1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
use crate::bpf::*;
use crate::energy::{self, Request as EnergyRequest, TaskInfo};
use crate::freq::{self, FrequencyKHZ, Governor, Request as FrequencyRequest};
use crate::core_selector::{CoreSelector, RoundRobinSelector};
use anyhow::Result;
use libbpf_rs::OpenObject;
use scx_utils::{Topology, UserExitInfo};
use std::collections::{HashMap, VecDeque};
use std::mem::MaybeUninit;
use std::ops::{Range, RangeInclusive};
use std::process;
use std::sync::mpsc::TrySendError;
use std::sync::{mpsc, Arc, RwLock};
use std::time::Duration;
use crate::Pid;
const SLICE_US: u64 = 100000;
pub struct Scheduler<'a> {
bpf: BpfScheduler<'a>,
task_queue: VecDeque<QueuedTask>,
no_budget_task_queue: VecDeque<QueuedTask>,
managed_tasks: HashMap<Pid, Arc<TaskInfo>>,
tasks_scheduled: u64,
//TODO: also consider Pids of children
own_pid: Pid,
p_cores: Range<i32>,
e_cores: Option<Range<i32>>,
garbage_core: i32,
to_remove: Vec<Pid>,
e_core_selector: Box<dyn CoreSelector>,
energy_sender: mpsc::SyncSender<EnergyRequest>,
empty_task_infos: mpsc::Receiver<Arc<TaskInfo>>,
frequency_sender: mpsc::SyncSender<FrequencyRequest>,
}
impl<'a> Scheduler<'a> {
pub fn init(open_object: &'a mut MaybeUninit<OpenObject>, use_mocking: bool) -> Result<Self> {
println!("Initializing energy-aware scheduler");
let shared_cpu_frequency_ranges: Arc<RwLock<Vec<RangeInclusive<FrequencyKHZ>>>> =
Arc::new(RwLock::new(Vec::new()));
let shared_policy_frequency_ranges: Arc<RwLock<Vec<RangeInclusive<FrequencyKHZ>>>> =
Arc::new(RwLock::new(Vec::new()));
let shared_cpu_current_frequencies: Arc<RwLock<Vec<FrequencyKHZ>>> =
Arc::new(RwLock::new(Vec::new()));
// Start energy tracking service
let energy_sender =
energy::start_energy_service(use_mocking, shared_cpu_current_frequencies.clone())?;
let (task_sender, empty_task_infos) = mpsc::sync_channel(200);
std::thread::spawn(move || loop {
if task_sender.send(Arc::new(TaskInfo::default())).is_err() {
eprintln!("Failed to allocate TaskInfo");
}
});
let topology = Topology::new().unwrap();
let mut e_core_ids = Vec::new();
let mut p_core_ids = Vec::new();
for (id, cpu) in &topology.all_cpus {
match cpu.core_type {
scx_utils::CoreType::Big { turbo: _ } => p_core_ids.push(*id as i32),
scx_utils::CoreType::Little => e_core_ids.push(*id as i32),
}
}
// We assume that the CPU IDs for each core type are assigned contiguously.
e_core_ids.sort();
p_core_ids.sort();
let e_cores = *e_core_ids.first().unwrap_or(&0)..(*e_core_ids.last().unwrap_or(&-1) + 1);
let p_cores = *p_core_ids.first().unwrap_or(&0)..(*p_core_ids.last().unwrap_or(&-1) + 1);
let all_cores = 0..((e_cores.len() + p_cores.len()) as u32);
let e_cores = if !e_cores.is_empty() {
Some(e_cores)
} else {
None
};
let e_core_selector = if let Some(e_cores) = &e_cores {
// reserve the last e core as garbage core
Box::new(RoundRobinSelector::new(
&(e_cores.start..e_cores.end.saturating_sub(2)),
))
} else {
// fallback on systems without e cores
Box::new(RoundRobinSelector::new(&(0..1)))
};
let to_remove = Vec::with_capacity(1000);
let frequency_sender = freq::start_frequency_service(
all_cores,
shared_cpu_frequency_ranges.clone(),
shared_policy_frequency_ranges.clone(),
shared_cpu_current_frequencies.clone(),
Duration::from_millis(30),
)?;
frequency_sender
.try_send(FrequencyRequest::UpdatePolicyCPUFrequency)
.unwrap();
frequency_sender
.try_send(FrequencyRequest::UpdatePossibleCPUFrequencyRange)
.unwrap();
std::thread::sleep(Duration::from_secs(1));
let bpf = BpfScheduler::init(
open_object,
0, // exit_dump_len (buffer size of exit info, 0 = default)
false, // partial (false = include all tasks)
false, // debug (false = debug mode off)
)?;
Ok(Self {
bpf,
task_queue: VecDeque::new(),
no_budget_task_queue: VecDeque::new(),
managed_tasks: HashMap::new(),
own_pid: process::id() as i32,
p_cores,
empty_task_infos,
tasks_scheduled: 0,
e_cores,
garbage_core: 0,
e_core_selector,
energy_sender,
to_remove,
frequency_sender,
})
}
fn try_set_up_garbage_cpu(&mut self) -> Result<bool, TrySendError<FrequencyRequest>> {
if let Some(e_cores) = &self.e_cores {
self.garbage_core = e_cores.end.saturating_sub(1);
self.frequency_sender
.try_send(FrequencyRequest::SetFrequencyRangeForCore(
self.garbage_core as u32,
800_000..=1_200_000,
))?;
self.frequency_sender
.try_send(FrequencyRequest::SetGovernorForCore(
self.garbage_core as u32,
Governor::Powersave,
))?;
Ok(true)
} else {
Ok(false)
}
}
fn consume_all_tasks(&mut self) {
while let Ok(Some(mut task)) = self.bpf.dequeue_task() {
// The scheduler itself has to be scheduled regardless of its energy usage
if task.pid == self.own_pid {
task.vtime = 10;
self.task_queue.push_front(task);
continue;
}
// TODO: consider adjusting vtime for all processes
// Check if we've seen this task before
match self.managed_tasks.entry(task.pid) {
std::collections::hash_map::Entry::Vacant(e) => {
let is_e_core = self
.e_cores
.as_ref()
.map(|e_cores| e_cores.contains(&task.cpu))
.unwrap_or(false);
// New task - register it with the energy service
let task_info = self.empty_task_infos.recv().unwrap();
task_info.set_cpu(task.cpu);
task_info.set_running_on_e_core(is_e_core);
e.insert(task_info.clone());
self.energy_sender
.try_send(EnergyRequest::NewTask(task.pid, task_info))
.unwrap();
self.task_queue.push_back(task);
}
std::collections::hash_map::Entry::Occupied(e) => {
// Get current budget for this task
let slice_ns = e.get().update_runtime(task.sum_exec_runtime);
let new_budget = e.get().update_budget(Duration::from_nanos(slice_ns));
match new_budget {
x if x < 0 => {
task.weight = 0;
self.no_budget_task_queue.push_back(task)
}
x if x < energy::budget::MAX_BUDGET_MJ / 10 => {
task.weight = 0;
self.task_queue.push_back(task)
}
_ => self.task_queue.push_back(task),
}
}
}
}
}
fn batch_dispatch_next_tasks(&mut self, tasks: i32) {
for _ in 0..tasks {
self.tasks_scheduled += 1;
if let Some(task) = self.task_queue.pop_front() {
let mut dispatched_task = DispatchedTask::new(&task);
let cpu = self.bpf.select_cpu(task.pid, task.cpu, 0);
if cpu >= 0 {
dispatched_task.cpu = cpu;
} else {
dispatched_task.flags |= RL_CPU_ANY as u64;
}
if task.weight == 0 && self.p_cores.contains(&dispatched_task.cpu) {
dispatched_task.cpu = self.e_core_selector.next_core(task.cpu);
}
if task.pid == self.own_pid {
dispatched_task.slice_ns = SLICE_US * 1000;
} else {
dispatched_task.slice_ns = SLICE_US;
}
if let Err(e) = self.bpf.dispatch_task(&dispatched_task) {
eprintln!("Failed to dispatch task: {}", e);
panic!();
}
let running_on_e_core = self
.e_cores
.as_ref()
.map(|e_cores| e_cores.contains(&dispatched_task.cpu))
.unwrap_or(false);
if let Some(entry) = self.managed_tasks.get_mut(&task.pid) {
entry.set_cpu(dispatched_task.cpu);
entry.set_running_on_e_core(running_on_e_core);
entry.set_last_scheduled_to_now();
} else {
println!("Tried to dispatch a task which is not part of managed tasks");
}
self.bpf.notify_complete(
self.task_queue.len() as u64 + self.no_budget_task_queue.len() as u64,
);
}
if !(self.task_queue.is_empty() || self.tasks_scheduled % 10 == 0) {
continue;
}
if let Some(task) = self.no_budget_task_queue.pop_front() {
let mut dispatched_task = DispatchedTask::new(&task);
// Low budget tasks go to garbage_core
let cpu = self.garbage_core;
if cpu >= 0 {
dispatched_task.cpu = cpu;
} else {
eprintln!("e core scheduler set cpu to -1");
}
let running_on_e_core = self
.e_cores
.as_ref()
.map(|e_cores| e_cores.contains(&dispatched_task.cpu))
.unwrap_or(false);
if let Some(entry) = self.managed_tasks.get_mut(&task.pid) {
entry.set_cpu(dispatched_task.cpu);
entry.set_running_on_e_core(running_on_e_core);
entry.set_last_scheduled_to_now();
} else {
println!("Tried to dispatch a task which is not part of managed tasks");
}
if let Err(e) = self.bpf.dispatch_task(&dispatched_task) {
eprintln!("Failed to dispatch low-budget task: {}", e);
}
} else {
break;
}
}
self.bpf
.notify_complete(self.task_queue.len() as u64 + self.no_budget_task_queue.len() as u64);
}
fn cleanup_old_tasks(&mut self) {
for (pid, task) in &self.managed_tasks {
// None means that the task was never scheduled so we should probably keep it
if task
.read_time_since_last_schedule()
.unwrap_or(Duration::from_secs(0))
> Duration::from_secs(5)
{
self.to_remove.push(*pid);
}
}
for pid in self.to_remove.drain(..) {
self.managed_tasks.remove(&pid);
self.energy_sender
.try_send(EnergyRequest::RemoveTask(pid))
.unwrap();
}
}
fn dispatch_tasks(&mut self) {
loop {
self.consume_all_tasks();
self.batch_dispatch_next_tasks(20);
if self.task_queue.is_empty() && self.no_budget_task_queue.is_empty() {
self.bpf.notify_complete(0);
break;
}
}
}
pub fn run(&mut self) -> Result<UserExitInfo> {
self.try_set_up_garbage_cpu()?;
let mut i = 0;
while !self.bpf.exited() {
i += 1;
self.dispatch_tasks();
if i % 100 == 0 {
self.cleanup_old_tasks();
}
}
// Clean up - signal the energy service to stop tracking all managed tasks
for pid in self.managed_tasks.keys() {
let _ = self.energy_sender.send(EnergyRequest::RemoveTask(*pid));
}
self.bpf.shutdown_and_report()
}
}
|