diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2018-08-13 16:29:35 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2018-08-13 16:29:35 -0700 |
commit | 203b4fc903b644223a27ad3f25f3a0f3a3911d1d (patch) | |
tree | 8c210b67a17b74b2a39c500891a20e23c2390cf6 /arch | |
parent | 7edcf0d314f69e506ddd9562062b2a79fa965bb9 (diff) | |
parent | 765d28f136291f9639e3c031a1070fb76d6625c7 (diff) |
Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Thomas Gleixner:
- Make lazy TLB mode even lazier to avoid pointless switch_mm()
operations, which reduces CPU load by 1-2% for memcache workloads
- Small cleanups and improvements all over the place
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Remove redundant check for kmem_cache_create()
arm/asm/tlb.h: Fix build error implicit func declaration
x86/mm/tlb: Make clear_asid_other() static
x86/mm/tlb: Skip atomic operations for 'init_mm' in switch_mm_irqs_off()
x86/mm/tlb: Always use lazy TLB mode
x86/mm/tlb: Only send page table free TLB flush to lazy TLB CPUs
x86/mm/tlb: Make lazy TLB mode lazier
x86/mm/tlb: Restructure switch_mm_irqs_off()
x86/mm/tlb: Leave lazy TLB mode at page table free time
mm: Allocate the mm_cpumask (mm->cpu_bitmap[]) dynamically based on nr_cpu_ids
x86/mm: Add TLB purge to free pmd/pte page interfaces
ioremap: Update pgtable free interfaces with addr
x86/mm: Disable ioremap free page handling on x86-PAE
Diffstat (limited to 'arch')
-rw-r--r-- | arch/arm/include/asm/tlb.h | 8 | ||||
-rw-r--r-- | arch/arm64/mm/mmu.c | 4 | ||||
-rw-r--r-- | arch/x86/include/asm/tlbflush.h | 21 | ||||
-rw-r--r-- | arch/x86/mm/pgtable.c | 64 | ||||
-rw-r--r-- | arch/x86/mm/tlb.c | 224 |
5 files changed, 233 insertions, 88 deletions
diff --git a/arch/arm/include/asm/tlb.h b/arch/arm/include/asm/tlb.h index d5562f9ce600..f854148c8d7c 100644 --- a/arch/arm/include/asm/tlb.h +++ b/arch/arm/include/asm/tlb.h @@ -292,5 +292,13 @@ static inline void tlb_remove_check_page_size_change(struct mmu_gather *tlb, { } +static inline void tlb_flush_remove_tables(struct mm_struct *mm) +{ +} + +static inline void tlb_flush_remove_tables_local(void *arg) +{ +} + #endif /* CONFIG_MMU */ #endif diff --git a/arch/arm64/mm/mmu.c b/arch/arm64/mm/mmu.c index 493ff75670ff..8ae5d7ae4af3 100644 --- a/arch/arm64/mm/mmu.c +++ b/arch/arm64/mm/mmu.c @@ -977,12 +977,12 @@ int pmd_clear_huge(pmd_t *pmdp) return 1; } -int pud_free_pmd_page(pud_t *pud) +int pud_free_pmd_page(pud_t *pud, unsigned long addr) { return pud_none(*pud); } -int pmd_free_pte_page(pmd_t *pmd) +int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) { return pmd_none(*pmd); } diff --git a/arch/x86/include/asm/tlbflush.h b/arch/x86/include/asm/tlbflush.h index 6690cd3fc8b1..511bf5fae8b8 100644 --- a/arch/x86/include/asm/tlbflush.h +++ b/arch/x86/include/asm/tlbflush.h @@ -148,22 +148,6 @@ static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) #define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr) #endif -static inline bool tlb_defer_switch_to_init_mm(void) -{ - /* - * If we have PCID, then switching to init_mm is reasonably - * fast. If we don't have PCID, then switching to init_mm is - * quite slow, so we try to defer it in the hopes that we can - * avoid it entirely. The latter approach runs the risk of - * receiving otherwise unnecessary IPIs. - * - * This choice is just a heuristic. The tlb code can handle this - * function returning true or false regardless of whether we have - * PCID. - */ - return !static_cpu_has(X86_FEATURE_PCID); -} - struct tlb_context { u64 ctx_id; u64 tlb_gen; @@ -554,4 +538,9 @@ extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch); native_flush_tlb_others(mask, info) #endif +extern void tlb_flush_remove_tables(struct mm_struct *mm); +extern void tlb_flush_remove_tables_local(void *arg); + +#define HAVE_TLB_FLUSH_REMOVE_TABLES + #endif /* _ASM_X86_TLBFLUSH_H */ diff --git a/arch/x86/mm/pgtable.c b/arch/x86/mm/pgtable.c index 47b5951e592b..0f1683fcb196 100644 --- a/arch/x86/mm/pgtable.c +++ b/arch/x86/mm/pgtable.c @@ -329,9 +329,6 @@ static int __init pgd_cache_init(void) */ pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN, SLAB_PANIC, NULL); - if (!pgd_cache) - return -ENOMEM; - return 0; } core_initcall(pgd_cache_init); @@ -719,28 +716,50 @@ int pmd_clear_huge(pmd_t *pmd) return 0; } +#ifdef CONFIG_X86_64 /** * pud_free_pmd_page - Clear pud entry and free pmd page. * @pud: Pointer to a PUD. + * @addr: Virtual address associated with pud. * - * Context: The pud range has been unmaped and TLB purged. + * Context: The pud range has been unmapped and TLB purged. * Return: 1 if clearing the entry succeeded. 0 otherwise. + * + * NOTE: Callers must allow a single page allocation. */ -int pud_free_pmd_page(pud_t *pud) +int pud_free_pmd_page(pud_t *pud, unsigned long addr) { - pmd_t *pmd; + pmd_t *pmd, *pmd_sv; + pte_t *pte; int i; if (pud_none(*pud)) return 1; pmd = (pmd_t *)pud_page_vaddr(*pud); + pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL); + if (!pmd_sv) + return 0; - for (i = 0; i < PTRS_PER_PMD; i++) - if (!pmd_free_pte_page(&pmd[i])) - return 0; + for (i = 0; i < PTRS_PER_PMD; i++) { + pmd_sv[i] = pmd[i]; + if (!pmd_none(pmd[i])) + pmd_clear(&pmd[i]); + } pud_clear(pud); + + /* INVLPG to clear all paging-structure caches */ + flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); + + for (i = 0; i < PTRS_PER_PMD; i++) { + if (!pmd_none(pmd_sv[i])) { + pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]); + free_page((unsigned long)pte); + } + } + + free_page((unsigned long)pmd_sv); free_page((unsigned long)pmd); return 1; @@ -749,11 +768,12 @@ int pud_free_pmd_page(pud_t *pud) /** * pmd_free_pte_page - Clear pmd entry and free pte page. * @pmd: Pointer to a PMD. + * @addr: Virtual address associated with pmd. * - * Context: The pmd range has been unmaped and TLB purged. + * Context: The pmd range has been unmapped and TLB purged. * Return: 1 if clearing the entry succeeded. 0 otherwise. */ -int pmd_free_pte_page(pmd_t *pmd) +int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) { pte_t *pte; @@ -762,8 +782,30 @@ int pmd_free_pte_page(pmd_t *pmd) pte = (pte_t *)pmd_page_vaddr(*pmd); pmd_clear(pmd); + + /* INVLPG to clear all paging-structure caches */ + flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1); + free_page((unsigned long)pte); return 1; } + +#else /* !CONFIG_X86_64 */ + +int pud_free_pmd_page(pud_t *pud, unsigned long addr) +{ + return pud_none(*pud); +} + +/* + * Disable free page handling on x86-PAE. This assures that ioremap() + * does not update sync'd pmd entries. See vmalloc_sync_one(). + */ +int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) +{ + return pmd_none(*pmd); +} + +#endif /* CONFIG_X86_64 */ #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c index 6eb1f34c3c85..752dbf4e0e50 100644 --- a/arch/x86/mm/tlb.c +++ b/arch/x86/mm/tlb.c @@ -7,6 +7,7 @@ #include <linux/export.h> #include <linux/cpu.h> #include <linux/debugfs.h> +#include <linux/gfp.h> #include <asm/tlbflush.h> #include <asm/mmu_context.h> @@ -35,7 +36,7 @@ * necessary invalidation by clearing out the 'ctx_id' which * forces a TLB flush when the context is loaded. */ -void clear_asid_other(void) +static void clear_asid_other(void) { u16 asid; @@ -185,8 +186,11 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, { struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); + bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy); unsigned cpu = smp_processor_id(); u64 next_tlb_gen; + bool need_flush; + u16 new_asid; /* * NB: The scheduler will call us with prev == next when switching @@ -240,20 +244,41 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, next->context.ctx_id); /* - * We don't currently support having a real mm loaded without - * our cpu set in mm_cpumask(). We have all the bookkeeping - * in place to figure out whether we would need to flush - * if our cpu were cleared in mm_cpumask(), but we don't - * currently use it. + * Even in lazy TLB mode, the CPU should stay set in the + * mm_cpumask. The TLB shootdown code can figure out from + * from cpu_tlbstate.is_lazy whether or not to send an IPI. */ if (WARN_ON_ONCE(real_prev != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next)))) cpumask_set_cpu(cpu, mm_cpumask(next)); - return; + /* + * If the CPU is not in lazy TLB mode, we are just switching + * from one thread in a process to another thread in the same + * process. No TLB flush required. + */ + if (!was_lazy) + return; + + /* + * Read the tlb_gen to check whether a flush is needed. + * If the TLB is up to date, just use it. + * The barrier synchronizes with the tlb_gen increment in + * the TLB shootdown code. + */ + smp_mb(); + next_tlb_gen = atomic64_read(&next->context.tlb_gen); + if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == + next_tlb_gen) + return; + + /* + * TLB contents went out of date while we were in lazy + * mode. Fall through to the TLB switching code below. + */ + new_asid = prev_asid; + need_flush = true; } else { - u16 new_asid; - bool need_flush; u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id); /* @@ -285,53 +310,60 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, sync_current_stack_to_mm(next); } - /* Stop remote flushes for the previous mm */ - VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) && - real_prev != &init_mm); - cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); + /* + * Stop remote flushes for the previous mm. + * Skip kernel threads; we never send init_mm TLB flushing IPIs, + * but the bitmap manipulation can cause cache line contention. + */ + if (real_prev != &init_mm) { + VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, + mm_cpumask(real_prev))); + cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); + } /* * Start remote flushes and then read tlb_gen. */ - cpumask_set_cpu(cpu, mm_cpumask(next)); + if (next != &init_mm) + cpumask_set_cpu(cpu, mm_cpumask(next)); next_tlb_gen = atomic64_read(&next->context.tlb_gen); choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); + } - if (need_flush) { - this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); - this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); - load_new_mm_cr3(next->pgd, new_asid, true); - - /* - * NB: This gets called via leave_mm() in the idle path - * where RCU functions differently. Tracing normally - * uses RCU, so we need to use the _rcuidle variant. - * - * (There is no good reason for this. The idle code should - * be rearranged to call this before rcu_idle_enter().) - */ - trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); - } else { - /* The new ASID is already up to date. */ - load_new_mm_cr3(next->pgd, new_asid, false); - - /* See above wrt _rcuidle. */ - trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0); - } + if (need_flush) { + this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); + this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); + load_new_mm_cr3(next->pgd, new_asid, true); /* - * Record last user mm's context id, so we can avoid - * flushing branch buffer with IBPB if we switch back - * to the same user. + * NB: This gets called via leave_mm() in the idle path + * where RCU functions differently. Tracing normally + * uses RCU, so we need to use the _rcuidle variant. + * + * (There is no good reason for this. The idle code should + * be rearranged to call this before rcu_idle_enter().) */ - if (next != &init_mm) - this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id); + trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); + } else { + /* The new ASID is already up to date. */ + load_new_mm_cr3(next->pgd, new_asid, false); - this_cpu_write(cpu_tlbstate.loaded_mm, next); - this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); + /* See above wrt _rcuidle. */ + trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0); } + /* + * Record last user mm's context id, so we can avoid + * flushing branch buffer with IBPB if we switch back + * to the same user. + */ + if (next != &init_mm) + this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id); + + this_cpu_write(cpu_tlbstate.loaded_mm, next); + this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); + load_mm_cr4(next); switch_ldt(real_prev, next); } @@ -354,20 +386,7 @@ void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) return; - if (tlb_defer_switch_to_init_mm()) { - /* - * There's a significant optimization that may be possible - * here. We have accurate enough TLB flush tracking that we - * don't need to maintain coherence of TLB per se when we're - * lazy. We do, however, need to maintain coherence of - * paging-structure caches. We could, in principle, leave our - * old mm loaded and only switch to init_mm when - * tlb_remove_page() happens. - */ - this_cpu_write(cpu_tlbstate.is_lazy, true); - } else { - switch_mm(NULL, &init_mm, NULL); - } + this_cpu_write(cpu_tlbstate.is_lazy, true); } /* @@ -454,6 +473,9 @@ static void flush_tlb_func_common(const struct flush_tlb_info *f, * paging-structure cache to avoid speculatively reading * garbage into our TLB. Since switching to init_mm is barely * slower than a minimal flush, just switch to init_mm. + * + * This should be rare, with native_flush_tlb_others skipping + * IPIs to lazy TLB mode CPUs. */ switch_mm_irqs_off(NULL, &init_mm, NULL); return; @@ -560,6 +582,9 @@ static void flush_tlb_func_remote(void *info) void native_flush_tlb_others(const struct cpumask *cpumask, const struct flush_tlb_info *info) { + cpumask_var_t lazymask; + unsigned int cpu; + count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); if (info->end == TLB_FLUSH_ALL) trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); @@ -583,8 +608,6 @@ void native_flush_tlb_others(const struct cpumask *cpumask, * that UV should be updated so that smp_call_function_many(), * etc, are optimal on UV. */ - unsigned int cpu; - cpu = smp_processor_id(); cpumask = uv_flush_tlb_others(cpumask, info); if (cpumask) @@ -592,8 +615,29 @@ void native_flush_tlb_others(const struct cpumask *cpumask, (void *)info, 1); return; } - smp_call_function_many(cpumask, flush_tlb_func_remote, + + /* + * A temporary cpumask is used in order to skip sending IPIs + * to CPUs in lazy TLB state, while keeping them in mm_cpumask(mm). + * If the allocation fails, simply IPI every CPU in mm_cpumask. + */ + if (!alloc_cpumask_var(&lazymask, GFP_ATOMIC)) { + smp_call_function_many(cpumask, flush_tlb_func_remote, (void *)info, 1); + return; + } + + cpumask_copy(lazymask, cpumask); + + for_each_cpu(cpu, lazymask) { + if (per_cpu(cpu_tlbstate.is_lazy, cpu)) + cpumask_clear_cpu(cpu, lazymask); + } + + smp_call_function_many(lazymask, flush_tlb_func_remote, + (void *)info, 1); + + free_cpumask_var(lazymask); } /* @@ -646,6 +690,68 @@ void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, put_cpu(); } +void tlb_flush_remove_tables_local(void *arg) +{ + struct mm_struct *mm = arg; + + if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm && + this_cpu_read(cpu_tlbstate.is_lazy)) { + /* + * We're in lazy mode. We need to at least flush our + * paging-structure cache to avoid speculatively reading + * garbage into our TLB. Since switching to init_mm is barely + * slower than a minimal flush, just switch to init_mm. + */ + switch_mm_irqs_off(NULL, &init_mm, NULL); + } +} + +static void mm_fill_lazy_tlb_cpu_mask(struct mm_struct *mm, + struct cpumask *lazy_cpus) +{ + int cpu; + + for_each_cpu(cpu, mm_cpumask(mm)) { + if (!per_cpu(cpu_tlbstate.is_lazy, cpu)) + cpumask_set_cpu(cpu, lazy_cpus); + } +} + +void tlb_flush_remove_tables(struct mm_struct *mm) +{ + int cpu = get_cpu(); + cpumask_var_t lazy_cpus; + + if (cpumask_any_but(mm_cpumask(mm), cpu) >= nr_cpu_ids) { + put_cpu(); + return; + } + + if (!zalloc_cpumask_var(&lazy_cpus, GFP_ATOMIC)) { + /* + * If the cpumask allocation fails, do a brute force flush + * on all the CPUs that have this mm loaded. + */ + smp_call_function_many(mm_cpumask(mm), + tlb_flush_remove_tables_local, (void *)mm, 1); + put_cpu(); + return; + } + + /* + * CPUs with !is_lazy either received a TLB flush IPI while the user + * pages in this address range were unmapped, or have context switched + * and reloaded %CR3 since then. + * + * Shootdown IPIs at page table freeing time only need to be sent to + * CPUs that may have out of date TLB contents. + */ + mm_fill_lazy_tlb_cpu_mask(mm, lazy_cpus); + smp_call_function_many(lazy_cpus, + tlb_flush_remove_tables_local, (void *)mm, 1); + free_cpumask_var(lazy_cpus); + put_cpu(); +} static void do_flush_tlb_all(void *info) { |