summaryrefslogtreecommitdiff
path: root/include
diff options
context:
space:
mode:
authorMichal Hocko <mhocko@suse.com>2017-08-18 15:16:15 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2017-08-18 15:32:01 -0700
commit6b31d5955cb29a51c5baffee382f213d75e98fb8 (patch)
tree86405062da720e3cc0f60c9c0e48e21e3ab0189c /include
parent5b53a6ea886700a128b697a6fe8375340dea2c30 (diff)
mm, oom: fix potential data corruption when oom_reaper races with writer
Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include')
-rw-r--r--include/linux/oom.h22
1 files changed, 22 insertions, 0 deletions
diff --git a/include/linux/oom.h b/include/linux/oom.h
index 8a266e2be5a6..76aac4ce39bc 100644
--- a/include/linux/oom.h
+++ b/include/linux/oom.h
@@ -6,6 +6,8 @@
#include <linux/types.h>
#include <linux/nodemask.h>
#include <uapi/linux/oom.h>
+#include <linux/sched/coredump.h> /* MMF_* */
+#include <linux/mm.h> /* VM_FAULT* */
struct zonelist;
struct notifier_block;
@@ -63,6 +65,26 @@ static inline bool tsk_is_oom_victim(struct task_struct * tsk)
return tsk->signal->oom_mm;
}
+/*
+ * Checks whether a page fault on the given mm is still reliable.
+ * This is no longer true if the oom reaper started to reap the
+ * address space which is reflected by MMF_UNSTABLE flag set in
+ * the mm. At that moment any !shared mapping would lose the content
+ * and could cause a memory corruption (zero pages instead of the
+ * original content).
+ *
+ * User should call this before establishing a page table entry for
+ * a !shared mapping and under the proper page table lock.
+ *
+ * Return 0 when the PF is safe VM_FAULT_SIGBUS otherwise.
+ */
+static inline int check_stable_address_space(struct mm_struct *mm)
+{
+ if (unlikely(test_bit(MMF_UNSTABLE, &mm->flags)))
+ return VM_FAULT_SIGBUS;
+ return 0;
+}
+
extern unsigned long oom_badness(struct task_struct *p,
struct mem_cgroup *memcg, const nodemask_t *nodemask,
unsigned long totalpages);