summaryrefslogtreecommitdiff
path: root/Documentation/vm
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2022-01-15 20:37:06 +0200
committerLinus Torvalds <torvalds@linux-foundation.org>2022-01-15 20:37:06 +0200
commitf56caedaf94f9ced5dbfcdb0060a3e788d2078af (patch)
treee213532d1b3d32f9f0e81948f3b23804baff287d /Documentation/vm
parenta33f5c380c4bd3fa5278d690421b72052456d9fe (diff)
parent76fd0285b447991267e838842c0be7395eb454bb (diff)
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: "146 patches. Subsystems affected by this patch series: kthread, ia64, scripts, ntfs, squashfs, ocfs2, vfs, and mm (slab-generic, slab, kmemleak, dax, kasan, debug, pagecache, gup, shmem, frontswap, memremap, memcg, selftests, pagemap, dma, vmalloc, memory-failure, hugetlb, userfaultfd, vmscan, mempolicy, oom-kill, hugetlbfs, migration, thp, ksm, page-poison, percpu, rmap, zswap, zram, cleanups, hmm, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (146 commits) mm/damon: hide kernel pointer from tracepoint event mm/damon/vaddr: hide kernel pointer from damon_va_three_regions() failure log mm/damon/vaddr: use pr_debug() for damon_va_three_regions() failure logging mm/damon/dbgfs: remove an unnecessary variable mm/damon: move the implementation of damon_insert_region to damon.h mm/damon: add access checking for hugetlb pages Docs/admin-guide/mm/damon/usage: update for schemes statistics mm/damon/dbgfs: support all DAMOS stats Docs/admin-guide/mm/damon/reclaim: document statistics parameters mm/damon/reclaim: provide reclamation statistics mm/damon/schemes: account how many times quota limit has exceeded mm/damon/schemes: account scheme actions that successfully applied mm/damon: remove a mistakenly added comment for a future feature Docs/admin-guide/mm/damon/usage: update for kdamond_pid and (mk|rm)_contexts Docs/admin-guide/mm/damon/usage: mention tracepoint at the beginning Docs/admin-guide/mm/damon/usage: remove redundant information Docs/admin-guide/mm/damon/usage: update for scheme quotas and watermarks mm/damon: convert macro functions to static inline functions mm/damon: modify damon_rand() macro to static inline function mm/damon: move damon_rand() definition into damon.h ...
Diffstat (limited to 'Documentation/vm')
-rw-r--r--Documentation/vm/arch_pgtable_helpers.rst20
-rw-r--r--Documentation/vm/index.rst2
-rw-r--r--Documentation/vm/page_migration.rst12
-rw-r--r--Documentation/vm/page_table_check.rst56
-rw-r--r--Documentation/vm/vmalloced-kernel-stacks.rst153
5 files changed, 228 insertions, 15 deletions
diff --git a/Documentation/vm/arch_pgtable_helpers.rst b/Documentation/vm/arch_pgtable_helpers.rst
index 552567d863b8..f8b225fc9190 100644
--- a/Documentation/vm/arch_pgtable_helpers.rst
+++ b/Documentation/vm/arch_pgtable_helpers.rst
@@ -66,9 +66,11 @@ PTE Page Table Helpers
+---------------------------+--------------------------------------------------+
| pte_mknotpresent | Invalidates a mapped PTE |
+---------------------------+--------------------------------------------------+
-| ptep_get_and_clear | Clears a PTE |
+| ptep_clear | Clears a PTE |
+---------------------------+--------------------------------------------------+
-| ptep_get_and_clear_full | Clears a PTE |
+| ptep_get_and_clear | Clears and returns PTE |
++---------------------------+--------------------------------------------------+
+| ptep_get_and_clear_full | Clears and returns PTE (batched PTE unmap) |
+---------------------------+--------------------------------------------------+
| ptep_test_and_clear_young | Clears young from a PTE |
+---------------------------+--------------------------------------------------+
@@ -247,12 +249,12 @@ SWAP Page Table Helpers
| __swp_to_pmd_entry | Creates a mapped PMD from a swapped entry (arch) |
+---------------------------+--------------------------------------------------+
| is_migration_entry | Tests a migration (read or write) swapped entry |
-+---------------------------+--------------------------------------------------+
-| is_write_migration_entry | Tests a write migration swapped entry |
-+---------------------------+--------------------------------------------------+
-| make_migration_entry_read | Converts into read migration swapped entry |
-+---------------------------+--------------------------------------------------+
-| make_migration_entry | Creates a migration swapped entry (read or write)|
-+---------------------------+--------------------------------------------------+
++-------------------------------+----------------------------------------------+
+| is_writable_migration_entry | Tests a write migration swapped entry |
++-------------------------------+----------------------------------------------+
+| make_readable_migration_entry | Creates a read migration swapped entry |
++-------------------------------+----------------------------------------------+
+| make_writable_migration_entry | Creates a write migration swapped entry |
++-------------------------------+----------------------------------------------+
[1] https://lore.kernel.org/linux-mm/20181017020930.GN30832@redhat.com/
diff --git a/Documentation/vm/index.rst b/Documentation/vm/index.rst
index 6f5ffef4b716..932440805453 100644
--- a/Documentation/vm/index.rst
+++ b/Documentation/vm/index.rst
@@ -31,10 +31,12 @@ algorithms. If you are looking for advice on simply allocating memory, see the
page_migration
page_frags
page_owner
+ page_table_check
remap_file_pages
slub
split_page_table_lock
transhuge
unevictable-lru
+ vmalloced-kernel-stacks
z3fold
zsmalloc
diff --git a/Documentation/vm/page_migration.rst b/Documentation/vm/page_migration.rst
index 08810f549f70..8c5cb8147e55 100644
--- a/Documentation/vm/page_migration.rst
+++ b/Documentation/vm/page_migration.rst
@@ -263,15 +263,15 @@ Monitoring Migration
The following events (counters) can be used to monitor page migration.
1. PGMIGRATE_SUCCESS: Normal page migration success. Each count means that a
- page was migrated. If the page was a non-THP page, then this counter is
- increased by one. If the page was a THP, then this counter is increased by
- the number of THP subpages. For example, migration of a single 2MB THP that
- has 4KB-size base pages (subpages) will cause this counter to increase by
- 512.
+ page was migrated. If the page was a non-THP and non-hugetlb page, then
+ this counter is increased by one. If the page was a THP or hugetlb, then
+ this counter is increased by the number of THP or hugetlb subpages.
+ For example, migration of a single 2MB THP that has 4KB-size base pages
+ (subpages) will cause this counter to increase by 512.
2. PGMIGRATE_FAIL: Normal page migration failure. Same counting rules as for
PGMIGRATE_SUCCESS, above: this will be increased by the number of subpages,
- if it was a THP.
+ if it was a THP or hugetlb.
3. THP_MIGRATION_SUCCESS: A THP was migrated without being split.
diff --git a/Documentation/vm/page_table_check.rst b/Documentation/vm/page_table_check.rst
new file mode 100644
index 000000000000..81f521ff7ea7
--- /dev/null
+++ b/Documentation/vm/page_table_check.rst
@@ -0,0 +1,56 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. _page_table_check:
+
+================
+Page Table Check
+================
+
+Introduction
+============
+
+Page table check allows to hardern the kernel by ensuring that some types of
+the memory corruptions are prevented.
+
+Page table check performs extra verifications at the time when new pages become
+accessible from the userspace by getting their page table entries (PTEs PMDs
+etc.) added into the table.
+
+In case of detected corruption, the kernel is crashed. There is a small
+performance and memory overhead associated with the page table check. Therefore,
+it is disabled by default, but can be optionally enabled on systems where the
+extra hardening outweighs the performance costs. Also, because page table check
+is synchronous, it can help with debugging double map memory corruption issues,
+by crashing kernel at the time wrong mapping occurs instead of later which is
+often the case with memory corruptions bugs.
+
+Double mapping detection logic
+==============================
+
++-------------------+-------------------+-------------------+------------------+
+| Current Mapping | New mapping | Permissions | Rule |
++===================+===================+===================+==================+
+| Anonymous | Anonymous | Read | Allow |
++-------------------+-------------------+-------------------+------------------+
+| Anonymous | Anonymous | Read / Write | Prohibit |
++-------------------+-------------------+-------------------+------------------+
+| Anonymous | Named | Any | Prohibit |
++-------------------+-------------------+-------------------+------------------+
+| Named | Anonymous | Any | Prohibit |
++-------------------+-------------------+-------------------+------------------+
+| Named | Named | Any | Allow |
++-------------------+-------------------+-------------------+------------------+
+
+Enabling Page Table Check
+=========================
+
+Build kernel with:
+
+- PAGE_TABLE_CHECK=y
+ Note, it can only be enabled on platforms where ARCH_SUPPORTS_PAGE_TABLE_CHECK
+ is available.
+
+- Boot with 'page_table_check=on' kernel parameter.
+
+Optionally, build kernel with PAGE_TABLE_CHECK_ENFORCED in order to have page
+table support without extra kernel parameter.
diff --git a/Documentation/vm/vmalloced-kernel-stacks.rst b/Documentation/vm/vmalloced-kernel-stacks.rst
new file mode 100644
index 000000000000..fc8c67833af6
--- /dev/null
+++ b/Documentation/vm/vmalloced-kernel-stacks.rst
@@ -0,0 +1,153 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=====================================
+Virtually Mapped Kernel Stack Support
+=====================================
+
+:Author: Shuah Khan <skhan@linuxfoundation.org>
+
+.. contents:: :local:
+
+Overview
+--------
+
+This is a compilation of information from the code and original patch
+series that introduced the `Virtually Mapped Kernel Stacks feature
+<https://lwn.net/Articles/694348/>`
+
+Introduction
+------------
+
+Kernel stack overflows are often hard to debug and make the kernel
+susceptible to exploits. Problems could show up at a later time making
+it difficult to isolate and root-cause.
+
+Virtually-mapped kernel stacks with guard pages causes kernel stack
+overflows to be caught immediately rather than causing difficult to
+diagnose corruptions.
+
+HAVE_ARCH_VMAP_STACK and VMAP_STACK configuration options enable
+support for virtually mapped stacks with guard pages. This feature
+causes reliable faults when the stack overflows. The usability of
+the stack trace after overflow and response to the overflow itself
+is architecture dependent.
+
+.. note::
+ As of this writing, arm64, powerpc, riscv, s390, um, and x86 have
+ support for VMAP_STACK.
+
+HAVE_ARCH_VMAP_STACK
+--------------------
+
+Architectures that can support Virtually Mapped Kernel Stacks should
+enable this bool configuration option. The requirements are:
+
+- vmalloc space must be large enough to hold many kernel stacks. This
+ may rule out many 32-bit architectures.
+- Stacks in vmalloc space need to work reliably. For example, if
+ vmap page tables are created on demand, either this mechanism
+ needs to work while the stack points to a virtual address with
+ unpopulated page tables or arch code (switch_to() and switch_mm(),
+ most likely) needs to ensure that the stack's page table entries
+ are populated before running on a possibly unpopulated stack.
+- If the stack overflows into a guard page, something reasonable
+ should happen. The definition of "reasonable" is flexible, but
+ instantly rebooting without logging anything would be unfriendly.
+
+VMAP_STACK
+----------
+
+VMAP_STACK bool configuration option when enabled allocates virtually
+mapped task stacks. This option depends on HAVE_ARCH_VMAP_STACK.
+
+- Enable this if you want the use virtually-mapped kernel stacks
+ with guard pages. This causes kernel stack overflows to be caught
+ immediately rather than causing difficult-to-diagnose corruption.
+
+.. note::
+
+ Using this feature with KASAN requires architecture support
+ for backing virtual mappings with real shadow memory, and
+ KASAN_VMALLOC must be enabled.
+
+.. note::
+
+ VMAP_STACK is enabled, it is not possible to run DMA on stack
+ allocated data.
+
+Kernel configuration options and dependencies keep changing. Refer to
+the latest code base:
+
+`Kconfig <https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/Kconfig>`
+
+Allocation
+-----------
+
+When a new kernel thread is created, thread stack is allocated from
+virtually contiguous memory pages from the page level allocator. These
+pages are mapped into contiguous kernel virtual space with PAGE_KERNEL
+protections.
+
+alloc_thread_stack_node() calls __vmalloc_node_range() to allocate stack
+with PAGE_KERNEL protections.
+
+- Allocated stacks are cached and later reused by new threads, so memcg
+ accounting is performed manually on assigning/releasing stacks to tasks.
+ Hence, __vmalloc_node_range is called without __GFP_ACCOUNT.
+- vm_struct is cached to be able to find when thread free is initiated
+ in interrupt context. free_thread_stack() can be called in interrupt
+ context.
+- On arm64, all VMAP's stacks need to have the same alignment to ensure
+ that VMAP'd stack overflow detection works correctly. Arch specific
+ vmap stack allocator takes care of this detail.
+- This does not address interrupt stacks - according to the original patch
+
+Thread stack allocation is initiated from clone(), fork(), vfork(),
+kernel_thread() via kernel_clone(). Leaving a few hints for searching
+the code base to understand when and how thread stack is allocated.
+
+Bulk of the code is in:
+`kernel/fork.c <https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/fork.c>`.
+
+stack_vm_area pointer in task_struct keeps track of the virtually allocated
+stack and a non-null stack_vm_area pointer serves as a indication that the
+virtually mapped kernel stacks are enabled.
+
+::
+
+ struct vm_struct *stack_vm_area;
+
+Stack overflow handling
+-----------------------
+
+Leading and trailing guard pages help detect stack overflows. When stack
+overflows into the guard pages, handlers have to be careful not overflow
+the stack again. When handlers are called, it is likely that very little
+stack space is left.
+
+On x86, this is done by handling the page fault indicating the kernel
+stack overflow on the double-fault stack.
+
+Testing VMAP allocation with guard pages
+----------------------------------------
+
+How do we ensure that VMAP_STACK is actually allocating with a leading
+and trailing guard page? The following lkdtm tests can help detect any
+regressions.
+
+::
+
+ void lkdtm_STACK_GUARD_PAGE_LEADING()
+ void lkdtm_STACK_GUARD_PAGE_TRAILING()
+
+Conclusions
+-----------
+
+- A percpu cache of vmalloced stacks appears to be a bit faster than a
+ high-order stack allocation, at least when the cache hits.
+- THREAD_INFO_IN_TASK gets rid of arch-specific thread_info entirely and
+ simply embed the thread_info (containing only flags) and 'int cpu' into
+ task_struct.
+- The thread stack can be free'ed as soon as the task is dead (without
+ waiting for RCU) and then, if vmapped stacks are in use, cache the
+ entire stack for reuse on the same cpu.