diff options
author | Daniel Borkmann <daniel@iogearbox.net> | 2017-12-21 02:15:42 +0100 |
---|---|---|
committer | Daniel Borkmann <daniel@iogearbox.net> | 2017-12-21 02:15:42 +0100 |
commit | 3db9128fcf02dcaafa3860a69a8a55d5529b6e30 (patch) | |
tree | 117e4805d7777db771898351ebdc71994371d9e3 | |
parent | 19c832ed9b8f7b49fa5eeef06b4338af5fe5c1dc (diff) | |
parent | 2255f8d520b0a318fc6d387d0940854b2f522a7f (diff) |
Merge branch 'bpf-verifier-sec-fixes'
Alexei Starovoitov says:
====================
This patch set addresses a set of security vulnerabilities
in bpf verifier logic discovered by Jann Horn.
All of the patches are candidates for 4.14 stable.
====================
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
-rw-r--r-- | include/linux/bpf_verifier.h | 4 | ||||
-rw-r--r-- | kernel/bpf/verifier.c | 175 | ||||
-rw-r--r-- | tools/testing/selftests/bpf/test_verifier.c | 549 |
3 files changed, 661 insertions, 67 deletions
diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h index c561b986bab0..1632bb13ad8a 100644 --- a/include/linux/bpf_verifier.h +++ b/include/linux/bpf_verifier.h @@ -15,11 +15,11 @@ * In practice this is far bigger than any realistic pointer offset; this limit * ensures that umax_value + (int)off + (int)size cannot overflow a u64. */ -#define BPF_MAX_VAR_OFF (1ULL << 31) +#define BPF_MAX_VAR_OFF (1 << 29) /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures * that converting umax_value to int cannot overflow. */ -#define BPF_MAX_VAR_SIZ INT_MAX +#define BPF_MAX_VAR_SIZ (1 << 29) /* Liveness marks, used for registers and spilled-regs (in stack slots). * Read marks propagate upwards until they find a write mark; they record that diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index e39b01317b6f..86dfe6b5c243 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -1059,6 +1059,11 @@ static int check_ptr_alignment(struct bpf_verifier_env *env, break; case PTR_TO_STACK: pointer_desc = "stack "; + /* The stack spill tracking logic in check_stack_write() + * and check_stack_read() relies on stack accesses being + * aligned. + */ + strict = true; break; default: break; @@ -1067,6 +1072,29 @@ static int check_ptr_alignment(struct bpf_verifier_env *env, strict); } +/* truncate register to smaller size (in bytes) + * must be called with size < BPF_REG_SIZE + */ +static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) +{ + u64 mask; + + /* clear high bits in bit representation */ + reg->var_off = tnum_cast(reg->var_off, size); + + /* fix arithmetic bounds */ + mask = ((u64)1 << (size * 8)) - 1; + if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { + reg->umin_value &= mask; + reg->umax_value &= mask; + } else { + reg->umin_value = 0; + reg->umax_value = mask; + } + reg->smin_value = reg->umin_value; + reg->smax_value = reg->umax_value; +} + /* check whether memory at (regno + off) is accessible for t = (read | write) * if t==write, value_regno is a register which value is stored into memory * if t==read, value_regno is a register which will receive the value from memory @@ -1200,9 +1228,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && regs[value_regno].type == SCALAR_VALUE) { /* b/h/w load zero-extends, mark upper bits as known 0 */ - regs[value_regno].var_off = - tnum_cast(regs[value_regno].var_off, size); - __update_reg_bounds(®s[value_regno]); + coerce_reg_to_size(®s[value_regno], size); } return err; } @@ -1282,6 +1308,7 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off); verbose(env, "invalid variable stack read R%d var_off=%s\n", regno, tn_buf); + return -EACCES; } off = regs[regno].off + regs[regno].var_off.value; if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || @@ -1772,14 +1799,6 @@ static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx) return 0; } -static void coerce_reg_to_32(struct bpf_reg_state *reg) -{ - /* clear high 32 bits */ - reg->var_off = tnum_cast(reg->var_off, 4); - /* Update bounds */ - __update_reg_bounds(reg); -} - static bool signed_add_overflows(s64 a, s64 b) { /* Do the add in u64, where overflow is well-defined */ @@ -1800,6 +1819,41 @@ static bool signed_sub_overflows(s64 a, s64 b) return res > a; } +static bool check_reg_sane_offset(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, + enum bpf_reg_type type) +{ + bool known = tnum_is_const(reg->var_off); + s64 val = reg->var_off.value; + s64 smin = reg->smin_value; + + if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { + verbose(env, "math between %s pointer and %lld is not allowed\n", + reg_type_str[type], val); + return false; + } + + if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { + verbose(env, "%s pointer offset %d is not allowed\n", + reg_type_str[type], reg->off); + return false; + } + + if (smin == S64_MIN) { + verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", + reg_type_str[type]); + return false; + } + + if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { + verbose(env, "value %lld makes %s pointer be out of bounds\n", + smin, reg_type_str[type]); + return false; + } + + return true; +} + /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. * Caller should also handle BPF_MOV case separately. * If we return -EACCES, caller may want to try again treating pointer as a @@ -1868,6 +1922,10 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, dst_reg->type = ptr_reg->type; dst_reg->id = ptr_reg->id; + if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || + !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) + return -EINVAL; + switch (opcode) { case BPF_ADD: /* We can take a fixed offset as long as it doesn't overflow @@ -1998,12 +2056,19 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, return -EACCES; } + if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) + return -EINVAL; + __update_reg_bounds(dst_reg); __reg_deduce_bounds(dst_reg); __reg_bound_offset(dst_reg); return 0; } +/* WARNING: This function does calculations on 64-bit values, but the actual + * execution may occur on 32-bit values. Therefore, things like bitshifts + * need extra checks in the 32-bit case. + */ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, struct bpf_insn *insn, struct bpf_reg_state *dst_reg, @@ -2014,12 +2079,8 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, bool src_known, dst_known; s64 smin_val, smax_val; u64 umin_val, umax_val; + u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; - if (BPF_CLASS(insn->code) != BPF_ALU64) { - /* 32-bit ALU ops are (32,32)->64 */ - coerce_reg_to_32(dst_reg); - coerce_reg_to_32(&src_reg); - } smin_val = src_reg.smin_value; smax_val = src_reg.smax_value; umin_val = src_reg.umin_value; @@ -2027,6 +2088,12 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, src_known = tnum_is_const(src_reg.var_off); dst_known = tnum_is_const(dst_reg->var_off); + if (!src_known && + opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { + __mark_reg_unknown(dst_reg); + return 0; + } + switch (opcode) { case BPF_ADD: if (signed_add_overflows(dst_reg->smin_value, smin_val) || @@ -2155,9 +2222,9 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, __update_reg_bounds(dst_reg); break; case BPF_LSH: - if (umax_val > 63) { - /* Shifts greater than 63 are undefined. This includes - * shifts by a negative number. + if (umax_val >= insn_bitness) { + /* Shifts greater than 31 or 63 are undefined. + * This includes shifts by a negative number. */ mark_reg_unknown(env, regs, insn->dst_reg); break; @@ -2183,27 +2250,29 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, __update_reg_bounds(dst_reg); break; case BPF_RSH: - if (umax_val > 63) { - /* Shifts greater than 63 are undefined. This includes - * shifts by a negative number. + if (umax_val >= insn_bitness) { + /* Shifts greater than 31 or 63 are undefined. + * This includes shifts by a negative number. */ mark_reg_unknown(env, regs, insn->dst_reg); break; } - /* BPF_RSH is an unsigned shift, so make the appropriate casts */ - if (dst_reg->smin_value < 0) { - if (umin_val) { - /* Sign bit will be cleared */ - dst_reg->smin_value = 0; - } else { - /* Lost sign bit information */ - dst_reg->smin_value = S64_MIN; - dst_reg->smax_value = S64_MAX; - } - } else { - dst_reg->smin_value = - (u64)(dst_reg->smin_value) >> umax_val; - } + /* BPF_RSH is an unsigned shift. If the value in dst_reg might + * be negative, then either: + * 1) src_reg might be zero, so the sign bit of the result is + * unknown, so we lose our signed bounds + * 2) it's known negative, thus the unsigned bounds capture the + * signed bounds + * 3) the signed bounds cross zero, so they tell us nothing + * about the result + * If the value in dst_reg is known nonnegative, then again the + * unsigned bounts capture the signed bounds. + * Thus, in all cases it suffices to blow away our signed bounds + * and rely on inferring new ones from the unsigned bounds and + * var_off of the result. + */ + dst_reg->smin_value = S64_MIN; + dst_reg->smax_value = S64_MAX; if (src_known) dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); @@ -2219,6 +2288,12 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, break; } + if (BPF_CLASS(insn->code) != BPF_ALU64) { + /* 32-bit ALU ops are (32,32)->32 */ + coerce_reg_to_size(dst_reg, 4); + coerce_reg_to_size(&src_reg, 4); + } + __reg_deduce_bounds(dst_reg); __reg_bound_offset(dst_reg); return 0; @@ -2396,17 +2471,20 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) return -EACCES; } mark_reg_unknown(env, regs, insn->dst_reg); - /* high 32 bits are known zero. */ - regs[insn->dst_reg].var_off = tnum_cast( - regs[insn->dst_reg].var_off, 4); - __update_reg_bounds(®s[insn->dst_reg]); + coerce_reg_to_size(®s[insn->dst_reg], 4); } } else { /* case: R = imm * remember the value we stored into this reg */ regs[insn->dst_reg].type = SCALAR_VALUE; - __mark_reg_known(regs + insn->dst_reg, insn->imm); + if (BPF_CLASS(insn->code) == BPF_ALU64) { + __mark_reg_known(regs + insn->dst_reg, + insn->imm); + } else { + __mark_reg_known(regs + insn->dst_reg, + (u32)insn->imm); + } } } else if (opcode > BPF_END) { @@ -3437,15 +3515,14 @@ static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, return range_within(rold, rcur) && tnum_in(rold->var_off, rcur->var_off); } else { - /* if we knew anything about the old value, we're not - * equal, because we can't know anything about the - * scalar value of the pointer in the new value. + /* We're trying to use a pointer in place of a scalar. + * Even if the scalar was unbounded, this could lead to + * pointer leaks because scalars are allowed to leak + * while pointers are not. We could make this safe in + * special cases if root is calling us, but it's + * probably not worth the hassle. */ - return rold->umin_value == 0 && - rold->umax_value == U64_MAX && - rold->smin_value == S64_MIN && - rold->smax_value == S64_MAX && - tnum_is_unknown(rold->var_off); + return false; } case PTR_TO_MAP_VALUE: /* If the new min/max/var_off satisfy the old ones and diff --git a/tools/testing/selftests/bpf/test_verifier.c b/tools/testing/selftests/bpf/test_verifier.c index b03ecfd7185b..961c1426fbf2 100644 --- a/tools/testing/selftests/bpf/test_verifier.c +++ b/tools/testing/selftests/bpf/test_verifier.c @@ -606,7 +606,6 @@ static struct bpf_test tests[] = { }, .errstr = "misaligned stack access", .result = REJECT, - .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "invalid map_fd for function call", @@ -1797,7 +1796,6 @@ static struct bpf_test tests[] = { }, .result = REJECT, .errstr = "misaligned stack access off (0x0; 0x0)+-8+2 size 8", - .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "PTR_TO_STACK store/load - bad alignment on reg", @@ -1810,7 +1808,6 @@ static struct bpf_test tests[] = { }, .result = REJECT, .errstr = "misaligned stack access off (0x0; 0x0)+-10+8 size 8", - .flags = F_LOAD_WITH_STRICT_ALIGNMENT, }, { "PTR_TO_STACK store/load - out of bounds low", @@ -6324,7 +6321,7 @@ static struct bpf_test tests[] = { BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, - .errstr = "R0 min value is negative", + .errstr = "unbounded min value", .result = REJECT, }, { @@ -6348,7 +6345,7 @@ static struct bpf_test tests[] = { BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, - .errstr = "R0 min value is negative", + .errstr = "unbounded min value", .result = REJECT, }, { @@ -6374,7 +6371,7 @@ static struct bpf_test tests[] = { BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, - .errstr = "R8 invalid mem access 'inv'", + .errstr = "unbounded min value", .result = REJECT, }, { @@ -6399,7 +6396,7 @@ static struct bpf_test tests[] = { BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, - .errstr = "R8 invalid mem access 'inv'", + .errstr = "unbounded min value", .result = REJECT, }, { @@ -6447,7 +6444,7 @@ static struct bpf_test tests[] = { BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, - .errstr = "R0 min value is negative", + .errstr = "unbounded min value", .result = REJECT, }, { @@ -6518,7 +6515,7 @@ static struct bpf_test tests[] = { BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, - .errstr = "R0 min value is negative", + .errstr = "unbounded min value", .result = REJECT, }, { @@ -6569,7 +6566,7 @@ static struct bpf_test tests[] = { BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, - .errstr = "R0 min value is negative", + .errstr = "unbounded min value", .result = REJECT, }, { @@ -6596,7 +6593,7 @@ static struct bpf_test tests[] = { BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, - .errstr = "R0 min value is negative", + .errstr = "unbounded min value", .result = REJECT, }, { @@ -6622,7 +6619,7 @@ static struct bpf_test tests[] = { BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, - .errstr = "R0 min value is negative", + .errstr = "unbounded min value", .result = REJECT, }, { @@ -6651,7 +6648,7 @@ static struct bpf_test tests[] = { BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, - .errstr = "R0 min value is negative", + .errstr = "unbounded min value", .result = REJECT, }, { @@ -6681,7 +6678,7 @@ static struct bpf_test tests[] = { BPF_JMP_IMM(BPF_JA, 0, 0, -7), }, .fixup_map1 = { 4 }, - .errstr = "R0 min value is negative", + .errstr = "unbounded min value", .result = REJECT, }, { @@ -6709,8 +6706,7 @@ static struct bpf_test tests[] = { BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, - .errstr_unpriv = "R0 pointer comparison prohibited", - .errstr = "R0 min value is negative", + .errstr = "unbounded min value", .result = REJECT, .result_unpriv = REJECT, }, @@ -6766,6 +6762,462 @@ static struct bpf_test tests[] = { .result = REJECT, }, { + "bounds check based on zero-extended MOV", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), + /* r2 = 0x0000'0000'ffff'ffff */ + BPF_MOV32_IMM(BPF_REG_2, 0xffffffff), + /* r2 = 0 */ + BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 32), + /* no-op */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), + /* access at offset 0 */ + BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), + /* exit */ + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .result = ACCEPT + }, + { + "bounds check based on sign-extended MOV. test1", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), + /* r2 = 0xffff'ffff'ffff'ffff */ + BPF_MOV64_IMM(BPF_REG_2, 0xffffffff), + /* r2 = 0xffff'ffff */ + BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 32), + /* r0 = <oob pointer> */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), + /* access to OOB pointer */ + BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), + /* exit */ + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .errstr = "map_value pointer and 4294967295", + .result = REJECT + }, + { + "bounds check based on sign-extended MOV. test2", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), + /* r2 = 0xffff'ffff'ffff'ffff */ + BPF_MOV64_IMM(BPF_REG_2, 0xffffffff), + /* r2 = 0xfff'ffff */ + BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36), + /* r0 = <oob pointer> */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), + /* access to OOB pointer */ + BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), + /* exit */ + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .errstr = "R0 min value is outside of the array range", + .result = REJECT + }, + { + "bounds check based on reg_off + var_off + insn_off. test1", + .insns = { + BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, + offsetof(struct __sk_buff, mark)), + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), + BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 1), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, (1 << 29) - 1), + BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_6), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, (1 << 29) - 1), + BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 3), + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 4 }, + .errstr = "value_size=8 off=1073741825", + .result = REJECT, + .prog_type = BPF_PROG_TYPE_SCHED_CLS, + }, + { + "bounds check based on reg_off + var_off + insn_off. test2", + .insns = { + BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, + offsetof(struct __sk_buff, mark)), + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), + BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 1), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, (1 << 30) - 1), + BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_6), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, (1 << 29) - 1), + BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 3), + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 4 }, + .errstr = "value 1073741823", + .result = REJECT, + .prog_type = BPF_PROG_TYPE_SCHED_CLS, + }, + { + "bounds check after truncation of non-boundary-crossing range", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), + /* r1 = [0x00, 0xff] */ + BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), + BPF_MOV64_IMM(BPF_REG_2, 1), + /* r2 = 0x10'0000'0000 */ + BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 36), + /* r1 = [0x10'0000'0000, 0x10'0000'00ff] */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2), + /* r1 = [0x10'7fff'ffff, 0x10'8000'00fe] */ + BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff), + /* r1 = [0x00, 0xff] */ + BPF_ALU32_IMM(BPF_SUB, BPF_REG_1, 0x7fffffff), + /* r1 = 0 */ + BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8), + /* no-op */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), + /* access at offset 0 */ + BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), + /* exit */ + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .result = ACCEPT + }, + { + "bounds check after truncation of boundary-crossing range (1)", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), + /* r1 = [0x00, 0xff] */ + BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1), + /* r1 = [0xffff'ff80, 0x1'0000'007f] */ + BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1), + /* r1 = [0xffff'ff80, 0xffff'ffff] or + * [0x0000'0000, 0x0000'007f] + */ + BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 0), + BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1), + /* r1 = [0x00, 0xff] or + * [0xffff'ffff'0000'0080, 0xffff'ffff'ffff'ffff] + */ + BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1), + /* r1 = 0 or + * [0x00ff'ffff'ff00'0000, 0x00ff'ffff'ffff'ffff] + */ + BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8), + /* no-op or OOB pointer computation */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), + /* potentially OOB access */ + BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), + /* exit */ + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + /* not actually fully unbounded, but the bound is very high */ + .errstr = "R0 unbounded memory access", + .result = REJECT + }, + { + "bounds check after truncation of boundary-crossing range (2)", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), + /* r1 = [0x00, 0xff] */ + BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1), + /* r1 = [0xffff'ff80, 0x1'0000'007f] */ + BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1), + /* r1 = [0xffff'ff80, 0xffff'ffff] or + * [0x0000'0000, 0x0000'007f] + * difference to previous test: truncation via MOV32 + * instead of ALU32. + */ + BPF_MOV32_REG(BPF_REG_1, BPF_REG_1), + BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1), + /* r1 = [0x00, 0xff] or + * [0xffff'ffff'0000'0080, 0xffff'ffff'ffff'ffff] + */ + BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1), + /* r1 = 0 or + * [0x00ff'ffff'ff00'0000, 0x00ff'ffff'ffff'ffff] + */ + BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8), + /* no-op or OOB pointer computation */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), + /* potentially OOB access */ + BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), + /* exit */ + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + /* not actually fully unbounded, but the bound is very high */ + .errstr = "R0 unbounded memory access", + .result = REJECT + }, + { + "bounds check after wrapping 32-bit addition", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), + /* r1 = 0x7fff'ffff */ + BPF_MOV64_IMM(BPF_REG_1, 0x7fffffff), + /* r1 = 0xffff'fffe */ + BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff), + /* r1 = 0 */ + BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 2), + /* no-op */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), + /* access at offset 0 */ + BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), + /* exit */ + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .result = ACCEPT + }, + { + "bounds check after shift with oversized count operand", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), + BPF_MOV64_IMM(BPF_REG_2, 32), + BPF_MOV64_IMM(BPF_REG_1, 1), + /* r1 = (u32)1 << (u32)32 = ? */ + BPF_ALU32_REG(BPF_LSH, BPF_REG_1, BPF_REG_2), + /* r1 = [0x0000, 0xffff] */ + BPF_ALU64_IMM(BPF_AND, BPF_REG_1, 0xffff), + /* computes unknown pointer, potentially OOB */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), + /* potentially OOB access */ + BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), + /* exit */ + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .errstr = "R0 max value is outside of the array range", + .result = REJECT + }, + { + "bounds check after right shift of maybe-negative number", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), + /* r1 = [0x00, 0xff] */ + BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), + /* r1 = [-0x01, 0xfe] */ + BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 1), + /* r1 = 0 or 0xff'ffff'ffff'ffff */ + BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8), + /* r1 = 0 or 0xffff'ffff'ffff */ + BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8), + /* computes unknown pointer, potentially OOB */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), + /* potentially OOB access */ + BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0), + /* exit */ + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .errstr = "R0 unbounded memory access", + .result = REJECT + }, + { + "bounds check map access with off+size signed 32bit overflow. test1", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), + BPF_EXIT_INSN(), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x7ffffffe), + BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0), + BPF_JMP_A(0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .errstr = "map_value pointer and 2147483646", + .result = REJECT + }, + { + "bounds check map access with off+size signed 32bit overflow. test2", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), + BPF_EXIT_INSN(), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff), + BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0), + BPF_JMP_A(0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .errstr = "pointer offset 1073741822", + .result = REJECT + }, + { + "bounds check map access with off+size signed 32bit overflow. test3", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), + BPF_EXIT_INSN(), + BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 0x1fffffff), + BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 0x1fffffff), + BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 2), + BPF_JMP_A(0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .errstr = "pointer offset -1073741822", + .result = REJECT + }, + { + "bounds check map access with off+size signed 32bit overflow. test4", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), + BPF_EXIT_INSN(), + BPF_MOV64_IMM(BPF_REG_1, 1000000), + BPF_ALU64_IMM(BPF_MUL, BPF_REG_1, 1000000), + BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), + BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 2), + BPF_JMP_A(0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .errstr = "map_value pointer and 1000000000000", + .result = REJECT + }, + { + "pointer/scalar confusion in state equality check (way 1)", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), + BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0), + BPF_JMP_A(1), + BPF_MOV64_REG(BPF_REG_0, BPF_REG_10), + BPF_JMP_A(0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .result = ACCEPT, + .result_unpriv = REJECT, + .errstr_unpriv = "R0 leaks addr as return value" + }, + { + "pointer/scalar confusion in state equality check (way 2)", + .insns = { + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2), + BPF_MOV64_REG(BPF_REG_0, BPF_REG_10), + BPF_JMP_A(1), + BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 3 }, + .result = ACCEPT, + .result_unpriv = REJECT, + .errstr_unpriv = "R0 leaks addr as return value" + }, + { "variable-offset ctx access", .insns = { /* Get an unknown value */ @@ -6807,6 +7259,71 @@ static struct bpf_test tests[] = { .prog_type = BPF_PROG_TYPE_LWT_IN, }, { + "indirect variable-offset stack access", + .insns = { + /* Fill the top 8 bytes of the stack */ + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + /* Get an unknown value */ + BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0), + /* Make it small and 4-byte aligned */ + BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4), + BPF_ALU64_IMM(BPF_SUB, BPF_REG_2, 8), + /* add it to fp. We now have either fp-4 or fp-8, but + * we don't know which + */ + BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_10), + /* dereference it indirectly */ + BPF_LD_MAP_FD(BPF_REG_1, 0), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, + BPF_FUNC_map_lookup_elem), + BPF_MOV64_IMM(BPF_REG_0, 0), + BPF_EXIT_INSN(), + }, + .fixup_map1 = { 5 }, + .errstr = "variable stack read R2", + .result = REJECT, + .prog_type = BPF_PROG_TYPE_LWT_IN, + }, + { + "direct stack access with 32-bit wraparound. test1", + .insns = { + BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff), + BPF_MOV32_IMM(BPF_REG_0, 0), + BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), + BPF_EXIT_INSN() + }, + .errstr = "fp pointer and 2147483647", + .result = REJECT + }, + { + "direct stack access with 32-bit wraparound. test2", + .insns = { + BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x3fffffff), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x3fffffff), + BPF_MOV32_IMM(BPF_REG_0, 0), + BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), + BPF_EXIT_INSN() + }, + .errstr = "fp pointer and 1073741823", + .result = REJECT + }, + { + "direct stack access with 32-bit wraparound. test3", + .insns = { + BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x1fffffff), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x1fffffff), + BPF_MOV32_IMM(BPF_REG_0, 0), + BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0), + BPF_EXIT_INSN() + }, + .errstr = "fp pointer offset 1073741822", + .result = REJECT + }, + { "liveness pruning and write screening", .insns = { /* Get an unknown value */ |