1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
import math as mth
import cmath as cmt
import numpy as npy
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from itertools import product, combinations
from matplotlib.patches import FancyArrowPatch
from mpl_toolkits.mplot3d import proj3d
class Arrow3D(FancyArrowPatch):
def __init__(self, xs, ys, zs, *args, **kwargs):
FancyArrowPatch.__init__(self, (0, 0), (0, 0), *args, **kwargs)
self._verts3d = xs, ys, zs
def draw(self, renderer):
xs3d, ys3d, zs3d = self._verts3d
xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M)
self.set_positions((xs[0], ys[0]), (xs[1], ys[1]))
FancyArrowPatch.draw(self, renderer)
def kugel(historie):
fig = plt.figure()
ax = fig.gca(projection='3d')
# draw sphere
u, v = npy.mgrid[0:2*npy.pi:20j, 0:npy.pi:10j]
x = npy.cos(u)*npy.sin(v)
y = npy.sin(u)*npy.sin(v)
z = npy.cos(v)
ax.plot_wireframe(x, y, z, color="r")
# draw a time evolution
for blochpunkt in historie:
x = mth.cos(blochpunkt[1]) * mth.cos(blochpunkt[0])
y = mth.cos(blochpunkt[1]) * mth.sin(blochpunkt[0])
z = mth.sin(blochpunkt[1])
a = Arrow3D([0, x], [0, y], [0, z], mutation_scale=20,
lw=1, arrowstyle="-|>", color="k")
ax.add_artist(a)
plt.show()
def phi(phi):
fig, ax = plt.subplots()
x = mth.cos(phi[0])
y = mth.sin(phi[0])
ax.arrow(0, 0, 1, 1)
ax.set_title('Zeitentwicklung von phi')
plt.show()
|