diff options
author | Olivier Grenie <Olivier.Grenie@dibcom.fr> | 2009-12-04 13:27:57 -0300 |
---|---|---|
committer | Mauro Carvalho Chehab <mchehab@redhat.com> | 2009-12-16 00:18:16 -0200 |
commit | 03245a5ee69a5faa99b020fe1aca9bafe10c46a9 (patch) | |
tree | 0937b4966ff1f5e09bfcd38fd38bc55e7ac2abef /drivers/media/dvb/frontends/dib0090.c | |
parent | 20232c4791507189d4e9499f81632a1ce434f2a4 (diff) |
V4L/DVB (13583): DiB8090: Add the DiB0090 tuner driver and STK8096GP-board
This patchs adds support for the DiBcom DiB0090 RF tuner and for
DiBcom's reference design STK8096GP. Small extracts of the DiB0070 and
the DiB8000-driver into a common codebase.
Signed-off-by: Patrick Boettcher <pboettcher@kernellabs.com>
Signed-off-by: Olivier Grenie <Olivier.Grenie@dibcom.fr>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Diffstat (limited to 'drivers/media/dvb/frontends/dib0090.c')
-rw-r--r-- | drivers/media/dvb/frontends/dib0090.c | 1525 |
1 files changed, 1525 insertions, 0 deletions
diff --git a/drivers/media/dvb/frontends/dib0090.c b/drivers/media/dvb/frontends/dib0090.c new file mode 100644 index 000000000000..e37d32dbd5c5 --- /dev/null +++ b/drivers/media/dvb/frontends/dib0090.c @@ -0,0 +1,1525 @@ +/* + * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner. + * + * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/) + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of the + * License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + * + * This code is more or less generated from another driver, please + * excuse some codingstyle oddities. + * + */ + +#include <linux/kernel.h> +#include <linux/i2c.h> + +#include "dvb_frontend.h" + +#include "dib0090.h" +#include "dibx000_common.h" + +static int debug; +module_param(debug, int, 0644); +MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); + +#define dprintk(args...) do { \ + if (debug) { \ + printk(KERN_DEBUG "DiB0090: "); \ + printk(args); \ + printk("\n"); \ + } \ +} while (0) + +#define CONFIG_SYS_ISDBT +#define CONFIG_BAND_CBAND +#define CONFIG_BAND_VHF +#define CONFIG_BAND_UHF +#define CONFIG_DIB0090_USE_PWM_AGC + +#define EN_LNA0 0x8000 +#define EN_LNA1 0x4000 +#define EN_LNA2 0x2000 +#define EN_LNA3 0x1000 +#define EN_MIX0 0x0800 +#define EN_MIX1 0x0400 +#define EN_MIX2 0x0200 +#define EN_MIX3 0x0100 +#define EN_IQADC 0x0040 +#define EN_PLL 0x0020 +#define EN_TX 0x0010 +#define EN_BB 0x0008 +#define EN_LO 0x0004 +#define EN_BIAS 0x0001 + +#define EN_IQANA 0x0002 +#define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */ +#define EN_CRYSTAL 0x0002 + +#define EN_UHF 0x22E9 +#define EN_VHF 0x44E9 +#define EN_LBD 0x11E9 +#define EN_SBD 0x44E9 +#define EN_CAB 0x88E9 + +#define pgm_read_word(w) (*w) + +struct dc_calibration; + +struct dib0090_tuning { + u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ + u8 switch_trim; + u8 lna_tune; + u8 lna_bias; + u16 v2i; + u16 mix; + u16 load; + u16 tuner_enable; +}; + +struct dib0090_pll { + u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ + u8 vco_band; + u8 hfdiv_code; + u8 hfdiv; + u8 topresc; +}; + +struct dib0090_state { + struct i2c_adapter *i2c; + struct dvb_frontend *fe; + const struct dib0090_config *config; + + u8 current_band; + u16 revision; + enum frontend_tune_state tune_state; + u32 current_rf; + + u16 wbd_offset; + s16 wbd_target; /* in dB */ + + s16 rf_gain_limit; /* take-over-point: where to split between bb and rf gain */ + s16 current_gain; /* keeps the currently programmed gain */ + u8 agc_step; /* new binary search */ + + u16 gain[2]; /* for channel monitoring */ + + const u16 *rf_ramp; + const u16 *bb_ramp; + + /* for the software AGC ramps */ + u16 bb_1_def; + u16 rf_lt_def; + u16 gain_reg[4]; + + /* for the captrim/dc-offset search */ + s8 step; + s16 adc_diff; + s16 min_adc_diff; + + s8 captrim; + s8 fcaptrim; + + const struct dc_calibration *dc; + u16 bb6, bb7; + + const struct dib0090_tuning *current_tune_table_index; + const struct dib0090_pll *current_pll_table_index; + + u8 tuner_is_tuned; + u8 agc_freeze; + + u8 reset; +}; + +static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg) +{ + u8 b[2]; + struct i2c_msg msg[2] = { + {.addr = state->config->i2c_address,.flags = 0,.buf = ®,.len = 1}, + {.addr = state->config->i2c_address,.flags = I2C_M_RD,.buf = b,.len = 2}, + }; + if (i2c_transfer(state->i2c, msg, 2) != 2) { + printk(KERN_WARNING "DiB0090 I2C read failed\n"); + return 0; + } + return (b[0] << 8) | b[1]; +} + +static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val) +{ + u8 b[3] = { reg & 0xff, val >> 8, val & 0xff }; + struct i2c_msg msg = {.addr = state->config->i2c_address,.flags = 0,.buf = b,.len = 3 }; + if (i2c_transfer(state->i2c, &msg, 1) != 1) { + printk(KERN_WARNING "DiB0090 I2C write failed\n"); + return -EREMOTEIO; + } + return 0; +} + +#define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0) +#define ADC_TARGET -220 +#define GAIN_ALPHA 5 +#define WBD_ALPHA 6 +#define LPF 100 +static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c) +{ + do { + dib0090_write_reg(state, r++, *b++); + } while (--c); +} + +static u16 dib0090_identify(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + u16 v; + + v = dib0090_read_reg(state, 0x1a); + +#ifdef FIRMWARE_FIREFLY + /* pll is not locked locked */ + if (!(v & 0x800)) + dprintk("FE%d : Identification : pll is not yet locked", fe->id); +#endif + + /* without PLL lock info */ + v &= 0x3ff; + dprintk("P/V: %04x:", v); + + if ((v >> 8) & 0xf) + dprintk("FE%d : Product ID = 0x%x : KROSUS", fe->id, (v >> 8) & 0xf); + else + return 0xff; + + v &= 0xff; + if (((v >> 5) & 0x7) == 0x1) + dprintk("FE%d : MP001 : 9090/8096", fe->id); + else if (((v >> 5) & 0x7) == 0x4) + dprintk("FE%d : MP005 : Single Sband", fe->id); + else if (((v >> 5) & 0x7) == 0x6) + dprintk("FE%d : MP008 : diversity VHF-UHF-LBAND", fe->id); + else if (((v >> 5) & 0x7) == 0x7) + dprintk("FE%d : MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND", fe->id); + else + return 0xff; + + /* revision only */ + if ((v & 0x1f) == 0x3) + dprintk("FE%d : P1-D/E/F detected", fe->id); + else if ((v & 0x1f) == 0x1) + dprintk("FE%d : P1C detected", fe->id); + else if ((v & 0x1f) == 0x0) { +#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT + dprintk("FE%d : P1-A/B detected: using previous driver - support will be removed soon", fe->id); + dib0090_p1b_register(fe); +#else + dprintk("FE%d : P1-A/B detected: driver is deactivated - not available", fe->id); + return 0xff; +#endif + } + + return v; +} + +static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg) +{ + struct dib0090_state *state = fe->tuner_priv; + + HARD_RESET(state); + + dib0090_write_reg(state, 0x24, EN_PLL); + dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */ + + /* adcClkOutRatio=8->7, release reset */ + dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0); + if (cfg->clkoutdrive != 0) + dib0090_write_reg(state, 0x23, + (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (cfg->clkoutdrive << 5) | (cfg-> + clkouttobamse + << 4) | (0 + << + 2) + | (0)); + else + dib0090_write_reg(state, 0x23, + (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (7 << 5) | (cfg-> + clkouttobamse << 4) | (0 + << + 2) + | (0)); + + /* enable pll, de-activate reset, ratio: 2/1 = 60MHz */ + dib0090_write_reg(state, 0x21, + (cfg->io.pll_bypass << 15) | (1 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)); + +} + +static int dib0090_wakeup(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + if (state->config->sleep) + state->config->sleep(fe, 0); + return 0; +} + +static int dib0090_sleep(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + if (state->config->sleep) + state->config->sleep(fe, 1); + return 0; +} + +extern void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast) +{ + struct dib0090_state *state = fe->tuner_priv; + if (fast) + dib0090_write_reg(state, 0x04, 0); //1kHz + else + dib0090_write_reg(state, 0x04, 1); //almost frozen +} + +EXPORT_SYMBOL(dib0090_dcc_freq); +static const u16 rf_ramp_pwm_cband[] = { + 0, /* max RF gain in 10th of dB */ + 0, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ + 0, /* ramp_max = maximum X used on the ramp */ + (0 << 10) | 0, /* 0x2c, LNA 1 = 0dB */ + (0 << 10) | 0, /* 0x2d, LNA 1 */ + (0 << 10) | 0, /* 0x2e, LNA 2 = 0dB */ + (0 << 10) | 0, /* 0x2f, LNA 2 */ + (0 << 10) | 0, /* 0x30, LNA 3 = 0dB */ + (0 << 10) | 0, /* 0x31, LNA 3 */ + (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */ + (0 << 10) | 0, /* GAIN_4_2, LNA 4 */ +}; + +static const u16 rf_ramp_vhf[] = { + 412, /* max RF gain in 10th of dB */ + 132, 307, 127, /* LNA1, 13.2dB */ + 105, 412, 255, /* LNA2, 10.5dB */ + 50, 50, 127, /* LNA3, 5dB */ + 125, 175, 127, /* LNA4, 12.5dB */ + 0, 0, 127, /* CBAND, 0dB */ +}; + +static const u16 rf_ramp_uhf[] = { + 412, /* max RF gain in 10th of dB */ + 132, 307, 127, /* LNA1 : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */ + 105, 412, 255, /* LNA2 : 10.5 dB */ + 50, 50, 127, /* LNA3 : 5.0 dB */ + 125, 175, 127, /* LNA4 : 12.5 dB */ + 0, 0, 127, /* CBAND : 0.0 dB */ +}; + +static const u16 rf_ramp_cband[] = { + 332, /* max RF gain in 10th of dB */ + 132, 252, 127, /* LNA1, dB */ + 80, 332, 255, /* LNA2, dB */ + 0, 0, 127, /* LNA3, dB */ + 0, 0, 127, /* LNA4, dB */ + 120, 120, 127, /* LT1 CBAND */ +}; + +static const u16 rf_ramp_pwm_vhf[] = { + 404, /* max RF gain in 10th of dB */ + 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ + 1011, /* ramp_max = maximum X used on the ramp */ + (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */ + (0 << 10) | 756, /* 0x2d, LNA 1 */ + (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */ + (0 << 10) | 1011, /* 0x2f, LNA 2 */ + (16 << 10) | 290, /* 0x30, LNA 3 = 5dB */ + (0 << 10) | 417, /* 0x31, LNA 3 */ + (7 << 10) | 0, /* GAIN_4_1, LNA 4 = 12.5dB */ + (0 << 10) | 290, /* GAIN_4_2, LNA 4 */ +}; + +static const u16 rf_ramp_pwm_uhf[] = { + 404, /* max RF gain in 10th of dB */ + 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ + 1011, /* ramp_max = maximum X used on the ramp */ + (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */ + (0 << 10) | 756, /* 0x2d, LNA 1 */ + (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */ + (0 << 10) | 1011, /* 0x2f, LNA 2 */ + (16 << 10) | 0, /* 0x30, LNA 3 = 5dB */ + (0 << 10) | 127, /* 0x31, LNA 3 */ + (7 << 10) | 127, /* GAIN_4_1, LNA 4 = 12.5dB */ + (0 << 10) | 417, /* GAIN_4_2, LNA 4 */ +}; + +static const u16 bb_ramp_boost[] = { + 550, /* max BB gain in 10th of dB */ + 260, 260, 26, /* BB1, 26dB */ + 290, 550, 29, /* BB2, 29dB */ +}; + +static const u16 bb_ramp_pwm_normal[] = { + 500, /* max RF gain in 10th of dB */ + 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */ + 400, + (2 << 9) | 0, /* 0x35 = 21dB */ + (0 << 9) | 168, /* 0x36 */ + (2 << 9) | 168, /* 0x37 = 29dB */ + (0 << 9) | 400, /* 0x38 */ +}; + +struct slope { + int16_t range; + int16_t slope; +}; +static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val) +{ + u8 i; + u16 rest; + u16 ret = 0; + for (i = 0; i < num; i++) { + if (val > slopes[i].range) + rest = slopes[i].range; + else + rest = val; + ret += (rest * slopes[i].slope) / slopes[i].range; + val -= rest; + } + return ret; +} + +static const struct slope dib0090_wbd_slopes[3] = { + {66, 120}, /* -64,-52: offset - 65 */ + {600, 170}, /* -52,-35: 65 - 665 */ + {170, 250}, /* -45,-10: 665 - 835 */ +}; + +static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd) +{ + wbd &= 0x3ff; + if (wbd < state->wbd_offset) + wbd = 0; + else + wbd -= state->wbd_offset; + /* -64dB is the floor */ + return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd); +} + +static void dib0090_wbd_target(struct dib0090_state *state, u32 rf) +{ + u16 offset = 250; + + /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */ + + if (state->current_band == BAND_VHF) + offset = 650; +#ifndef FIRMWARE_FIREFLY + if (state->current_band == BAND_VHF) + offset = state->config->wbd_vhf_offset; + if (state->current_band == BAND_CBAND) + offset = state->config->wbd_cband_offset; +#endif + + state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset); + dprintk("wbd-target: %d dB", (u32) state->wbd_target); +} + +static const int gain_reg_addr[4] = { + 0x08, 0x0a, 0x0f, 0x01 +}; + +static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force) +{ + u16 rf, bb, ref; + u16 i, v, gain_reg[4] = { 0 }, gain; + const u16 *g; + + if (top_delta < -511) + top_delta = -511; + if (top_delta > 511) + top_delta = 511; + + if (force) { + top_delta *= (1 << WBD_ALPHA); + gain_delta *= (1 << GAIN_ALPHA); + } + + if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit)) /* overflow */ + state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; + else + state->rf_gain_limit += top_delta; + + if (state->rf_gain_limit < 0) /*underflow */ + state->rf_gain_limit = 0; + + /* use gain as a temporary variable and correct current_gain */ + gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA; + if (gain_delta >= ((s16) gain - state->current_gain)) /* overflow */ + state->current_gain = gain; + else + state->current_gain += gain_delta; + /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */ + if (state->current_gain < 0) + state->current_gain = 0; + + /* now split total gain to rf and bb gain */ + gain = state->current_gain >> GAIN_ALPHA; + + /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */ + if (gain > (state->rf_gain_limit >> WBD_ALPHA)) { + rf = state->rf_gain_limit >> WBD_ALPHA; + bb = gain - rf; + if (bb > state->bb_ramp[0]) + bb = state->bb_ramp[0]; + } else { /* high signal level -> all gains put on RF */ + rf = gain; + bb = 0; + } + + state->gain[0] = rf; + state->gain[1] = bb; + + /* software ramp */ + /* Start with RF gains */ + g = state->rf_ramp + 1; /* point on RF LNA1 max gain */ + ref = rf; + for (i = 0; i < 7; i++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */ + if (g[0] == 0 || ref < (g[1] - g[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */ + v = 0; /* force the gain to write for the current amp to be null */ + else if (ref >= g[1]) /* Gain to set is higher than the high working point of this amp */ + v = g[2]; /* force this amp to be full gain */ + else /* compute the value to set to this amp because we are somewhere in his range */ + v = ((ref - (g[1] - g[0])) * g[2]) / g[0]; + + if (i == 0) /* LNA 1 reg mapping */ + gain_reg[0] = v; + else if (i == 1) /* LNA 2 reg mapping */ + gain_reg[0] |= v << 7; + else if (i == 2) /* LNA 3 reg mapping */ + gain_reg[1] = v; + else if (i == 3) /* LNA 4 reg mapping */ + gain_reg[1] |= v << 7; + else if (i == 4) /* CBAND LNA reg mapping */ + gain_reg[2] = v | state->rf_lt_def; + else if (i == 5) /* BB gain 1 reg mapping */ + gain_reg[3] = v << 3; + else if (i == 6) /* BB gain 2 reg mapping */ + gain_reg[3] |= v << 8; + + g += 3; /* go to next gain bloc */ + + /* When RF is finished, start with BB */ + if (i == 4) { + g = state->bb_ramp + 1; /* point on BB gain 1 max gain */ + ref = bb; + } + } + gain_reg[3] |= state->bb_1_def; + gain_reg[3] |= ((bb % 10) * 100) / 125; + +#ifdef DEBUG_AGC + dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb, + gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]); +#endif + + /* Write the amplifier regs */ + for (i = 0; i < 4; i++) { + v = gain_reg[i]; + if (force || state->gain_reg[i] != v) { + state->gain_reg[i] = v; + dib0090_write_reg(state, gain_reg_addr[i], v); + } + } +} + +static void dib0090_set_boost(struct dib0090_state *state, int onoff) +{ + state->bb_1_def &= 0xdfff; + state->bb_1_def |= onoff << 13; +} + +static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg) +{ + state->rf_ramp = cfg; +} + +static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg) +{ + state->rf_ramp = cfg; + + dib0090_write_reg(state, 0x2a, 0xffff); + + dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a)); + + dib0090_write_regs(state, 0x2c, cfg + 3, 6); + dib0090_write_regs(state, 0x3e, cfg + 9, 2); +} + +static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg) +{ + state->bb_ramp = cfg; + dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */ +} + +static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg) +{ + state->bb_ramp = cfg; + + dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */ + + dib0090_write_reg(state, 0x33, 0xffff); + dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33)); + dib0090_write_regs(state, 0x35, cfg + 3, 4); +} + +void dib0090_pwm_gain_reset(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + /* reset the AGC */ + + if (state->config->use_pwm_agc) { +#ifdef CONFIG_BAND_SBAND + if (state->current_band == BAND_SBAND) { + dib0090_set_rframp_pwm(state, rf_ramp_pwm_sband); + dib0090_set_bbramp_pwm(state, bb_ramp_pwm_boost); + } else +#endif +#ifdef CONFIG_BAND_CBAND + if (state->current_band == BAND_CBAND) { + dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband); + dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); + } else +#endif +#ifdef CONFIG_BAND_VHF + if (state->current_band == BAND_VHF) { + dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf); + dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); + } else +#endif + { + dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf); + dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); + } + + if (state->rf_ramp[0] != 0) + dib0090_write_reg(state, 0x32, (3 << 11)); + else + dib0090_write_reg(state, 0x32, (0 << 11)); + + dib0090_write_reg(state, 0x39, (1 << 10)); // 0 gain by default + } +} + +EXPORT_SYMBOL(dib0090_pwm_gain_reset); +int dib0090_gain_control(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + enum frontend_tune_state *tune_state = &state->tune_state; + int ret = 10; + + u16 wbd_val = 0; + u8 apply_gain_immediatly = 1; + s16 wbd_error = 0, adc_error = 0; + + if (*tune_state == CT_AGC_START) { + state->agc_freeze = 0; + dib0090_write_reg(state, 0x04, 0x0); + +#ifdef CONFIG_BAND_SBAND + if (state->current_band == BAND_SBAND) { + dib0090_set_rframp(state, rf_ramp_sband); + dib0090_set_bbramp(state, bb_ramp_boost); + } else +#endif +#ifdef CONFIG_BAND_VHF + if (state->current_band == BAND_VHF) { + dib0090_set_rframp(state, rf_ramp_vhf); + dib0090_set_bbramp(state, bb_ramp_boost); + } else +#endif +#ifdef CONFIG_BAND_CBAND + if (state->current_band == BAND_CBAND) { + dib0090_set_rframp(state, rf_ramp_cband); + dib0090_set_bbramp(state, bb_ramp_boost); + } else +#endif + { + dib0090_set_rframp(state, rf_ramp_uhf); + dib0090_set_bbramp(state, bb_ramp_boost); + } + + dib0090_write_reg(state, 0x32, 0); + dib0090_write_reg(state, 0x39, 0); + + dib0090_wbd_target(state, state->current_rf); + + state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; + state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA; + + *tune_state = CT_AGC_STEP_0; + } else if (!state->agc_freeze) { + s16 wbd; + + int adc; + wbd_val = dib0090_read_reg(state, 0x1d); + + /* read and calc the wbd power */ + wbd = dib0090_wbd_to_db(state, wbd_val); + wbd_error = state->wbd_target - wbd; + + if (*tune_state == CT_AGC_STEP_0) { + if (wbd_error < 0 && state->rf_gain_limit > 0) { +#ifdef CONFIG_BAND_CBAND + /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */ + u8 ltg2 = (state->rf_lt_def >> 10) & 0x7; + if (state->current_band == BAND_CBAND && ltg2) { + ltg2 >>= 1; + state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */ + } +#endif + } else { + state->agc_step = 0; + *tune_state = CT_AGC_STEP_1; + } + } else { + /* calc the adc power */ + adc = state->config->get_adc_power(fe); + adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */ + + adc_error = (s16) (((s32) ADC_TARGET) - adc); +#ifdef CONFIG_STANDARD_DAB + if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) + adc_error += 130; +#endif +#ifdef CONFIG_STANDARD_DVBT + if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT && + (state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16)) + adc_error += 60; +#endif +#ifdef CONFIG_SYS_ISDBT + if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count > + 0) + && + ((state->fe->dtv_property_cache.layer[0].modulation == + QAM_64) + || (state->fe->dtv_property_cache.layer[0]. + modulation == QAM_16))) + || + ((state->fe->dtv_property_cache.layer[1].segment_count > + 0) + && + ((state->fe->dtv_property_cache.layer[1].modulation == + QAM_64) + || (state->fe->dtv_property_cache.layer[1]. + modulation == QAM_16))) + || + ((state->fe->dtv_property_cache.layer[2].segment_count > + 0) + && + ((state->fe->dtv_property_cache.layer[2].modulation == + QAM_64) + || (state->fe->dtv_property_cache.layer[2]. + modulation == QAM_16))) + ) + ) + adc_error += 60; +#endif + + if (*tune_state == CT_AGC_STEP_1) { /* quickly go to the correct range of the ADC power */ + if (ABS(adc_error) < 50 || state->agc_step++ > 5) { + +#ifdef CONFIG_STANDARD_DAB + if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) { + dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */ + dib0090_write_reg(state, 0x04, 0x0); + } else +#endif + { + dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32)); + dib0090_write_reg(state, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */ + } + + *tune_state = CT_AGC_STOP; + } + } else { + /* everything higher than or equal to CT_AGC_STOP means tracking */ + ret = 100; /* 10ms interval */ + apply_gain_immediatly = 0; + } + } +#ifdef DEBUG_AGC + dprintk + ("FE: %d, tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm", + (u32) fe->id, (u32) * tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val, + (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA)); +#endif + } + + /* apply gain */ + if (!state->agc_freeze) + dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly); + return ret; +} + +EXPORT_SYMBOL(dib0090_gain_control); +void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt) +{ + struct dib0090_state *state = fe->tuner_priv; + if (rf) + *rf = state->gain[0]; + if (bb) + *bb = state->gain[1]; + if (rf_gain_limit) + *rf_gain_limit = state->rf_gain_limit; + if (rflt) + *rflt = (state->rf_lt_def >> 10) & 0x7; +} + +EXPORT_SYMBOL(dib0090_get_current_gain); +u16 dib0090_get_wbd_offset(struct dvb_frontend *tuner) +{ + struct dib0090_state *st = tuner->tuner_priv; + return st->wbd_offset; +} + +EXPORT_SYMBOL(dib0090_get_wbd_offset); +static const u16 dib0090_defaults[] = { + + 25, 0x01, + 0x0000, + 0x99a0, + 0x6008, + 0x0000, + 0x8acb, + 0x0000, + 0x0405, + 0x0000, + 0x0000, + 0x0000, + 0xb802, + 0x0300, + 0x2d12, + 0xbac0, + 0x7c00, + 0xdbb9, + 0x0954, + 0x0743, + 0x8000, + 0x0001, + 0x0040, + 0x0100, + 0x0000, + 0xe910, + 0x149e, + + 1, 0x1c, + 0xff2d, + + 1, 0x39, + 0x0000, + + 1, 0x1b, + EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL, + 2, 0x1e, + 0x07FF, + 0x0007, + + 1, 0x24, + EN_UHF | EN_CRYSTAL, + + 2, 0x3c, + 0x3ff, + 0x111, + 0 +}; + +static int dib0090_reset(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + u16 l, r, *n; + + dib0090_reset_digital(fe, state->config); + state->revision = dib0090_identify(fe); + + /* Revision definition */ + if (state->revision == 0xff) + return -EINVAL; +#ifdef EFUSE + else if ((state->revision & 0x1f) >= 3) /* Update the efuse : Only available for KROSUS > P1C */ + dib0090_set_EFUSE(state); +#endif + +#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT + if (!(state->revision & 0x1)) /* it is P1B - reset is already done */ + return 0; +#endif + + /* Upload the default values */ + n = (u16 *) dib0090_defaults; + l = pgm_read_word(n++); + while (l) { + r = pgm_read_word(n++); + do { + /* DEBUG_TUNER */ + /* dprintk("%d, %d, %d", l, r, pgm_read_word(n)); */ + dib0090_write_reg(state, r, pgm_read_word(n++)); + r++; + } while (--l); + l = pgm_read_word(n++); + } + + /* Congigure in function of the crystal */ + if (state->config->io.clock_khz >= 24000) + l = 1; + else + l = 2; + dib0090_write_reg(state, 0x14, l); + dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1); + + state->reset = 3; /* enable iq-offset-calibration and wbd-calibration when tuning next time */ + + return 0; +} + +#define steps(u) (((u)>15)?((u)-16):(u)) +#define INTERN_WAIT 10 +static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state) +{ + int ret = INTERN_WAIT * 10; + + switch (*tune_state) { + case CT_TUNER_STEP_2: + /* Turns to positive */ + dib0090_write_reg(state, 0x1f, 0x7); + *tune_state = CT_TUNER_STEP_3; + break; + + case CT_TUNER_STEP_3: + state->adc_diff = dib0090_read_reg(state, 0x1d); + + /* Turns to negative */ + dib0090_write_reg(state, 0x1f, 0x4); + *tune_state = CT_TUNER_STEP_4; + break; + + case CT_TUNER_STEP_4: + state->adc_diff -= dib0090_read_reg(state, 0x1d); + *tune_state = CT_TUNER_STEP_5; + ret = 0; + break; + + default: + break; + } + + return ret; +} + +struct dc_calibration { + uint8_t addr; + uint8_t offset; + uint8_t pga:1; + uint16_t bb1; + uint8_t i:1; +}; + +static const struct dc_calibration dc_table[] = { + /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */ + {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1}, + {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0}, + /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */ + {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1}, + {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0}, + {0}, +}; + +static void dib0090_set_trim(struct dib0090_state *state) +{ + u16 *val; + + if (state->dc->addr == 0x07) + val = &state->bb7; + else + val = &state->bb6; + + *val &= ~(0x1f << state->dc->offset); + *val |= state->step << state->dc->offset; + + dib0090_write_reg(state, state->dc->addr, *val); +} + +static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) +{ + int ret = 0; + + switch (*tune_state) { + + case CT_TUNER_START: + /* init */ + dprintk("Internal DC calibration"); + + /* the LNA is off */ + dib0090_write_reg(state, 0x24, 0x02ed); + + /* force vcm2 = 0.8V */ + state->bb6 = 0; + state->bb7 = 0x040d; + + state->dc = dc_table; + + *tune_state = CT_TUNER_STEP_0; + + /* fall through */ + + case CT_TUNER_STEP_0: + dib0090_write_reg(state, 0x01, state->dc->bb1); + dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7)); + + state->step = 0; + + state->min_adc_diff = 1023; + + *tune_state = CT_TUNER_STEP_1; + ret = 50; + break; + + case CT_TUNER_STEP_1: + dib0090_set_trim(state); + + *tune_state = CT_TUNER_STEP_2; + break; + + case CT_TUNER_STEP_2: + case CT_TUNER_STEP_3: + case CT_TUNER_STEP_4: + ret = dib0090_get_offset(state, tune_state); + break; + + case CT_TUNER_STEP_5: /* found an offset */ + dprintk("FE%d: IQC read=%d, current=%x", state->fe->id, (u32) state->adc_diff, state->step); + + /* first turn for this frequency */ + if (state->step == 0) { + if (state->dc->pga && state->adc_diff < 0) + state->step = 0x10; + if (state->dc->pga == 0 && state->adc_diff > 0) + state->step = 0x10; + } + + state->adc_diff = ABS(state->adc_diff); + + if (state->adc_diff < state->min_adc_diff && steps(state->step) < 15) { /* stop search when the delta to 0 is increasing */ + state->step++; + state->min_adc_diff = state->adc_diff; + *tune_state = CT_TUNER_STEP_1; + } else { + + /* the minimum was what we have seen in the step before */ + state->step--; + dib0090_set_trim(state); + + dprintk("FE%d: BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->fe->id, state->dc->addr, state->adc_diff, + state->step); + + state->dc++; + if (state->dc->addr == 0) /* done */ + *tune_state = CT_TUNER_STEP_6; + else + *tune_state = CT_TUNER_STEP_0; + + } + break; + + case CT_TUNER_STEP_6: + dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008); + dib0090_write_reg(state, 0x1f, 0x7); + *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */ + state->reset &= ~0x1; + default: + break; + } + return ret; +} + +static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) +{ + switch (*tune_state) { + case CT_TUNER_START: + /* WBD-mode=log, Bias=2, Gain=6, Testmode=1, en=1, WBDMUX=1 */ + dib0090_write_reg(state, 0x10, 0xdb09 | (1 << 10)); + dib0090_write_reg(state, 0x24, EN_UHF & 0x0fff); + + *tune_state = CT_TUNER_STEP_0; + return 90; /* wait for the WBDMUX to switch and for the ADC to sample */ + case CT_TUNER_STEP_0: + state->wbd_offset = dib0090_read_reg(state, 0x1d); + dprintk("WBD calibration offset = %d", state->wbd_offset); + + *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */ + state->reset &= ~0x2; + break; + default: + break; + } + return 0; +} + +static void dib0090_set_bandwidth(struct dib0090_state *state) +{ + u16 tmp; + + if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000) + tmp = (3 << 14); + else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000) + tmp = (2 << 14); + else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000) + tmp = (1 << 14); + else + tmp = (0 << 14); + + state->bb_1_def &= 0x3fff; + state->bb_1_def |= tmp; + + dib0090_write_reg(state, 0x01, state->bb_1_def); /* be sure that we have the right bb-filter */ +} + +static const struct dib0090_pll dib0090_pll_table[] = { +#ifdef CONFIG_BAND_CBAND + {56000, 0, 9, 48, 6}, + {70000, 1, 9, 48, 6}, + {87000, 0, 8, 32, 4}, + {105000, 1, 8, 32, 4}, + {115000, 0, 7, 24, 6}, + {140000, 1, 7, 24, 6}, + {170000, 0, 6, 16, 4}, +#endif +#ifdef CONFIG_BAND_VHF + {200000, 1, 6, 16, 4}, + {230000, 0, 5, 12, 6}, + {280000, 1, 5, 12, 6}, + {340000, 0, 4, 8, 4}, + {380000, 1, 4, 8, 4}, + {450000, 0, 3, 6, 6}, +#endif +#ifdef CONFIG_BAND_UHF + {580000, 1, 3, 6, 6}, + {700000, 0, 2, 4, 4}, + {860000, 1, 2, 4, 4}, +#endif +#ifdef CONFIG_BAND_LBAND + {1800000, 1, 0, 2, 4}, +#endif +#ifdef CONFIG_BAND_SBAND + {2900000, 0, 14, 1, 4}, +#endif +}; + +static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = { + +#ifdef CONFIG_BAND_CBAND + {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, + {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, + {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, +#endif +#ifdef CONFIG_BAND_UHF + {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, +#endif +#ifdef CONFIG_BAND_LBAND + {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, + {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, + {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, +#endif +#ifdef CONFIG_BAND_SBAND + {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, + {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, +#endif +}; + +static const struct dib0090_tuning dib0090_tuning_table[] = { + +#ifdef CONFIG_BAND_CBAND + {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, +#endif +#ifdef CONFIG_BAND_VHF + {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, + {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, + {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, +#endif +#ifdef CONFIG_BAND_UHF + {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, +#endif +#ifdef CONFIG_BAND_LBAND + {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, + {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, + {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, +#endif +#ifdef CONFIG_BAND_SBAND + {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, + {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, +#endif +}; + +#define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */ +static int dib0090_tune(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + const struct dib0090_tuning *tune = state->current_tune_table_index; + const struct dib0090_pll *pll = state->current_pll_table_index; + enum frontend_tune_state *tune_state = &state->tune_state; + + u32 rf; + u16 lo4 = 0xe900, lo5, lo6, Den; + u32 FBDiv, Rest, FREF, VCOF_kHz = 0; + u16 tmp, adc; + int8_t step_sign; + int ret = 10; /* 1ms is the default delay most of the time */ + u8 c, i; + + state->current_band = (u8) BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000); + rf = fe->dtv_property_cache.frequency / 1000 + (state->current_band == + BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->freq_offset_khz_vhf); + /* in any case we first need to do a reset if needed */ + if (state->reset & 0x1) + return dib0090_dc_offset_calibration(state, tune_state); + else if (state->reset & 0x2) + return dib0090_wbd_calibration(state, tune_state); + + /************************* VCO ***************************/ + /* Default values for FG */ + /* from these are needed : */ + /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */ + +#ifdef CONFIG_SYS_ISDBT + if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1) + rf += 850; +#endif + + if (state->current_rf != rf) { + state->tuner_is_tuned = 0; + + tune = dib0090_tuning_table; + + tmp = (state->revision >> 5) & 0x7; + if (tmp == 0x4 || tmp == 0x7) { + /* CBAND tuner version for VHF */ + if (state->current_band == BAND_FM || state->current_band == BAND_VHF) { + /* Force CBAND */ + state->current_band = BAND_CBAND; + tune = dib0090_tuning_table_fm_vhf_on_cband; + } + } + + pll = dib0090_pll_table; + /* Look for the interval */ + while (rf > tune->max_freq) + tune++; + while (rf > pll->max_freq) + pll++; + state->current_tune_table_index = tune; + state->current_pll_table_index = pll; + } + + if (*tune_state == CT_TUNER_START) { + + if (state->tuner_is_tuned == 0) + state->current_rf = 0; + + if (state->current_rf != rf) { + + dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim)); + + /* external loop filter, otherwise: + * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4; + * lo6 = 0x0e34 */ + if (pll->vco_band) + lo5 = 0x049e; + else if (state->config->analog_output) + lo5 = 0x041d; + else + lo5 = 0x041c; + + lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */ + + if (!state->config->io.pll_int_loop_filt) + lo6 = 0xff28; + else + lo6 = (state->config->io.pll_int_loop_filt << 3); + + VCOF_kHz = (pll->hfdiv * rf) * 2; + + FREF = state->config->io.clock_khz; + + FBDiv = (VCOF_kHz / pll->topresc / FREF); + Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF; + + if (Rest < LPF) + Rest = 0; + else if (Rest < 2 * LPF) + Rest = 2 * LPF; + else if (Rest > (FREF - LPF)) { + Rest = 0; + FBDiv += 1; + } else if (Rest > (FREF - 2 * LPF)) + Rest = FREF - 2 * LPF; + Rest = (Rest * 6528) / (FREF / 10); + + Den = 1; + + dprintk(" ***** ******* Rest value = %d", Rest); + + if (Rest > 0) { + if (state->config->analog_output) + lo6 |= (1 << 2) | 2; + else + lo6 |= (1 << 2) | 1; + Den = 255; + } +#ifdef CONFIG_BAND_SBAND + if (state->current_band == BAND_SBAND) + lo6 &= 0xfffb; +#endif + + dib0090_write_reg(state, 0x15, (u16) FBDiv); + + dib0090_write_reg(state, 0x16, (Den << 8) | 1); + + dib0090_write_reg(state, 0x17, (u16) Rest); + + dib0090_write_reg(state, 0x19, lo5); + + dib0090_write_reg(state, 0x1c, lo6); + + lo6 = tune->tuner_enable; + if (state->config->analog_output) + lo6 = (lo6 & 0xff9f) | 0x2; + + dib0090_write_reg(state, 0x24, lo6 | EN_LO +#ifdef CONFIG_DIB0090_USE_PWM_AGC + | state->config->use_pwm_agc * EN_CRYSTAL +#endif + ); + + state->current_rf = rf; + + /* prepare a complete captrim */ + state->step = state->captrim = state->fcaptrim = 64; + + } else { /* we are already tuned to this frequency - the configuration is correct */ + + /* do a minimal captrim even if the frequency has not changed */ + state->step = 4; + state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f; + } + state->adc_diff = 3000; + + dib0090_write_reg(state, 0x10, 0x2B1); + + dib0090_write_reg(state, 0x1e, 0x0032); + + ret = 20; + *tune_state = CT_TUNER_STEP_1; + } else if (*tune_state == CT_TUNER_STEP_0) { + /* nothing */ + } else if (*tune_state == CT_TUNER_STEP_1) { + state->step /= 2; + dib0090_write_reg(state, 0x18, lo4 | state->captrim); + *tune_state = CT_TUNER_STEP_2; + } else if (*tune_state == CT_TUNER_STEP_2) { + + adc = dib0090_read_reg(state, 0x1d); + dprintk("FE %d CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) fe->id, (u32) state->captrim, (u32) adc, + (u32) (adc) * (u32) 1800 / (u32) 1024); + + if (adc >= 400) { + adc -= 400; + step_sign = -1; + } else { + adc = 400 - adc; + step_sign = 1; + } + + if (adc < state->adc_diff) { + dprintk("FE %d CAPTRIM=%d is closer to target (%d/%d)", (u32) fe->id, (u32) state->captrim, (u32) adc, (u32) state->adc_diff); + state->adc_diff = adc; + state->fcaptrim = state->captrim; + + } + + state->captrim += step_sign * state->step; + if (state->step >= 1) + *tune_state = CT_TUNER_STEP_1; + else + *tune_state = CT_TUNER_STEP_3; + + ret = 15; + } else if (*tune_state == CT_TUNER_STEP_3) { + /*write the final cptrim config */ + dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim); + +#ifdef CONFIG_TUNER_DIB0090_CAPTRIM_MEMORY + state->memory[state->memory_index].cap = state->fcaptrim; +#endif + + *tune_state = CT_TUNER_STEP_4; + } else if (*tune_state == CT_TUNER_STEP_4) { + dib0090_write_reg(state, 0x1e, 0x07ff); + + dprintk("FE %d Final Captrim: %d", (u32) fe->id, (u32) state->fcaptrim); + dprintk("FE %d HFDIV code: %d", (u32) fe->id, (u32) pll->hfdiv_code); + dprintk("FE %d VCO = %d", (u32) fe->id, (u32) pll->vco_band); + dprintk("FE %d VCOF in kHz: %d ((%d*%d) << 1))", (u32) fe->id, (u32) ((pll->hfdiv * rf) * 2), (u32) pll->hfdiv, (u32) rf); + dprintk("FE %d REFDIV: %d, FREF: %d", (u32) fe->id, (u32) 1, (u32) state->config->io.clock_khz); + dprintk("FE %d FBDIV: %d, Rest: %d", (u32) fe->id, (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17)); + dprintk("FE %d Num: %d, Den: %d, SD: %d", (u32) fe->id, (u32) dib0090_read_reg(state, 0x17), + (u32) (dib0090_read_reg(state, 0x16) >> 8), (u32) dib0090_read_reg(state, 0x1c) & 0x3); + + c = 4; + i = 3; +#if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND) + if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND)) { + c = 2; + i = 2; + } +#endif + dib0090_write_reg(state, 0x10, (c << 13) | (i << 11) | (WBD +#ifdef CONFIG_DIB0090_USE_PWM_AGC + | (state->config->use_pwm_agc << 1) +#endif + )); + dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | (tune->lna_bias << 0)); + dib0090_write_reg(state, 0x0c, tune->v2i); + dib0090_write_reg(state, 0x0d, tune->mix); + dib0090_write_reg(state, 0x0e, tune->load); + + *tune_state = CT_TUNER_STEP_5; + } else if (*tune_state == CT_TUNER_STEP_5) { + + /* initialize the lt gain register */ + state->rf_lt_def = 0x7c00; + dib0090_write_reg(state, 0x0f, state->rf_lt_def); + + dib0090_set_bandwidth(state); + state->tuner_is_tuned = 1; + *tune_state = CT_TUNER_STOP; + } else + ret = FE_CALLBACK_TIME_NEVER; + return ret; +} + +static int dib0090_release(struct dvb_frontend *fe) +{ + kfree(fe->tuner_priv); + fe->tuner_priv = NULL; + return 0; +} + +enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + + return state->tune_state; +} + +EXPORT_SYMBOL(dib0090_get_tune_state); + +int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) +{ + struct dib0090_state *state = fe->tuner_priv; + + state->tune_state = tune_state; + return 0; +} + +EXPORT_SYMBOL(dib0090_set_tune_state); + +static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency) +{ + struct dib0090_state *state = fe->tuner_priv; + + *frequency = 1000 * state->current_rf; + return 0; +} + +static int dib0090_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) +{ + struct dib0090_state *state = fe->tuner_priv; + uint32_t ret; + + state->tune_state = CT_TUNER_START; + + do { + ret = dib0090_tune(fe); + if (ret != FE_CALLBACK_TIME_NEVER) + msleep(ret / 10); + else + break; + } while (state->tune_state != CT_TUNER_STOP); + + return 0; +} + +static const struct dvb_tuner_ops dib0090_ops = { + .info = { + .name = "DiBcom DiB0090", + .frequency_min = 45000000, + .frequency_max = 860000000, + .frequency_step = 1000, + }, + .release = dib0090_release, + + .init = dib0090_wakeup, + .sleep = dib0090_sleep, + .set_params = dib0090_set_params, + .get_frequency = dib0090_get_frequency, +}; + +struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config) +{ + struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL); + if (st == NULL) + return NULL; + + st->config = config; + st->i2c = i2c; + st->fe = fe; + fe->tuner_priv = st; + + if (dib0090_reset(fe) != 0) + goto free_mem; + + printk(KERN_INFO "DiB0090: successfully identified\n"); + memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops)); + + return fe; + free_mem: + kfree(st); + fe->tuner_priv = NULL; + return NULL; +} + +EXPORT_SYMBOL(dib0090_register); + +MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); +MODULE_AUTHOR("Olivier Grenie <olivier.grenie@dibcom.fr>"); +MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner"); +MODULE_LICENSE("GPL"); |