diff options
author | Robert Elliott <elliott@hpe.com> | 2022-08-20 13:41:50 -0500 |
---|---|---|
committer | Herbert Xu <herbert@gondor.apana.org.au> | 2022-08-26 18:50:43 +0800 |
commit | cf514b2a5902ee4f93e9636ace5228fed27f23bb (patch) | |
tree | 8c38328e90cf83d3216b8b1bfabfbbd3074aded1 /arch | |
parent | 9bc517155f41fbe387a4602e1860ab1ae0eae638 (diff) |
crypto: Kconfig - simplify cipher entries
Shorten menu titles and make them consistent:
- acronym
- name
- architecture features in parenthesis
- no suffixes like "<something> algorithm", "support", or
"hardware acceleration", or "optimized"
Simplify help text descriptions, update references, and ensure that
https references are still valid.
Signed-off-by: Robert Elliott <elliott@hpe.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'arch')
-rw-r--r-- | arch/arm/crypto/Kconfig | 40 | ||||
-rw-r--r-- | arch/arm64/crypto/Kconfig | 109 | ||||
-rw-r--r-- | arch/mips/crypto/Kconfig | 7 | ||||
-rw-r--r-- | arch/powerpc/crypto/Kconfig | 14 | ||||
-rw-r--r-- | arch/s390/crypto/Kconfig | 28 | ||||
-rw-r--r-- | arch/sparc/crypto/Kconfig | 48 | ||||
-rw-r--r-- | arch/x86/crypto/Kconfig | 274 |
7 files changed, 289 insertions, 231 deletions
diff --git a/arch/arm/crypto/Kconfig b/arch/arm/crypto/Kconfig index e64e9b8418d6..3858c4d4cb98 100644 --- a/arch/arm/crypto/Kconfig +++ b/arch/arm/crypto/Kconfig @@ -144,11 +144,13 @@ config CRYPTO_SHA512_ARM - NEON (Advanced SIMD) extensions config CRYPTO_AES_ARM - tristate "Scalar AES cipher for ARM" + tristate "Ciphers: AES" select CRYPTO_ALGAPI select CRYPTO_AES help - Use optimized AES assembler routines for ARM platforms. + Block ciphers: AES cipher algorithms (FIPS-197) + + Architecture: arm On ARM processors without the Crypto Extensions, this is the fastest AES implementation for single blocks. For multiple @@ -160,7 +162,7 @@ config CRYPTO_AES_ARM such attacks very difficult. config CRYPTO_AES_ARM_BS - tristate "Bit sliced AES using NEON instructions" + tristate "Ciphers: AES, modes: ECB/CBC/CTR/XTS (bit-sliced NEON)" depends on KERNEL_MODE_NEON select CRYPTO_SKCIPHER select CRYPTO_LIB_AES @@ -168,8 +170,13 @@ config CRYPTO_AES_ARM_BS select CRYPTO_CBC select CRYPTO_SIMD help - Use a faster and more secure NEON based implementation of AES in CBC, - CTR and XTS modes + Length-preserving ciphers: AES cipher algorithms (FIPS-197) + with block cipher modes: + - ECB (Electronic Codebook) mode (NIST SP800-38A) + - CBC (Cipher Block Chaining) mode (NIST SP800-38A) + - CTR (Counter) mode (NIST SP800-38A) + - XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E + and IEEE 1619) Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode and for XTS mode encryption, CBC and XTS mode decryption speedup is @@ -178,19 +185,34 @@ config CRYPTO_AES_ARM_BS believed to be invulnerable to cache timing attacks. config CRYPTO_AES_ARM_CE - tristate "Accelerated AES using ARMv8 Crypto Extensions" + tristate "Ciphers: AES, modes: ECB/CBC/CTS/CTR/XTS (ARMv8 Crypto Extensions)" depends on KERNEL_MODE_NEON select CRYPTO_SKCIPHER select CRYPTO_LIB_AES select CRYPTO_SIMD help - Use an implementation of AES in CBC, CTR and XTS modes that uses - ARMv8 Crypto Extensions + Length-preserving ciphers: AES cipher algorithms (FIPS-197) + with block cipher modes: + - ECB (Electronic Codebook) mode (NIST SP800-38A) + - CBC (Cipher Block Chaining) mode (NIST SP800-38A) + - CTR (Counter) mode (NIST SP800-38A) + - CTS (Cipher Text Stealing) mode (NIST SP800-38A) + - XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E + and IEEE 1619) + + Architecture: arm using: + - ARMv8 Crypto Extensions config CRYPTO_CHACHA20_NEON - tristate "NEON and scalar accelerated ChaCha stream cipher algorithms" + tristate "Ciphers: ChaCha20, XChaCha20, XChaCha12 (NEON)" select CRYPTO_SKCIPHER select CRYPTO_ARCH_HAVE_LIB_CHACHA + help + Length-preserving ciphers: ChaCha20, XChaCha20, and XChaCha12 + stream cipher algorithms + + Architecture: arm using: + - NEON (Advanced SIMD) extensions config CRYPTO_CRC32_ARM_CE tristate "CRC32C and CRC32" diff --git a/arch/arm64/crypto/Kconfig b/arch/arm64/crypto/Kconfig index 709598f6d2e3..7ba9bcb6d409 100644 --- a/arch/arm64/crypto/Kconfig +++ b/arch/arm64/crypto/Kconfig @@ -118,66 +118,155 @@ config CRYPTO_POLYVAL_ARM64_CE - ARMv8 Crypto Extensions config CRYPTO_AES_ARM64 - tristate "AES core cipher using scalar instructions" + tristate "Ciphers: AES, modes: ECB, CBC, CTR, CTS, XCTR, XTS" select CRYPTO_AES + help + Block ciphers: AES cipher algorithms (FIPS-197) + Length-preserving ciphers: AES with ECB, CBC, CTR, CTS, + XCTR, and XTS modes + AEAD cipher: AES with CBC, ESSIV, and SHA-256 + for fscrypt and dm-crypt + + Architecture: arm64 config CRYPTO_AES_ARM64_CE - tristate "AES core cipher using ARMv8 Crypto Extensions" + tristate "Ciphers: AES (ARMv8 Crypto Extensions)" depends on ARM64 && KERNEL_MODE_NEON select CRYPTO_ALGAPI select CRYPTO_LIB_AES + help + Block ciphers: AES cipher algorithms (FIPS-197) + + Architecture: arm64 using: + - ARMv8 Crypto Extensions config CRYPTO_AES_ARM64_CE_BLK - tristate "AES in ECB/CBC/CTR/XTS/XCTR modes using ARMv8 Crypto Extensions" + tristate "Ciphers: AES, modes: ECB/CBC/CTR/XTS (ARMv8 Crypto Extensions)" depends on KERNEL_MODE_NEON select CRYPTO_SKCIPHER select CRYPTO_AES_ARM64_CE + help + Length-preserving ciphers: AES cipher algorithms (FIPS-197) + with block cipher modes: + - ECB (Electronic Codebook) mode (NIST SP800-38A) + - CBC (Cipher Block Chaining) mode (NIST SP800-38A) + - CTR (Counter) mode (NIST SP800-38A) + - XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E + and IEEE 1619) + + Architecture: arm64 using: + - ARMv8 Crypto Extensions config CRYPTO_AES_ARM64_NEON_BLK - tristate "AES in ECB/CBC/CTR/XTS/XCTR modes using NEON instructions" + tristate "Ciphers: AES, modes: ECB/CBC/CTR/XTS (NEON)" depends on KERNEL_MODE_NEON select CRYPTO_SKCIPHER select CRYPTO_LIB_AES + help + Length-preserving ciphers: AES cipher algorithms (FIPS-197) + with block cipher modes: + - ECB (Electronic Codebook) mode (NIST SP800-38A) + - CBC (Cipher Block Chaining) mode (NIST SP800-38A) + - CTR (Counter) mode (NIST SP800-38A) + - XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E + and IEEE 1619) + + Architecture: arm64 using: + - NEON (Advanced SIMD) extensions config CRYPTO_CHACHA20_NEON - tristate "ChaCha20, XChaCha20, and XChaCha12 stream ciphers using NEON instructions" + tristate "Ciphers: ChaCha (NEON)" depends on KERNEL_MODE_NEON select CRYPTO_SKCIPHER select CRYPTO_LIB_CHACHA_GENERIC select CRYPTO_ARCH_HAVE_LIB_CHACHA + help + Length-preserving ciphers: ChaCha20, XChaCha20, and XChaCha12 + stream cipher algorithms + + Architecture: arm64 using: + - NEON (Advanced SIMD) extensions config CRYPTO_AES_ARM64_BS - tristate "AES in ECB/CBC/CTR/XTS modes using bit-sliced NEON algorithm" + tristate "Ciphers: AES, modes: ECB/CBC/CTR/XCTR/XTS modes (bit-sliced NEON)" depends on KERNEL_MODE_NEON select CRYPTO_SKCIPHER select CRYPTO_AES_ARM64_NEON_BLK select CRYPTO_LIB_AES + help + Length-preserving ciphers: AES cipher algorithms (FIPS-197) + with block cipher modes: + - ECB (Electronic Codebook) mode (NIST SP800-38A) + - CBC (Cipher Block Chaining) mode (NIST SP800-38A) + - CTR (Counter) mode (NIST SP800-38A) + - XCTR mode for HCTR2 + - XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E + and IEEE 1619) + + Architecture: arm64 using: + - bit-sliced algorithm + - NEON (Advanced SIMD) extensions config CRYPTO_SM4_ARM64_CE - tristate "SM4 symmetric cipher (ARMv8.2 Crypto Extensions)" + tristate "Ciphers: SM4 (ARMv8.2 Crypto Extensions)" depends on KERNEL_MODE_NEON select CRYPTO_ALGAPI select CRYPTO_SM4 + help + Block ciphers: SM4 cipher algorithms (OSCCA GB/T 32907-2016) + + Architecture: arm64 using: + - ARMv8.2 Crypto Extensions + - NEON (Advanced SIMD) extensions config CRYPTO_SM4_ARM64_CE_BLK - tristate "SM4 in ECB/CBC/CFB/CTR modes using ARMv8 Crypto Extensions" + tristate "Ciphers: SM4, modes: ECB/CBC/CFB/CTR (ARMv8 Crypto Extensions)" depends on KERNEL_MODE_NEON select CRYPTO_SKCIPHER select CRYPTO_SM4 + help + Length-preserving ciphers: SM4 cipher algorithms (OSCCA GB/T 32907-2016) + with block cipher modes: + - ECB (Electronic Codebook) mode (NIST SP800-38A) + - CBC (Cipher Block Chaining) mode (NIST SP800-38A) + - CFB (Cipher Feedback) mode (NIST SP800-38A) + - CTR (Counter) mode (NIST SP800-38A) + + Architecture: arm64 using: + - ARMv8 Crypto Extensions + - NEON (Advanced SIMD) extensions config CRYPTO_SM4_ARM64_NEON_BLK - tristate "SM4 in ECB/CBC/CFB/CTR modes using NEON instructions" + tristate "Ciphers: SM4, modes: ECB/CBC/CFB/CTR (NEON)" depends on KERNEL_MODE_NEON select CRYPTO_SKCIPHER select CRYPTO_SM4 + help + Length-preserving ciphers: SM4 cipher algorithms (OSCCA GB/T 32907-2016) + with block cipher modes: + - ECB (Electronic Codebook) mode (NIST SP800-38A) + - CBC (Cipher Block Chaining) mode (NIST SP800-38A) + - CFB (Cipher Feedback) mode (NIST SP800-38A) + - CTR (Counter) mode (NIST SP800-38A) + + Architecture: arm64 using: + - NEON (Advanced SIMD) extensions config CRYPTO_AES_ARM64_CE_CCM - tristate "AES in CCM mode using ARMv8 Crypto Extensions" + tristate "AEAD cipher: AES in CCM mode (ARMv8 Crypto Extensions)" depends on ARM64 && KERNEL_MODE_NEON select CRYPTO_ALGAPI select CRYPTO_AES_ARM64_CE select CRYPTO_AEAD select CRYPTO_LIB_AES + help + AEAD cipher: AES cipher algorithms (FIPS-197) with + CCM (Counter with Cipher Block Chaining-Message Authentication Code) + authenticated encryption mode (NIST SP800-38C) + + Architecture: arm64 using: + - ARMv8 Crypto Extensions + - NEON (Advanced SIMD) extensions config CRYPTO_CRCT10DIF_ARM64_CE tristate "CRCT10DIF (PMULL)" diff --git a/arch/mips/crypto/Kconfig b/arch/mips/crypto/Kconfig index de162f69675c..9003a5c1e879 100644 --- a/arch/mips/crypto/Kconfig +++ b/arch/mips/crypto/Kconfig @@ -61,9 +61,14 @@ config CRYPTO_SHA512_OCTEON Architecture: mips OCTEON using crypto instructions, when available config CRYPTO_CHACHA_MIPS - tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" + tristate "Ciphers: ChaCha20, XChaCha20, XChaCha12 (MIPS32r2)" depends on CPU_MIPS32_R2 select CRYPTO_SKCIPHER select CRYPTO_ARCH_HAVE_LIB_CHACHA + help + Length-preserving ciphers: ChaCha20, XChaCha20, and XChaCha12 + stream cipher algorithms + + Architecture: MIPS32r2 endmenu diff --git a/arch/powerpc/crypto/Kconfig b/arch/powerpc/crypto/Kconfig index 5a4770a029ef..c1b964447401 100644 --- a/arch/powerpc/crypto/Kconfig +++ b/arch/powerpc/crypto/Kconfig @@ -73,12 +73,20 @@ config CRYPTO_SHA256_PPC_SPE - SPE (Signal Processing Engine) extensions config CRYPTO_AES_PPC_SPE - tristate "AES cipher algorithms (PPC SPE)" + tristate "Ciphers: AES, modes: ECB/CBC/CTR/XTS (SPE)" depends on PPC && SPE select CRYPTO_SKCIPHER help - AES cipher algorithms (FIPS-197). Additionally the acceleration - for popular block cipher modes ECB, CBC, CTR and XTS is supported. + Block ciphers: AES cipher algorithms (FIPS-197) + Length-preserving ciphers: AES with ECB, CBC, CTR, and XTS modes + + Architecture: powerpc using: + - SPE (Signal Processing Engine) extensions + + SPE is available for: + - Processor Type: Freescale 8500 + - CPU selection: e500 (8540) + This module should only be used for low power (router) devices without hardware AES acceleration (e.g. caam crypto). It reduces the size of the AES tables from 16KB to 8KB + 256 bytes and mitigates diff --git a/arch/s390/crypto/Kconfig b/arch/s390/crypto/Kconfig index 04cc3a6467ab..06ee706b0d78 100644 --- a/arch/s390/crypto/Kconfig +++ b/arch/s390/crypto/Kconfig @@ -81,44 +81,54 @@ config CRYPTO_GHASH_S390 It is available as of z196. config CRYPTO_AES_S390 - tristate "AES cipher algorithms" + tristate "Ciphers: AES, modes: ECB, CBC, CTR, XTS, GCM" depends on S390 select CRYPTO_ALGAPI select CRYPTO_SKCIPHER help - This is the s390 hardware accelerated implementation of the - AES cipher algorithms (FIPS-197). + Block cipher: AES cipher algorithms (FIPS 197) + AEAD cipher: AES with GCM + Length-preserving ciphers: AES with ECB, CBC, XTS, and CTR modes + + Architecture: s390 As of z9 the ECB and CBC modes are hardware accelerated for 128 bit keys. + As of z10 the ECB and CBC modes are hardware accelerated for all AES key sizes. + As of z196 the CTR mode is hardware accelerated for all AES key sizes and XTS mode is hardware accelerated for 256 and 512 bit keys. config CRYPTO_DES_S390 - tristate "DES and Triple DES cipher algorithms" + tristate "Ciphers: DES and Triple DES EDE, modes: ECB, CBC, CTR" depends on S390 select CRYPTO_ALGAPI select CRYPTO_SKCIPHER select CRYPTO_LIB_DES help - This is the s390 hardware accelerated implementation of the - DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). + Block ciphers: DES (FIPS 46-2) cipher algorithm + Block ciphers: Triple DES EDE (FIPS 46-3) cipher algorithm + Length-preserving ciphers: DES with ECB, CBC, and CTR modes + Length-preserving ciphers: Triple DES EDED with ECB, CBC, and CTR modes + + Architecture: s390 As of z990 the ECB and CBC mode are hardware accelerated. As of z196 the CTR mode is hardware accelerated. config CRYPTO_CHACHA_S390 - tristate "ChaCha20 stream cipher" + tristate "Ciphers: ChaCha20" depends on S390 select CRYPTO_SKCIPHER select CRYPTO_LIB_CHACHA_GENERIC select CRYPTO_ARCH_HAVE_LIB_CHACHA help - This is the s390 SIMD implementation of the ChaCha20 stream - cipher (RFC 7539). + Length-preserving cipher: ChaCha20 stream cipher (RFC 7539) + + Architecture: s390 It is available as of z13. diff --git a/arch/sparc/crypto/Kconfig b/arch/sparc/crypto/Kconfig index 519348de6860..cfe5102b1c68 100644 --- a/arch/sparc/crypto/Kconfig +++ b/arch/sparc/crypto/Kconfig @@ -3,14 +3,18 @@ menu "Accelerated Cryptographic Algorithms for CPU (sparc64)" config CRYPTO_DES_SPARC64 - tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" + tristate "Ciphers: DES and Triple DES EDE, modes: ECB/CBC" depends on SPARC64 select CRYPTO_ALGAPI select CRYPTO_LIB_DES select CRYPTO_SKCIPHER help - DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), - optimized using SPARC64 crypto opcodes. + Block cipher: DES (FIPS 46-2) cipher algorithm + Block cipher: Triple DES EDE (FIPS 46-3) cipher algorithm + Length-preserving ciphers: DES with ECB and CBC modes + Length-preserving ciphers: Tripe DES EDE with ECB and CBC modes + + Architecture: sparc64 config CRYPTO_CRC32C_SPARC64 tristate "CRC32c" @@ -63,46 +67,24 @@ config CRYPTO_SHA512_SPARC64 Architecture: sparc64 using crypto instructions, when available config CRYPTO_AES_SPARC64 - tristate "AES cipher algorithms (SPARC64)" + tristate "Ciphers: AES, modes: ECB, CBC, CTR" depends on SPARC64 select CRYPTO_SKCIPHER help - Use SPARC64 crypto opcodes for AES algorithm. - - AES cipher algorithms (FIPS-197). AES uses the Rijndael - algorithm. - - Rijndael appears to be consistently a very good performer in - both hardware and software across a wide range of computing - environments regardless of its use in feedback or non-feedback - modes. Its key setup time is excellent, and its key agility is - good. Rijndael's very low memory requirements make it very well - suited for restricted-space environments, in which it also - demonstrates excellent performance. Rijndael's operations are - among the easiest to defend against power and timing attacks. - - The AES specifies three key sizes: 128, 192 and 256 bits + Block ciphers: AES cipher algorithms (FIPS-197) + Length-preseving ciphers: AES with ECB, CBC, and CTR modes - See <http://csrc.nist.gov/encryption/aes/> for more information. - - In addition to AES cipher algorithm support, the acceleration - for some popular block cipher mode is supported too, including - ECB and CBC. + Architecture: sparc64 using crypto instructions config CRYPTO_CAMELLIA_SPARC64 - tristate "Camellia cipher algorithm (SPARC64)" + tristate "Ciphers: Camellia, modes: ECB, CBC" depends on SPARC64 select CRYPTO_ALGAPI select CRYPTO_SKCIPHER help - Camellia cipher algorithm module (SPARC64). - - Camellia is a symmetric key block cipher developed jointly - at NTT and Mitsubishi Electric Corporation. + Block ciphers: Camellia cipher algorithms + Length-preserving ciphers: Camellia with ECB and CBC modes - The Camellia specifies three key sizes: 128, 192 and 256 bits. - - See also: - <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> + Architecture: sparc64 endmenu diff --git a/arch/x86/crypto/Kconfig b/arch/x86/crypto/Kconfig index fc24f4562700..9bb0f7939c6b 100644 --- a/arch/x86/crypto/Kconfig +++ b/arch/x86/crypto/Kconfig @@ -14,7 +14,7 @@ config CRYPTO_CURVE25519_X86 - ADX (large integer arithmetic) config CRYPTO_AES_NI_INTEL - tristate "AES cipher algorithms (AES-NI)" + tristate "Ciphers: AES, modes: ECB, CBC, CTS, CTR, XTR, XTS, GCM (AES-NI)" depends on X86 select CRYPTO_AEAD select CRYPTO_LIB_AES @@ -22,96 +22,63 @@ config CRYPTO_AES_NI_INTEL select CRYPTO_SKCIPHER select CRYPTO_SIMD help - Use Intel AES-NI instructions for AES algorithm. + Block cipher: AES cipher algorithms + AEAD cipher: AES with GCM + Length-preserving ciphers: AES with ECB, CBC, CTS, CTR, XTR, XTS - AES cipher algorithms (FIPS-197). AES uses the Rijndael - algorithm. - - Rijndael appears to be consistently a very good performer in - both hardware and software across a wide range of computing - environments regardless of its use in feedback or non-feedback - modes. Its key setup time is excellent, and its key agility is - good. Rijndael's very low memory requirements make it very well - suited for restricted-space environments, in which it also - demonstrates excellent performance. Rijndael's operations are - among the easiest to defend against power and timing attacks. - - The AES specifies three key sizes: 128, 192 and 256 bits - - See <http://csrc.nist.gov/encryption/aes/> for more information. - - In addition to AES cipher algorithm support, the acceleration - for some popular block cipher mode is supported too, including - ECB, CBC, LRW, XTS. The 64 bit version has additional - acceleration for CTR and XCTR. + Architecture: x86 (32-bit and 64-bit) using: + - AES-NI (AES new instructions) config CRYPTO_BLOWFISH_X86_64 - tristate "Blowfish cipher algorithm (x86_64)" + tristate "Ciphers: Blowfish, modes: ECB, CBC" depends on X86 && 64BIT select CRYPTO_SKCIPHER select CRYPTO_BLOWFISH_COMMON imply CRYPTO_CTR help - Blowfish cipher algorithm (x86_64), by Bruce Schneier. - - This is a variable key length cipher which can use keys from 32 - bits to 448 bits in length. It's fast, simple and specifically - designed for use on "large microprocessors". + Block cipher: Blowfish cipher algorithm + Length-preserving ciphers: Blowfish with ECB and CBC modes - See also: - <https://www.schneier.com/blowfish.html> + Architecture: x86_64 config CRYPTO_CAMELLIA_X86_64 - tristate "Camellia cipher algorithm (x86_64)" + tristate "Ciphers: Camellia with modes: ECB, CBC" depends on X86 && 64BIT select CRYPTO_SKCIPHER imply CRYPTO_CTR help - Camellia cipher algorithm module (x86_64). - - Camellia is a symmetric key block cipher developed jointly - at NTT and Mitsubishi Electric Corporation. + Block cipher: Camellia cipher algorithms + Length-preserving ciphers: Camellia with ECB and CBC modes - The Camellia specifies three key sizes: 128, 192 and 256 bits. - - See also: - <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> + Architecture: x86_64 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 - tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" + tristate "Ciphers: Camellia with modes: ECB, CBC (AES-NI/AVX)" depends on X86 && 64BIT select CRYPTO_SKCIPHER select CRYPTO_CAMELLIA_X86_64 select CRYPTO_SIMD imply CRYPTO_XTS help - Camellia cipher algorithm module (x86_64/AES-NI/AVX). - - Camellia is a symmetric key block cipher developed jointly - at NTT and Mitsubishi Electric Corporation. - - The Camellia specifies three key sizes: 128, 192 and 256 bits. + Length-preserving ciphers: Camellia with ECB and CBC modes - See also: - <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> + Architecture: x86_64 using: + - AES-NI (AES New Instructions) + - AVX (Advanced Vector Extensions) config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 - tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" + tristate "Ciphers: Camellia with modes: ECB, CBC (AES-NI/AVX2)" depends on X86 && 64BIT select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 help - Camellia cipher algorithm module (x86_64/AES-NI/AVX2). + Length-preserving ciphers: Camellia with ECB and CBC modes - Camellia is a symmetric key block cipher developed jointly - at NTT and Mitsubishi Electric Corporation. - - The Camellia specifies three key sizes: 128, 192 and 256 bits. - - See also: - <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> + Architecture: x86_64 using: + - AES-NI (AES New Instructions) + - AVX2 (Advanced Vector Extensions 2) config CRYPTO_CAST5_AVX_X86_64 - tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" + tristate "Ciphers: CAST5 with modes: ECB, CBC (AVX)" depends on X86 && 64BIT select CRYPTO_SKCIPHER select CRYPTO_CAST5 @@ -119,14 +86,16 @@ config CRYPTO_CAST5_AVX_X86_64 select CRYPTO_SIMD imply CRYPTO_CTR help - The CAST5 encryption algorithm (synonymous with CAST-128) is - described in RFC2144. + Length-preserving ciphers: CAST5 (CAST-128) cipher algorithm + (RFC2144) with ECB and CBC modes - This module provides the Cast5 cipher algorithm that processes - sixteen blocks parallel using the AVX instruction set. + Architecture: x86_64 using: + - AVX (Advanced Vector Extensions) + + Processes 16 blocks in parallel. config CRYPTO_CAST6_AVX_X86_64 - tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" + tristate "Ciphers: CAST6 with modes: ECB, CBC (AVX)" depends on X86 && 64BIT select CRYPTO_SKCIPHER select CRYPTO_CAST6 @@ -135,66 +104,62 @@ config CRYPTO_CAST6_AVX_X86_64 imply CRYPTO_XTS imply CRYPTO_CTR help - The CAST6 encryption algorithm (synonymous with CAST-256) is - described in RFC2612. + Length-preserving ciphers: CAST6 (CAST-256) cipher algorithm + (RFC2612) with ECB and CBC modes + + Architecture: x86_64 using: + - AVX (Advanced Vector Extensions) - This module provides the Cast6 cipher algorithm that processes - eight blocks parallel using the AVX instruction set. + Processes eight blocks in parallel. config CRYPTO_DES3_EDE_X86_64 - tristate "Triple DES EDE cipher algorithm (x86-64)" + tristate "Ciphers: Triple DES EDE with modes: ECB, CBC" depends on X86 && 64BIT select CRYPTO_SKCIPHER select CRYPTO_LIB_DES imply CRYPTO_CTR help - Triple DES EDE (FIPS 46-3) algorithm. + Block cipher: Triple DES EDE (FIPS 46-3) cipher algorithm + Length-preserving ciphers: Triple DES EDE with ECB and CBC modes + + Architecture: x86_64 - This module provides implementation of the Triple DES EDE cipher - algorithm that is optimized for x86-64 processors. Two versions of - algorithm are provided; regular processing one input block and - one that processes three blocks parallel. + Processes one or three blocks in parallel. config CRYPTO_SERPENT_SSE2_X86_64 - tristate "Serpent cipher algorithm (x86_64/SSE2)" + tristate "Ciphers: Serpent with modes: ECB, CBC (SSE2)" depends on X86 && 64BIT select CRYPTO_SKCIPHER select CRYPTO_SERPENT select CRYPTO_SIMD imply CRYPTO_CTR help - Serpent cipher algorithm, by Anderson, Biham & Knudsen. - - Keys are allowed to be from 0 to 256 bits in length, in steps - of 8 bits. + Length-preserving ciphers: Serpent cipher algorithm + with ECB and CBC modes - This module provides Serpent cipher algorithm that processes eight - blocks parallel using SSE2 instruction set. + Architecture: x86_64 using: + - SSE2 (Streaming SIMD Extensions 2) - See also: - <https://www.cl.cam.ac.uk/~rja14/serpent.html> + Processes eight blocks in parallel. config CRYPTO_SERPENT_SSE2_586 - tristate "Serpent cipher algorithm (i586/SSE2)" + tristate "Ciphers: Serpent with modes: ECB, CBC (32-bit with SSE2)" depends on X86 && !64BIT select CRYPTO_SKCIPHER select CRYPTO_SERPENT select CRYPTO_SIMD imply CRYPTO_CTR help - Serpent cipher algorithm, by Anderson, Biham & Knudsen. + Length-preserving ciphers: Serpent cipher algorithm + with ECB and CBC modes - Keys are allowed to be from 0 to 256 bits in length, in steps - of 8 bits. - - This module provides Serpent cipher algorithm that processes four - blocks parallel using SSE2 instruction set. + Architecture: x86 (32-bit) using: + - SSE2 (Streaming SIMD Extensions 2) - See also: - <https://www.cl.cam.ac.uk/~rja14/serpent.html> + Processes four blocks in parallel. config CRYPTO_SERPENT_AVX_X86_64 - tristate "Serpent cipher algorithm (x86_64/AVX)" + tristate "Ciphers: Serpent with modes: ECB, CBC (AVX)" depends on X86 && 64BIT select CRYPTO_SKCIPHER select CRYPTO_SERPENT @@ -202,56 +167,50 @@ config CRYPTO_SERPENT_AVX_X86_64 imply CRYPTO_XTS imply CRYPTO_CTR help - Serpent cipher algorithm, by Anderson, Biham & Knudsen. + Length-preserving ciphers: Serpent cipher algorithm + with ECB and CBC modes - Keys are allowed to be from 0 to 256 bits in length, in steps - of 8 bits. - - This module provides the Serpent cipher algorithm that processes - eight blocks parallel using the AVX instruction set. + Architecture: x86_64 using: + - AVX (Advanced Vector Extensions) - See also: - <https://www.cl.cam.ac.uk/~rja14/serpent.html> + Processes eight blocks in parallel. config CRYPTO_SERPENT_AVX2_X86_64 - tristate "Serpent cipher algorithm (x86_64/AVX2)" + tristate "Ciphers: Serpent with modes: ECB, CBC (AVX2)" depends on X86 && 64BIT select CRYPTO_SERPENT_AVX_X86_64 help - Serpent cipher algorithm, by Anderson, Biham & Knudsen. + Length-preserving ciphers: Serpent cipher algorithm + with ECB and CBC modes - Keys are allowed to be from 0 to 256 bits in length, in steps - of 8 bits. - - This module provides Serpent cipher algorithm that processes 16 - blocks parallel using AVX2 instruction set. + Architecture: x86_64 using: + - AVX2 (Advanced Vector Extensions 2) - See also: - <https://www.cl.cam.ac.uk/~rja14/serpent.html> + Processes 16 blocks in parallel. config CRYPTO_SM4_AESNI_AVX_X86_64 - tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" + tristate "Ciphers: SM4 with modes: ECB, CBC, CFB, CTR (AES-NI/AVX)" depends on X86 && 64BIT select CRYPTO_SKCIPHER select CRYPTO_SIMD select CRYPTO_ALGAPI select CRYPTO_SM4 help - SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). + Length-preserving ciphers: SM4 cipher algorithms + (OSCCA GB/T 32907-2016) with ECB, CBC, CFB, and CTR modes - SM4 (GBT.32907-2016) is a cryptographic standard issued by the - Organization of State Commercial Administration of China (OSCCA) - as an authorized cryptographic algorithms for the use within China. + Architecture: x86_64 using: + - AES-NI (AES New Instructions) + - AVX (Advanced Vector Extensions) - This is SM4 optimized implementation using AES-NI/AVX/x86_64 - instruction set for block cipher. Through two affine transforms, + Through two affine transforms, we can use the AES S-Box to simulate the SM4 S-Box to achieve the effect of instruction acceleration. If unsure, say N. config CRYPTO_SM4_AESNI_AVX2_X86_64 - tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" + tristate "Ciphers: SM4 with modes: ECB, CBC, CFB, CTR (AES-NI/AVX2)" depends on X86 && 64BIT select CRYPTO_SKCIPHER select CRYPTO_SIMD @@ -259,75 +218,58 @@ config CRYPTO_SM4_AESNI_AVX2_X86_64 select CRYPTO_SM4 select CRYPTO_SM4_AESNI_AVX_X86_64 help - SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). + Length-preserving ciphers: SM4 cipher algorithms + (OSCCA GB/T 32907-2016) with ECB, CBC, CFB, and CTR modes - SM4 (GBT.32907-2016) is a cryptographic standard issued by the - Organization of State Commercial Administration of China (OSCCA) - as an authorized cryptographic algorithms for the use within China. + Architecture: x86_64 using: + - AES-NI (AES New Instructions) + - AVX2 (Advanced Vector Extensions 2) - This is SM4 optimized implementation using AES-NI/AVX2/x86_64 - instruction set for block cipher. Through two affine transforms, + Through two affine transforms, we can use the AES S-Box to simulate the SM4 S-Box to achieve the effect of instruction acceleration. If unsure, say N. config CRYPTO_TWOFISH_586 - tristate "Twofish cipher algorithms (i586)" + tristate "Ciphers: Twofish (32-bit)" depends on (X86 || UML_X86) && !64BIT select CRYPTO_ALGAPI select CRYPTO_TWOFISH_COMMON imply CRYPTO_CTR help - Twofish cipher algorithm. - - Twofish was submitted as an AES (Advanced Encryption Standard) - candidate cipher by researchers at CounterPane Systems. It is a - 16 round block cipher supporting key sizes of 128, 192, and 256 - bits. + Block cipher: Twofish cipher algorithm - See also: - <https://www.schneier.com/twofish.html> + Architecture: x86 (32-bit) config CRYPTO_TWOFISH_X86_64 - tristate "Twofish cipher algorithm (x86_64)" + tristate "Ciphers: Twofish" depends on (X86 || UML_X86) && 64BIT select CRYPTO_ALGAPI select CRYPTO_TWOFISH_COMMON imply CRYPTO_CTR help - Twofish cipher algorithm (x86_64). + Block cipher: Twofish cipher algorithm - Twofish was submitted as an AES (Advanced Encryption Standard) - candidate cipher by researchers at CounterPane Systems. It is a - 16 round block cipher supporting key sizes of 128, 192, and 256 - bits. - - See also: - <https://www.schneier.com/twofish.html> + Architecture: x86_64 config CRYPTO_TWOFISH_X86_64_3WAY - tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" + tristate "Ciphers: Twofish with modes: ECB, CBC (3-way parallel)" depends on X86 && 64BIT select CRYPTO_SKCIPHER select CRYPTO_TWOFISH_COMMON select CRYPTO_TWOFISH_X86_64 help - Twofish cipher algorithm (x86_64, 3-way parallel). - - Twofish was submitted as an AES (Advanced Encryption Standard) - candidate cipher by researchers at CounterPane Systems. It is a - 16 round block cipher supporting key sizes of 128, 192, and 256 - bits. + Length-preserving cipher: Twofish cipher algorithm + with ECB and CBC modes - This module provides Twofish cipher algorithm that processes three - blocks parallel, utilizing resources of out-of-order CPUs better. + Architecture: x86_64 - See also: - <https://www.schneier.com/twofish.html> + Processes three blocks in parallel, better utilizing resources of + out-of-order CPUs. config CRYPTO_TWOFISH_AVX_X86_64 - tristate "Twofish cipher algorithm (x86_64/AVX)" + tristate "Ciphers: Twofish with modes: ECB, CBC (AVX)" depends on X86 && 64BIT select CRYPTO_SKCIPHER select CRYPTO_SIMD @@ -336,28 +278,28 @@ config CRYPTO_TWOFISH_AVX_X86_64 select CRYPTO_TWOFISH_X86_64_3WAY imply CRYPTO_XTS help - Twofish cipher algorithm (x86_64/AVX). - - Twofish was submitted as an AES (Advanced Encryption Standard) - candidate cipher by researchers at CounterPane Systems. It is a - 16 round block cipher supporting key sizes of 128, 192, and 256 - bits. + Length-preserving cipher: Twofish cipher algorithm + with ECB and CBC modes - This module provides the Twofish cipher algorithm that processes - eight blocks parallel using the AVX Instruction Set. + Architecture: x86_64 using: + - AVX (Advanced Vector Extensions) - See also: - <https://www.schneier.com/twofish.html> + Processes eight blocks in parallel. config CRYPTO_CHACHA20_X86_64 - tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" + tristate "Ciphers: ChaCha20, XChaCha20, XChaCha12 (SSSE3/AVX2/AVX-512VL)" depends on X86 && 64BIT select CRYPTO_SKCIPHER select CRYPTO_LIB_CHACHA_GENERIC select CRYPTO_ARCH_HAVE_LIB_CHACHA help - SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, - XChaCha20, and XChaCha12 stream ciphers. + Length-preserving ciphers: ChaCha20, XChaCha20, and XChaCha12 + stream cipher algorithms + + Architecture: x86_64 using: + - SSSE3 (Supplemental SSE3) + - AVX2 (Advanced Vector Extensions 2) + - AVX-512VL (Advanced Vector Extensions-512VL) config CRYPTO_AEGIS128_AESNI_SSE2 tristate "AEAD ciphers: AEGIS-128 (AES-NI/SSE2)" |