}", n, i); //} println!("calculate results"); self.permute( permutohedron::factorial(self.n as usize), 0, ((0..self.h).collect::>()).as_ref(), ); } fn permute(&mut self, up: usize, index: usize, numbers: &[u32]) { if index as usize == numbers.len() { //println!("checking {:?}", numbers); if self.check_perm(&numbers) { println!("success"); } return; } let mut new_num = Vec::from(numbers); for i in numbers[index as usize] as usize..up { for n in (index + 1)..numbers.len() { new_num[n] = (n * (self.permutations.len() / self.h as usize)) as u32; } self.permute(up, index + 1, &new_num); new_num[index] += 1; } } fn check_perm(&mut self, nums: &[u32]) -> bool { let mut sums = vec![self.w; self.w as usize]; for (i, num) in nums.iter().enumerate() { let mut sum = 0; for n in self.permutations[*num as usize][..=self.h as usize].iter() { sum += *n as usize; if sums[sum - 1] != self.w { return false; } sums[sum - 1] = i as u32; } } //println!("{:?}", sums); GapHeights::from_heights(sums.iter().map(|x| *x as u32).collect()).output(self.n, self.h); //.as_stone_wall(self.n) //.output(); true } #[allow(dead_code)] fn check_gaps(&mut self, wall: &GapHeights) -> bool { for (i, r) in wall.iter().enumerate() { let stone = (i + 1) as u32 - self.solve_stack[r as usize].sum; self.solve_stack[r as usize].set_bit(stone); } for state in self.solve_stack.as_ref() as &[SaveState] { if state.bitmask != T::from(1 << self.n).unwrap() { return false; } } true } }