summaryrefslogtreecommitdiff
path: root/include
diff options
context:
space:
mode:
authorCasey Schaufler <casey@schaufler-ca.com>2015-05-02 15:10:53 -0700
committerJames Morris <james.l.morris@oracle.com>2015-05-12 15:00:21 +1000
commitfe7bb272ee72b5cc377e02b556d0d718d12bbede (patch)
tree5a33af6726ef88f5cf938fc1ad31d5e07d39cdaf /include
parent3c4ed7bdf5997d8020cbb8d4abbef2fcfb9f1284 (diff)
LSM: Add the comment to lsm_hooks.h
Add the large comment describing the content of the security_operations structure to lsm_hooks.h. This wasn't done in the previous (1/7) patch because it would have exceeded the mail list size limits. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: John Johansen <john.johansen@canonical.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Paul Moore <paul@paul-moore.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Acked-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: James Morris <james.l.morris@oracle.com>
Diffstat (limited to 'include')
-rw-r--r--include/linux/lsm_hooks.h1279
1 files changed, 1279 insertions, 0 deletions
diff --git a/include/linux/lsm_hooks.h b/include/linux/lsm_hooks.h
index c60f81b2d18c..b4c91de510c2 100644
--- a/include/linux/lsm_hooks.h
+++ b/include/linux/lsm_hooks.h
@@ -31,6 +31,1285 @@
#ifdef CONFIG_SECURITY
+/**
+ * struct security_operations - main security structure
+ *
+ * Security module identifier.
+ *
+ * @name:
+ * A string that acts as a unique identifier for the LSM with max number
+ * of characters = SECURITY_NAME_MAX.
+ *
+ * Security hooks for program execution operations.
+ *
+ * @bprm_set_creds:
+ * Save security information in the bprm->security field, typically based
+ * on information about the bprm->file, for later use by the apply_creds
+ * hook. This hook may also optionally check permissions (e.g. for
+ * transitions between security domains).
+ * This hook may be called multiple times during a single execve, e.g. for
+ * interpreters. The hook can tell whether it has already been called by
+ * checking to see if @bprm->security is non-NULL. If so, then the hook
+ * may decide either to retain the security information saved earlier or
+ * to replace it.
+ * @bprm contains the linux_binprm structure.
+ * Return 0 if the hook is successful and permission is granted.
+ * @bprm_check_security:
+ * This hook mediates the point when a search for a binary handler will
+ * begin. It allows a check the @bprm->security value which is set in the
+ * preceding set_creds call. The primary difference from set_creds is
+ * that the argv list and envp list are reliably available in @bprm. This
+ * hook may be called multiple times during a single execve; and in each
+ * pass set_creds is called first.
+ * @bprm contains the linux_binprm structure.
+ * Return 0 if the hook is successful and permission is granted.
+ * @bprm_committing_creds:
+ * Prepare to install the new security attributes of a process being
+ * transformed by an execve operation, based on the old credentials
+ * pointed to by @current->cred and the information set in @bprm->cred by
+ * the bprm_set_creds hook. @bprm points to the linux_binprm structure.
+ * This hook is a good place to perform state changes on the process such
+ * as closing open file descriptors to which access will no longer be
+ * granted when the attributes are changed. This is called immediately
+ * before commit_creds().
+ * @bprm_committed_creds:
+ * Tidy up after the installation of the new security attributes of a
+ * process being transformed by an execve operation. The new credentials
+ * have, by this point, been set to @current->cred. @bprm points to the
+ * linux_binprm structure. This hook is a good place to perform state
+ * changes on the process such as clearing out non-inheritable signal
+ * state. This is called immediately after commit_creds().
+ * @bprm_secureexec:
+ * Return a boolean value (0 or 1) indicating whether a "secure exec"
+ * is required. The flag is passed in the auxiliary table
+ * on the initial stack to the ELF interpreter to indicate whether libc
+ * should enable secure mode.
+ * @bprm contains the linux_binprm structure.
+ *
+ * Security hooks for filesystem operations.
+ *
+ * @sb_alloc_security:
+ * Allocate and attach a security structure to the sb->s_security field.
+ * The s_security field is initialized to NULL when the structure is
+ * allocated.
+ * @sb contains the super_block structure to be modified.
+ * Return 0 if operation was successful.
+ * @sb_free_security:
+ * Deallocate and clear the sb->s_security field.
+ * @sb contains the super_block structure to be modified.
+ * @sb_statfs:
+ * Check permission before obtaining filesystem statistics for the @mnt
+ * mountpoint.
+ * @dentry is a handle on the superblock for the filesystem.
+ * Return 0 if permission is granted.
+ * @sb_mount:
+ * Check permission before an object specified by @dev_name is mounted on
+ * the mount point named by @nd. For an ordinary mount, @dev_name
+ * identifies a device if the file system type requires a device. For a
+ * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a
+ * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
+ * pathname of the object being mounted.
+ * @dev_name contains the name for object being mounted.
+ * @path contains the path for mount point object.
+ * @type contains the filesystem type.
+ * @flags contains the mount flags.
+ * @data contains the filesystem-specific data.
+ * Return 0 if permission is granted.
+ * @sb_copy_data:
+ * Allow mount option data to be copied prior to parsing by the filesystem,
+ * so that the security module can extract security-specific mount
+ * options cleanly (a filesystem may modify the data e.g. with strsep()).
+ * This also allows the original mount data to be stripped of security-
+ * specific options to avoid having to make filesystems aware of them.
+ * @type the type of filesystem being mounted.
+ * @orig the original mount data copied from userspace.
+ * @copy copied data which will be passed to the security module.
+ * Returns 0 if the copy was successful.
+ * @sb_remount:
+ * Extracts security system specific mount options and verifies no changes
+ * are being made to those options.
+ * @sb superblock being remounted
+ * @data contains the filesystem-specific data.
+ * Return 0 if permission is granted.
+ * @sb_umount:
+ * Check permission before the @mnt file system is unmounted.
+ * @mnt contains the mounted file system.
+ * @flags contains the unmount flags, e.g. MNT_FORCE.
+ * Return 0 if permission is granted.
+ * @sb_pivotroot:
+ * Check permission before pivoting the root filesystem.
+ * @old_path contains the path for the new location of the
+ * current root (put_old).
+ * @new_path contains the path for the new root (new_root).
+ * Return 0 if permission is granted.
+ * @sb_set_mnt_opts:
+ * Set the security relevant mount options used for a superblock
+ * @sb the superblock to set security mount options for
+ * @opts binary data structure containing all lsm mount data
+ * @sb_clone_mnt_opts:
+ * Copy all security options from a given superblock to another
+ * @oldsb old superblock which contain information to clone
+ * @newsb new superblock which needs filled in
+ * @sb_parse_opts_str:
+ * Parse a string of security data filling in the opts structure
+ * @options string containing all mount options known by the LSM
+ * @opts binary data structure usable by the LSM
+ * @dentry_init_security:
+ * Compute a context for a dentry as the inode is not yet available
+ * since NFSv4 has no label backed by an EA anyway.
+ * @dentry dentry to use in calculating the context.
+ * @mode mode used to determine resource type.
+ * @name name of the last path component used to create file
+ * @ctx pointer to place the pointer to the resulting context in.
+ * @ctxlen point to place the length of the resulting context.
+ *
+ *
+ * Security hooks for inode operations.
+ *
+ * @inode_alloc_security:
+ * Allocate and attach a security structure to @inode->i_security. The
+ * i_security field is initialized to NULL when the inode structure is
+ * allocated.
+ * @inode contains the inode structure.
+ * Return 0 if operation was successful.
+ * @inode_free_security:
+ * @inode contains the inode structure.
+ * Deallocate the inode security structure and set @inode->i_security to
+ * NULL.
+ * @inode_init_security:
+ * Obtain the security attribute name suffix and value to set on a newly
+ * created inode and set up the incore security field for the new inode.
+ * This hook is called by the fs code as part of the inode creation
+ * transaction and provides for atomic labeling of the inode, unlike
+ * the post_create/mkdir/... hooks called by the VFS. The hook function
+ * is expected to allocate the name and value via kmalloc, with the caller
+ * being responsible for calling kfree after using them.
+ * If the security module does not use security attributes or does
+ * not wish to put a security attribute on this particular inode,
+ * then it should return -EOPNOTSUPP to skip this processing.
+ * @inode contains the inode structure of the newly created inode.
+ * @dir contains the inode structure of the parent directory.
+ * @qstr contains the last path component of the new object
+ * @name will be set to the allocated name suffix (e.g. selinux).
+ * @value will be set to the allocated attribute value.
+ * @len will be set to the length of the value.
+ * Returns 0 if @name and @value have been successfully set,
+ * -EOPNOTSUPP if no security attribute is needed, or
+ * -ENOMEM on memory allocation failure.
+ * @inode_create:
+ * Check permission to create a regular file.
+ * @dir contains inode structure of the parent of the new file.
+ * @dentry contains the dentry structure for the file to be created.
+ * @mode contains the file mode of the file to be created.
+ * Return 0 if permission is granted.
+ * @inode_link:
+ * Check permission before creating a new hard link to a file.
+ * @old_dentry contains the dentry structure for an existing
+ * link to the file.
+ * @dir contains the inode structure of the parent directory
+ * of the new link.
+ * @new_dentry contains the dentry structure for the new link.
+ * Return 0 if permission is granted.
+ * @path_link:
+ * Check permission before creating a new hard link to a file.
+ * @old_dentry contains the dentry structure for an existing link
+ * to the file.
+ * @new_dir contains the path structure of the parent directory of
+ * the new link.
+ * @new_dentry contains the dentry structure for the new link.
+ * Return 0 if permission is granted.
+ * @inode_unlink:
+ * Check the permission to remove a hard link to a file.
+ * @dir contains the inode structure of parent directory of the file.
+ * @dentry contains the dentry structure for file to be unlinked.
+ * Return 0 if permission is granted.
+ * @path_unlink:
+ * Check the permission to remove a hard link to a file.
+ * @dir contains the path structure of parent directory of the file.
+ * @dentry contains the dentry structure for file to be unlinked.
+ * Return 0 if permission is granted.
+ * @inode_symlink:
+ * Check the permission to create a symbolic link to a file.
+ * @dir contains the inode structure of parent directory of
+ * the symbolic link.
+ * @dentry contains the dentry structure of the symbolic link.
+ * @old_name contains the pathname of file.
+ * Return 0 if permission is granted.
+ * @path_symlink:
+ * Check the permission to create a symbolic link to a file.
+ * @dir contains the path structure of parent directory of
+ * the symbolic link.
+ * @dentry contains the dentry structure of the symbolic link.
+ * @old_name contains the pathname of file.
+ * Return 0 if permission is granted.
+ * @inode_mkdir:
+ * Check permissions to create a new directory in the existing directory
+ * associated with inode structure @dir.
+ * @dir contains the inode structure of parent of the directory
+ * to be created.
+ * @dentry contains the dentry structure of new directory.
+ * @mode contains the mode of new directory.
+ * Return 0 if permission is granted.
+ * @path_mkdir:
+ * Check permissions to create a new directory in the existing directory
+ * associated with path structure @path.
+ * @dir contains the path structure of parent of the directory
+ * to be created.
+ * @dentry contains the dentry structure of new directory.
+ * @mode contains the mode of new directory.
+ * Return 0 if permission is granted.
+ * @inode_rmdir:
+ * Check the permission to remove a directory.
+ * @dir contains the inode structure of parent of the directory
+ * to be removed.
+ * @dentry contains the dentry structure of directory to be removed.
+ * Return 0 if permission is granted.
+ * @path_rmdir:
+ * Check the permission to remove a directory.
+ * @dir contains the path structure of parent of the directory to be
+ * removed.
+ * @dentry contains the dentry structure of directory to be removed.
+ * Return 0 if permission is granted.
+ * @inode_mknod:
+ * Check permissions when creating a special file (or a socket or a fifo
+ * file created via the mknod system call). Note that if mknod operation
+ * is being done for a regular file, then the create hook will be called
+ * and not this hook.
+ * @dir contains the inode structure of parent of the new file.
+ * @dentry contains the dentry structure of the new file.
+ * @mode contains the mode of the new file.
+ * @dev contains the device number.
+ * Return 0 if permission is granted.
+ * @path_mknod:
+ * Check permissions when creating a file. Note that this hook is called
+ * even if mknod operation is being done for a regular file.
+ * @dir contains the path structure of parent of the new file.
+ * @dentry contains the dentry structure of the new file.
+ * @mode contains the mode of the new file.
+ * @dev contains the undecoded device number. Use new_decode_dev() to get
+ * the decoded device number.
+ * Return 0 if permission is granted.
+ * @inode_rename:
+ * Check for permission to rename a file or directory.
+ * @old_dir contains the inode structure for parent of the old link.
+ * @old_dentry contains the dentry structure of the old link.
+ * @new_dir contains the inode structure for parent of the new link.
+ * @new_dentry contains the dentry structure of the new link.
+ * Return 0 if permission is granted.
+ * @path_rename:
+ * Check for permission to rename a file or directory.
+ * @old_dir contains the path structure for parent of the old link.
+ * @old_dentry contains the dentry structure of the old link.
+ * @new_dir contains the path structure for parent of the new link.
+ * @new_dentry contains the dentry structure of the new link.
+ * Return 0 if permission is granted.
+ * @path_chmod:
+ * Check for permission to change DAC's permission of a file or directory.
+ * @dentry contains the dentry structure.
+ * @mnt contains the vfsmnt structure.
+ * @mode contains DAC's mode.
+ * Return 0 if permission is granted.
+ * @path_chown:
+ * Check for permission to change owner/group of a file or directory.
+ * @path contains the path structure.
+ * @uid contains new owner's ID.
+ * @gid contains new group's ID.
+ * Return 0 if permission is granted.
+ * @path_chroot:
+ * Check for permission to change root directory.
+ * @path contains the path structure.
+ * Return 0 if permission is granted.
+ * @inode_readlink:
+ * Check the permission to read the symbolic link.
+ * @dentry contains the dentry structure for the file link.
+ * Return 0 if permission is granted.
+ * @inode_follow_link:
+ * Check permission to follow a symbolic link when looking up a pathname.
+ * @dentry contains the dentry structure for the link.
+ * @nd contains the nameidata structure for the parent directory.
+ * Return 0 if permission is granted.
+ * @inode_permission:
+ * Check permission before accessing an inode. This hook is called by the
+ * existing Linux permission function, so a security module can use it to
+ * provide additional checking for existing Linux permission checks.
+ * Notice that this hook is called when a file is opened (as well as many
+ * other operations), whereas the file_security_ops permission hook is
+ * called when the actual read/write operations are performed.
+ * @inode contains the inode structure to check.
+ * @mask contains the permission mask.
+ * Return 0 if permission is granted.
+ * @inode_setattr:
+ * Check permission before setting file attributes. Note that the kernel
+ * call to notify_change is performed from several locations, whenever
+ * file attributes change (such as when a file is truncated, chown/chmod
+ * operations, transferring disk quotas, etc).
+ * @dentry contains the dentry structure for the file.
+ * @attr is the iattr structure containing the new file attributes.
+ * Return 0 if permission is granted.
+ * @path_truncate:
+ * Check permission before truncating a file.
+ * @path contains the path structure for the file.
+ * Return 0 if permission is granted.
+ * @inode_getattr:
+ * Check permission before obtaining file attributes.
+ * @mnt is the vfsmount where the dentry was looked up
+ * @dentry contains the dentry structure for the file.
+ * Return 0 if permission is granted.
+ * @inode_setxattr:
+ * Check permission before setting the extended attributes
+ * @value identified by @name for @dentry.
+ * Return 0 if permission is granted.
+ * @inode_post_setxattr:
+ * Update inode security field after successful setxattr operation.
+ * @value identified by @name for @dentry.
+ * @inode_getxattr:
+ * Check permission before obtaining the extended attributes
+ * identified by @name for @dentry.
+ * Return 0 if permission is granted.
+ * @inode_listxattr:
+ * Check permission before obtaining the list of extended attribute
+ * names for @dentry.
+ * Return 0 if permission is granted.
+ * @inode_removexattr:
+ * Check permission before removing the extended attribute
+ * identified by @name for @dentry.
+ * Return 0 if permission is granted.
+ * @inode_getsecurity:
+ * Retrieve a copy of the extended attribute representation of the
+ * security label associated with @name for @inode via @buffer. Note that
+ * @name is the remainder of the attribute name after the security prefix
+ * has been removed. @alloc is used to specify of the call should return a
+ * value via the buffer or just the value length Return size of buffer on
+ * success.
+ * @inode_setsecurity:
+ * Set the security label associated with @name for @inode from the
+ * extended attribute value @value. @size indicates the size of the
+ * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
+ * Note that @name is the remainder of the attribute name after the
+ * security. prefix has been removed.
+ * Return 0 on success.
+ * @inode_listsecurity:
+ * Copy the extended attribute names for the security labels
+ * associated with @inode into @buffer. The maximum size of @buffer
+ * is specified by @buffer_size. @buffer may be NULL to request
+ * the size of the buffer required.
+ * Returns number of bytes used/required on success.
+ * @inode_need_killpriv:
+ * Called when an inode has been changed.
+ * @dentry is the dentry being changed.
+ * Return <0 on error to abort the inode change operation.
+ * Return 0 if inode_killpriv does not need to be called.
+ * Return >0 if inode_killpriv does need to be called.
+ * @inode_killpriv:
+ * The setuid bit is being removed. Remove similar security labels.
+ * Called with the dentry->d_inode->i_mutex held.
+ * @dentry is the dentry being changed.
+ * Return 0 on success. If error is returned, then the operation
+ * causing setuid bit removal is failed.
+ * @inode_getsecid:
+ * Get the secid associated with the node.
+ * @inode contains a pointer to the inode.
+ * @secid contains a pointer to the location where result will be saved.
+ * In case of failure, @secid will be set to zero.
+ *
+ * Security hooks for file operations
+ *
+ * @file_permission:
+ * Check file permissions before accessing an open file. This hook is
+ * called by various operations that read or write files. A security
+ * module can use this hook to perform additional checking on these
+ * operations, e.g. to revalidate permissions on use to support privilege
+ * bracketing or policy changes. Notice that this hook is used when the
+ * actual read/write operations are performed, whereas the
+ * inode_security_ops hook is called when a file is opened (as well as
+ * many other operations).
+ * Caveat: Although this hook can be used to revalidate permissions for
+ * various system call operations that read or write files, it does not
+ * address the revalidation of permissions for memory-mapped files.
+ * Security modules must handle this separately if they need such
+ * revalidation.
+ * @file contains the file structure being accessed.
+ * @mask contains the requested permissions.
+ * Return 0 if permission is granted.
+ * @file_alloc_security:
+ * Allocate and attach a security structure to the file->f_security field.
+ * The security field is initialized to NULL when the structure is first
+ * created.
+ * @file contains the file structure to secure.
+ * Return 0 if the hook is successful and permission is granted.
+ * @file_free_security:
+ * Deallocate and free any security structures stored in file->f_security.
+ * @file contains the file structure being modified.
+ * @file_ioctl:
+ * @file contains the file structure.
+ * @cmd contains the operation to perform.
+ * @arg contains the operational arguments.
+ * Check permission for an ioctl operation on @file. Note that @arg
+ * sometimes represents a user space pointer; in other cases, it may be a
+ * simple integer value. When @arg represents a user space pointer, it
+ * should never be used by the security module.
+ * Return 0 if permission is granted.
+ * @mmap_addr :
+ * Check permissions for a mmap operation at @addr.
+ * @addr contains virtual address that will be used for the operation.
+ * Return 0 if permission is granted.
+ * @mmap_file :
+ * Check permissions for a mmap operation. The @file may be NULL, e.g.
+ * if mapping anonymous memory.
+ * @file contains the file structure for file to map (may be NULL).
+ * @reqprot contains the protection requested by the application.
+ * @prot contains the protection that will be applied by the kernel.
+ * @flags contains the operational flags.
+ * Return 0 if permission is granted.
+ * @file_mprotect:
+ * Check permissions before changing memory access permissions.
+ * @vma contains the memory region to modify.
+ * @reqprot contains the protection requested by the application.
+ * @prot contains the protection that will be applied by the kernel.
+ * Return 0 if permission is granted.
+ * @file_lock:
+ * Check permission before performing file locking operations.
+ * Note: this hook mediates both flock and fcntl style locks.
+ * @file contains the file structure.
+ * @cmd contains the posix-translated lock operation to perform
+ * (e.g. F_RDLCK, F_WRLCK).
+ * Return 0 if permission is granted.
+ * @file_fcntl:
+ * Check permission before allowing the file operation specified by @cmd
+ * from being performed on the file @file. Note that @arg sometimes
+ * represents a user space pointer; in other cases, it may be a simple
+ * integer value. When @arg represents a user space pointer, it should
+ * never be used by the security module.
+ * @file contains the file structure.
+ * @cmd contains the operation to be performed.
+ * @arg contains the operational arguments.
+ * Return 0 if permission is granted.
+ * @file_set_fowner:
+ * Save owner security information (typically from current->security) in
+ * file->f_security for later use by the send_sigiotask hook.
+ * @file contains the file structure to update.
+ * Return 0 on success.
+ * @file_send_sigiotask:
+ * Check permission for the file owner @fown to send SIGIO or SIGURG to the
+ * process @tsk. Note that this hook is sometimes called from interrupt.
+ * Note that the fown_struct, @fown, is never outside the context of a
+ * struct file, so the file structure (and associated security information)
+ * can always be obtained:
+ * container_of(fown, struct file, f_owner)
+ * @tsk contains the structure of task receiving signal.
+ * @fown contains the file owner information.
+ * @sig is the signal that will be sent. When 0, kernel sends SIGIO.
+ * Return 0 if permission is granted.
+ * @file_receive:
+ * This hook allows security modules to control the ability of a process
+ * to receive an open file descriptor via socket IPC.
+ * @file contains the file structure being received.
+ * Return 0 if permission is granted.
+ * @file_open
+ * Save open-time permission checking state for later use upon
+ * file_permission, and recheck access if anything has changed
+ * since inode_permission.
+ *
+ * Security hooks for task operations.
+ *
+ * @task_create:
+ * Check permission before creating a child process. See the clone(2)
+ * manual page for definitions of the @clone_flags.
+ * @clone_flags contains the flags indicating what should be shared.
+ * Return 0 if permission is granted.
+ * @task_free:
+ * @task task being freed
+ * Handle release of task-related resources. (Note that this can be called
+ * from interrupt context.)
+ * @cred_alloc_blank:
+ * @cred points to the credentials.
+ * @gfp indicates the atomicity of any memory allocations.
+ * Only allocate sufficient memory and attach to @cred such that
+ * cred_transfer() will not get ENOMEM.
+ * @cred_free:
+ * @cred points to the credentials.
+ * Deallocate and clear the cred->security field in a set of credentials.
+ * @cred_prepare:
+ * @new points to the new credentials.
+ * @old points to the original credentials.
+ * @gfp indicates the atomicity of any memory allocations.
+ * Prepare a new set of credentials by copying the data from the old set.
+ * @cred_transfer:
+ * @new points to the new credentials.
+ * @old points to the original credentials.
+ * Transfer data from original creds to new creds
+ * @kernel_act_as:
+ * Set the credentials for a kernel service to act as (subjective context).
+ * @new points to the credentials to be modified.
+ * @secid specifies the security ID to be set
+ * The current task must be the one that nominated @secid.
+ * Return 0 if successful.
+ * @kernel_create_files_as:
+ * Set the file creation context in a set of credentials to be the same as
+ * the objective context of the specified inode.
+ * @new points to the credentials to be modified.
+ * @inode points to the inode to use as a reference.
+ * The current task must be the one that nominated @inode.
+ * Return 0 if successful.
+ * @kernel_fw_from_file:
+ * Load firmware from userspace (not called for built-in firmware).
+ * @file contains the file structure pointing to the file containing
+ * the firmware to load. This argument will be NULL if the firmware
+ * was loaded via the uevent-triggered blob-based interface exposed
+ * by CONFIG_FW_LOADER_USER_HELPER.
+ * @buf pointer to buffer containing firmware contents.
+ * @size length of the firmware contents.
+ * Return 0 if permission is granted.
+ * @kernel_module_request:
+ * Ability to trigger the kernel to automatically upcall to userspace for
+ * userspace to load a kernel module with the given name.
+ * @kmod_name name of the module requested by the kernel
+ * Return 0 if successful.
+ * @kernel_module_from_file:
+ * Load a kernel module from userspace.
+ * @file contains the file structure pointing to the file containing
+ * the kernel module to load. If the module is being loaded from a blob,
+ * this argument will be NULL.
+ * Return 0 if permission is granted.
+ * @task_fix_setuid:
+ * Update the module's state after setting one or more of the user
+ * identity attributes of the current process. The @flags parameter
+ * indicates which of the set*uid system calls invoked this hook. If
+ * @new is the set of credentials that will be installed. Modifications
+ * should be made to this rather than to @current->cred.
+ * @old is the set of credentials that are being replaces
+ * @flags contains one of the LSM_SETID_* values.
+ * Return 0 on success.
+ * @task_setpgid:
+ * Check permission before setting the process group identifier of the
+ * process @p to @pgid.
+ * @p contains the task_struct for process being modified.
+ * @pgid contains the new pgid.
+ * Return 0 if permission is granted.
+ * @task_getpgid:
+ * Check permission before getting the process group identifier of the
+ * process @p.
+ * @p contains the task_struct for the process.
+ * Return 0 if permission is granted.
+ * @task_getsid:
+ * Check permission before getting the session identifier of the process
+ * @p.
+ * @p contains the task_struct for the process.
+ * Return 0 if permission is granted.
+ * @task_getsecid:
+ * Retrieve the security identifier of the process @p.
+ * @p contains the task_struct for the process and place is into @secid.
+ * In case of failure, @secid will be set to zero.
+ *
+ * @task_setnice:
+ * Check permission before setting the nice value of @p to @nice.
+ * @p contains the task_struct of process.
+ * @nice contains the new nice value.
+ * Return 0 if permission is granted.
+ * @task_setioprio
+ * Check permission before setting the ioprio value of @p to @ioprio.
+ * @p contains the task_struct of process.
+ * @ioprio contains the new ioprio value
+ * Return 0 if permission is granted.
+ * @task_getioprio
+ * Check permission before getting the ioprio value of @p.
+ * @p contains the task_struct of process.
+ * Return 0 if permission is granted.
+ * @task_setrlimit:
+ * Check permission before setting the resource limits of the current
+ * process for @resource to @new_rlim. The old resource limit values can
+ * be examined by dereferencing (current->signal->rlim + resource).
+ * @resource contains the resource whose limit is being set.
+ * @new_rlim contains the new limits for @resource.
+ * Return 0 if permission is granted.
+ * @task_setscheduler:
+ * Check permission before setting scheduling policy and/or parameters of
+ * process @p based on @policy and @lp.
+ * @p contains the task_struct for process.
+ * @policy contains the scheduling policy.
+ * @lp contains the scheduling parameters.
+ * Return 0 if permission is granted.
+ * @task_getscheduler:
+ * Check permission before obtaining scheduling information for process
+ * @p.
+ * @p contains the task_struct for process.
+ * Return 0 if permission is granted.
+ * @task_movememory
+ * Check permission before moving memory owned by process @p.
+ * @p contains the task_struct for process.
+ * Return 0 if permission is granted.
+ * @task_kill:
+ * Check permission before sending signal @sig to @p. @info can be NULL,
+ * the constant 1, or a pointer to a siginfo structure. If @info is 1 or
+ * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
+ * from the kernel and should typically be permitted.
+ * SIGIO signals are handled separately by the send_sigiotask hook in
+ * file_security_ops.
+ * @p contains the task_struct for process.
+ * @info contains the signal information.
+ * @sig contains the signal value.
+ * @secid contains the sid of the process where the signal originated
+ * Return 0 if permission is granted.
+ * @task_wait:
+ * Check permission before allowing a process to reap a child process @p
+ * and collect its status information.
+ * @p contains the task_struct for process.
+ * Return 0 if permission is granted.
+ * @task_prctl:
+ * Check permission before performing a process control operation on the
+ * current process.
+ * @option contains the operation.
+ * @arg2 contains a argument.
+ * @arg3 contains a argument.
+ * @arg4 contains a argument.
+ * @arg5 contains a argument.
+ * Return -ENOSYS if no-one wanted to handle this op, any other value to
+ * cause prctl() to return immediately with that value.
+ * @task_to_inode:
+ * Set the security attributes for an inode based on an associated task's
+ * security attributes, e.g. for /proc/pid inodes.
+ * @p contains the task_struct for the task.
+ * @inode contains the inode structure for the inode.
+ *
+ * Security hooks for Netlink messaging.
+ *
+ * @netlink_send:
+ * Save security information for a netlink message so that permission
+ * checking can be performed when the message is processed. The security
+ * information can be saved using the eff_cap field of the
+ * netlink_skb_parms structure. Also may be used to provide fine
+ * grained control over message transmission.
+ * @sk associated sock of task sending the message.
+ * @skb contains the sk_buff structure for the netlink message.
+ * Return 0 if the information was successfully saved and message
+ * is allowed to be transmitted.
+ *
+ * Security hooks for Unix domain networking.
+ *
+ * @unix_stream_connect:
+ * Check permissions before establishing a Unix domain stream connection
+ * between @sock and @other.
+ * @sock contains the sock structure.
+ * @other contains the peer sock structure.
+ * @newsk contains the new sock structure.
+ * Return 0 if permission is granted.
+ * @unix_may_send:
+ * Check permissions before connecting or sending datagrams from @sock to
+ * @other.
+ * @sock contains the socket structure.
+ * @other contains the peer socket structure.
+ * Return 0 if permission is granted.
+ *
+ * The @unix_stream_connect and @unix_may_send hooks were necessary because
+ * Linux provides an alternative to the conventional file name space for Unix
+ * domain sockets. Whereas binding and connecting to sockets in the file name
+ * space is mediated by the typical file permissions (and caught by the mknod
+ * and permission hooks in inode_security_ops), binding and connecting to
+ * sockets in the abstract name space is completely unmediated. Sufficient
+ * control of Unix domain sockets in the abstract name space isn't possible
+ * using only the socket layer hooks, since we need to know the actual target
+ * socket, which is not looked up until we are inside the af_unix code.
+ *
+ * Security hooks for socket operations.
+ *
+ * @socket_create:
+ * Check permissions prior to creating a new socket.
+ * @family contains the requested protocol family.
+ * @type contains the requested communications type.
+ * @protocol contains the requested protocol.
+ * @kern set to 1 if a kernel socket.
+ * Return 0 if permission is granted.
+ * @socket_post_create:
+ * This hook allows a module to update or allocate a per-socket security
+ * structure. Note that the security field was not added directly to the
+ * socket structure, but rather, the socket security information is stored
+ * in the associated inode. Typically, the inode alloc_security hook will
+ * allocate and and attach security information to
+ * sock->inode->i_security. This hook may be used to update the
+ * sock->inode->i_security field with additional information that wasn't
+ * available when the inode was allocated.
+ * @sock contains the newly created socket structure.
+ * @family contains the requested protocol family.
+ * @type contains the requested communications type.
+ * @protocol contains the requested protocol.
+ * @kern set to 1 if a kernel socket.
+ * @socket_bind:
+ * Check permission before socket protocol layer bind operation is
+ * performed and the socket @sock is bound to the address specified in the
+ * @address parameter.
+ * @sock contains the socket structure.
+ * @address contains the address to bind to.
+ * @addrlen contains the length of address.
+ * Return 0 if permission is granted.
+ * @socket_connect:
+ * Check permission before socket protocol layer connect operation
+ * attempts to connect socket @sock to a remote address, @address.
+ * @sock contains the socket structure.
+ * @address contains the address of remote endpoint.
+ * @addrlen contains the length of address.
+ * Return 0 if permission is granted.
+ * @socket_listen:
+ * Check permission before socket protocol layer listen operation.
+ * @sock contains the socket structure.
+ * @backlog contains the maximum length for the pending connection queue.
+ * Return 0 if permission is granted.
+ * @socket_accept:
+ * Check permission before accepting a new connection. Note that the new
+ * socket, @newsock, has been created and some information copied to it,
+ * but the accept operation has not actually been performed.
+ * @sock contains the listening socket structure.
+ * @newsock contains the newly created server socket for connection.
+ * Return 0 if permission is granted.
+ * @socket_sendmsg:
+ * Check permission before transmitting a message to another socket.
+ * @sock contains the socket structure.
+ * @msg contains the message to be transmitted.
+ * @size contains the size of message.
+ * Return 0 if permission is granted.
+ * @socket_recvmsg:
+ * Check permission before receiving a message from a socket.
+ * @sock contains the socket structure.
+ * @msg contains the message structure.
+ * @size contains the size of message structure.
+ * @flags contains the operational flags.
+ * Return 0 if permission is granted.
+ * @socket_getsockname:
+ * Check permission before the local address (name) of the socket object
+ * @sock is retrieved.
+ * @sock contains the socket structure.
+ * Return 0 if permission is granted.
+ * @socket_getpeername:
+ * Check permission before the remote address (name) of a socket object
+ * @sock is retrieved.
+ * @sock contains the socket structure.
+ * Return 0 if permission is granted.
+ * @socket_getsockopt:
+ * Check permissions before retrieving the options associated with socket
+ * @sock.
+ * @sock contains the socket structure.
+ * @level contains the protocol level to retrieve option from.
+ * @optname contains the name of option to retrieve.
+ * Return 0 if permission is granted.
+ * @socket_setsockopt:
+ * Check permissions before setting the options associated with socket
+ * @sock.
+ * @sock contains the socket structure.
+ * @level contains the protocol level to set options for.
+ * @optname contains the name of the option to set.
+ * Return 0 if permission is granted.
+ * @socket_shutdown:
+ * Checks permission before all or part of a connection on the socket
+ * @sock is shut down.
+ * @sock contains the socket structure.
+ * @how contains the flag indicating how future sends and receives
+ * are handled.
+ * Return 0 if permission is granted.
+ * @socket_sock_rcv_skb:
+ * Check permissions on incoming network packets. This hook is distinct
+ * from Netfilter's IP input hooks since it is the first time that the
+ * incoming sk_buff @skb has been associated with a particular socket, @sk.
+ * Must not sleep inside this hook because some callers hold spinlocks.
+ * @sk contains the sock (not socket) associated with the incoming sk_buff.
+ * @skb contains the incoming network data.
+ * @socket_getpeersec_stream:
+ * This hook allows the security module to provide peer socket security
+ * state for unix or connected tcp sockets to userspace via getsockopt
+ * SO_GETPEERSEC. For tcp sockets this can be meaningful if the
+ * socket is associated with an ipsec SA.
+ * @sock is the local socket.
+ * @optval userspace memory where the security state is to be copied.
+ * @optlen userspace int where the module should copy the actual length
+ * of the security state.
+ * @len as input is the maximum length to copy to userspace provided
+ * by the caller.
+ * Return 0 if all is well, otherwise, typical getsockopt return
+ * values.
+ * @socket_getpeersec_dgram:
+ * This hook allows the security module to provide peer socket security
+ * state for udp sockets on a per-packet basis to userspace via
+ * getsockopt SO_GETPEERSEC. The application must first have indicated
+ * the IP_PASSSEC option via getsockopt. It can then retrieve the
+ * security state returned by this hook for a packet via the SCM_SECURITY
+ * ancillary message type.
+ * @skb is the skbuff for the packet being queried
+ * @secdata is a pointer to a buffer in which to copy the security data
+ * @seclen is the maximum length for @secdata
+ * Return 0 on success, error on failure.
+ * @sk_alloc_security:
+ * Allocate and attach a security structure to the sk->sk_security field,
+ * which is used to copy security attributes between local stream sockets.
+ * @sk_free_security:
+ * Deallocate security structure.
+ * @sk_clone_security:
+ * Clone/copy security structure.
+ * @sk_getsecid:
+ * Retrieve the LSM-specific secid for the sock to enable caching
+ * of network authorizations.
+ * @sock_graft:
+ * Sets the socket's isec sid to the sock's sid.
+ * @inet_conn_request:
+ * Sets the openreq's sid to socket's sid with MLS portion taken
+ * from peer sid.
+ * @inet_csk_clone:
+ * Sets the new child socket's sid to the openreq sid.
+ * @inet_conn_established:
+ * Sets the connection's peersid to the secmark on skb.
+ * @secmark_relabel_packet:
+ * check if the process should be allowed to relabel packets to
+ * the given secid
+ * @security_secmark_refcount_inc
+ * tells the LSM to increment the number of secmark labeling rules loaded
+ * @security_secmark_refcount_dec
+ * tells the LSM to decrement the number of secmark labeling rules loaded
+ * @req_classify_flow:
+ * Sets the flow's sid to the openreq sid.
+ * @tun_dev_alloc_security:
+ * This hook allows a module to allocate a security structure for a TUN
+ * device.
+ * @security pointer to a security structure pointer.
+ * Returns a zero on success, negative values on failure.
+ * @tun_dev_free_security:
+ * This hook allows a module to free the security structure for a TUN
+ * device.
+ * @security pointer to the TUN device's security structure
+ * @tun_dev_create:
+ * Check permissions prior to creating a new TUN device.
+ * @tun_dev_attach_queue:
+ * Check permissions prior to attaching to a TUN device queue.
+ * @security pointer to the TUN device's security structure.
+ * @tun_dev_attach:
+ * This hook can be used by the module to update any security state
+ * associated with the TUN device's sock structure.
+ * @sk contains the existing sock structure.
+ * @security pointer to the TUN device's security structure.
+ * @tun_dev_open:
+ * This hook can be used by the module to update any security state
+ * associated with the TUN device's security structure.
+ * @security pointer to the TUN devices's security structure.
+ *
+ * Security hooks for XFRM operations.
+ *
+ * @xfrm_policy_alloc_security:
+ * @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy
+ * Database used by the XFRM system.
+ * @sec_ctx contains the security context information being provided by
+ * the user-level policy update program (e.g., setkey).
+ * Allocate a security structure to the xp->security field; the security
+ * field is initialized to NULL when the xfrm_policy is allocated.
+ * Return 0 if operation was successful (memory to allocate, legal context)
+ * @gfp is to specify the context for the allocation
+ * @xfrm_policy_clone_security:
+ * @old_ctx contains an existing xfrm_sec_ctx.
+ * @new_ctxp contains a new xfrm_sec_ctx being cloned from old.
+ * Allocate a security structure in new_ctxp that contains the
+ * information from the old_ctx structure.
+ * Return 0 if operation was successful (memory to allocate).
+ * @xfrm_policy_free_security:
+ * @ctx contains the xfrm_sec_ctx
+ * Deallocate xp->security.
+ * @xfrm_policy_delete_security:
+ * @ctx contains the xfrm_sec_ctx.
+ * Authorize deletion of xp->security.
+ * @xfrm_state_alloc:
+ * @x contains the xfrm_state being added to the Security Association
+ * Database by the XFRM system.
+ * @sec_ctx contains the security context information being provided by
+ * the user-level SA generation program (e.g., setkey or racoon).
+ * Allocate a security structure to the x->security field; the security
+ * field is initialized to NULL when the xfrm_state is allocated. Set the
+ * context to correspond to sec_ctx. Return 0 if operation was successful
+ * (memory to allocate, legal context).
+ * @xfrm_state_alloc_acquire:
+ * @x contains the xfrm_state being added to the Security Association
+ * Database by the XFRM system.
+ * @polsec contains the policy's security context.
+ * @secid contains the secid from which to take the mls portion of the
+ * context.
+ * Allocate a security structure to the x->security field; the security
+ * field is initialized to NULL when the xfrm_state is allocated. Set the
+ * context to correspond to secid. Return 0 if operation was successful
+ * (memory to allocate, legal context).
+ * @xfrm_state_free_security:
+ * @x contains the xfrm_state.
+ * Deallocate x->security.
+ * @xfrm_state_delete_security:
+ * @x contains the xfrm_state.
+ * Authorize deletion of x->security.
+ * @xfrm_policy_lookup:
+ * @ctx contains the xfrm_sec_ctx for which the access control is being
+ * checked.
+ * @fl_secid contains the flow security label that is used to authorize
+ * access to the policy xp.
+ * @dir contains the direction of the flow (input or output).
+ * Check permission when a flow selects a xfrm_policy for processing
+ * XFRMs on a packet. The hook is called when selecting either a
+ * per-socket policy or a generic xfrm policy.
+ * Return 0 if permission is granted, -ESRCH otherwise, or -errno
+ * on other errors.
+ * @xfrm_state_pol_flow_match:
+ * @x contains the state to match.
+ * @xp contains the policy to check for a match.
+ * @fl contains the flow to check for a match.
+ * Return 1 if there is a match.
+ * @xfrm_decode_session:
+ * @skb points to skb to decode.
+ * @secid points to the flow key secid to set.
+ * @ckall says if all xfrms used should be checked for same secid.
+ * Return 0 if ckall is zero or all xfrms used have the same secid.
+ *
+ * Security hooks affecting all Key Management operations
+ *
+ * @key_alloc:
+ * Permit allocation of a key and assign security data. Note that key does
+ * not have a serial number assigned at this point.
+ * @key points to the key.
+ * @flags is the allocation flags
+ * Return 0 if permission is granted, -ve error otherwise.
+ * @key_free:
+ * Notification of destruction; free security data.
+ * @key points to the key.
+ * No return value.
+ * @key_permission:
+ * See whether a specific operational right is granted to a process on a
+ * key.
+ * @key_ref refers to the key (key pointer + possession attribute bit).
+ * @cred points to the credentials to provide the context against which to
+ * evaluate the security data on the key.
+ * @perm describes the combination of permissions required of this key.
+ * Return 0 if permission is granted, -ve error otherwise.
+ * @key_getsecurity:
+ * Get a textual representation of the security context attached to a key
+ * for the purposes of honouring KEYCTL_GETSECURITY. This function
+ * allocates the storage for the NUL-terminated string and the caller
+ * should free it.
+ * @key points to the key to be queried.
+ * @_buffer points to a pointer that should be set to point to the
+ * resulting string (if no label or an error occurs).
+ * Return the length of the string (including terminating NUL) or -ve if
+ * an error.
+ * May also return 0 (and a NULL buffer pointer) if there is no label.
+ *
+ * Security hooks affecting all System V IPC operations.
+ *
+ * @ipc_permission:
+ * Check permissions for access to IPC
+ * @ipcp contains the kernel IPC permission structure
+ * @flag contains the desired (requested) permission set
+ * Return 0 if permission is granted.
+ * @ipc_getsecid:
+ * Get the secid associated with the ipc object.
+ * @ipcp contains the kernel IPC permission structure.
+ * @secid contains a pointer to the location where result will be saved.
+ * In case of failure, @secid will be set to zero.
+ *
+ * Security hooks for individual messages held in System V IPC message queues
+ * @msg_msg_alloc_security:
+ * Allocate and attach a security structure to the msg->security field.
+ * The security field is initialized to NULL when the structure is first
+ * created.
+ * @msg contains the message structure to be modified.
+ * Return 0 if operation was successful and permission is granted.
+ * @msg_msg_free_security:
+ * Deallocate the security structure for this message.
+ * @msg contains the message structure to be modified.
+ *
+ * Security hooks for System V IPC Message Queues
+ *
+ * @msg_queue_alloc_security:
+ * Allocate and attach a security structure to the
+ * msq->q_perm.security field. The security field is initialized to
+ * NULL when the structure is first created.
+ * @msq contains the message queue structure to be modified.
+ * Return 0 if operation was successful and permission is granted.
+ * @msg_queue_free_security:
+ * Deallocate security structure for this message queue.
+ * @msq contains the message queue structure to be modified.
+ * @msg_queue_associate:
+ * Check permission when a message queue is requested through the
+ * msgget system call. This hook is only called when returning the
+ * message queue identifier for an existing message queue, not when a
+ * new message queue is created.
+ * @msq contains the message queue to act upon.
+ * @msqflg contains the operation control flags.
+ * Return 0 if permission is granted.
+ * @msg_queue_msgctl:
+ * Check permission when a message control operation specified by @cmd
+ * is to be performed on the message queue @msq.
+ * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
+ * @msq contains the message queue to act upon. May be NULL.
+ * @cmd contains the operation to be performed.
+ * Return 0 if permission is granted.
+ * @msg_queue_msgsnd:
+ * Check permission before a message, @msg, is enqueued on the message
+ * queue, @msq.
+ * @msq contains the message queue to send message to.
+ * @msg contains the message to be enqueued.
+ * @msqflg contains operational flags.
+ * Return 0 if permission is granted.
+ * @msg_queue_msgrcv:
+ * Check permission before a message, @msg, is removed from the message
+ * queue, @msq. The @target task structure contains a pointer to the
+ * process that will be receiving the message (not equal to the current
+ * process when inline receives are being performed).
+ * @msq contains the message queue to retrieve message from.
+ * @msg contains the message destination.
+ * @target contains the task structure for recipient process.
+ * @type contains the type of message requested.
+ * @mode contains the operational flags.
+ * Return 0 if permission is granted.
+ *
+ * Security hooks for System V Shared Memory Segments
+ *
+ * @shm_alloc_security:
+ * Allocate and attach a security structure to the shp->shm_perm.security
+ * field. The security field is initialized to NULL when the structure is
+ * first created.
+ * @shp contains the shared memory structure to be modified.
+ * Return 0 if operation was successful and permission is granted.
+ * @shm_free_security:
+ * Deallocate the security struct for this memory segment.
+ * @shp contains the shared memory structure to be modified.
+ * @shm_associate:
+ * Check permission when a shared memory region is requested through the
+ * shmget system call. This hook is only called when returning the shared
+ * memory region identifier for an existing region, not when a new shared
+ * memory region is created.
+ * @shp contains the shared memory structure to be modified.
+ * @shmflg contains the operation control flags.
+ * Return 0 if permission is granted.
+ * @shm_shmctl:
+ * Check permission when a shared memory control operation specified by
+ * @cmd is to be performed on the shared memory region @shp.
+ * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
+ * @shp contains shared memory structure to be modified.
+ * @cmd contains the operation to be performed.
+ * Return 0 if permission is granted.
+ * @shm_shmat:
+ * Check permissions prior to allowing the shmat system call to attach the
+ * shared memory segment @shp to the data segment of the calling process.
+ * The attaching address is specified by @shmaddr.
+ * @shp contains the shared memory structure to be modified.
+ * @shmaddr contains the address to attach memory region to.
+ * @shmflg contains the operational flags.
+ * Return 0 if permission is granted.
+ *
+ * Security hooks for System V Semaphores
+ *
+ * @sem_alloc_security:
+ * Allocate and attach a security structure to the sma->sem_perm.security
+ * field. The security field is initialized to NULL when the structure is
+ * first created.
+ * @sma contains the semaphore structure
+ * Return 0 if operation was successful and permission is granted.
+ * @sem_free_security:
+ * deallocate security struct for this semaphore
+ * @sma contains the semaphore structure.
+ * @sem_associate:
+ * Check permission when a semaphore is requested through the semget
+ * system call. This hook is only called when returning the semaphore
+ * identifier for an existing semaphore, not when a new one must be
+ * created.
+ * @sma contains the semaphore structure.
+ * @semflg contains the operation control flags.
+ * Return 0 if permission is granted.
+ * @sem_semctl:
+ * Check permission when a semaphore operation specified by @cmd is to be
+ * performed on the semaphore @sma. The @sma may be NULL, e.g. for
+ * IPC_INFO or SEM_INFO.
+ * @sma contains the semaphore structure. May be NULL.
+ * @cmd contains the operation to be performed.
+ * Return 0 if permission is granted.
+ * @sem_semop
+ * Check permissions before performing operations on members of the
+ * semaphore set @sma. If the @alter flag is nonzero, the semaphore set
+ * may be modified.
+ * @sma contains the semaphore structure.
+ * @sops contains the operations to perform.
+ * @nsops contains the number of operations to perform.
+ * @alter contains the flag indicating whether changes are to be made.
+ * Return 0 if permission is granted.
+ *
+ * @binder_set_context_mgr
+ * Check whether @mgr is allowed to be the binder context manager.
+ * @mgr contains the task_struct for the task being registered.
+ * Return 0 if permission is granted.
+ * @binder_transaction
+ * Check whether @from is allowed to invoke a binder transaction call
+ * to @to.
+ * @from contains the task_struct for the sending task.
+ * @to contains the task_struct for the receiving task.
+ * @binder_transfer_binder
+ * Check whether @from is allowed to transfer a binder reference to @to.
+ * @from contains the task_struct for the sending task.
+ * @to contains the task_struct for the receiving task.
+ * @binder_transfer_file
+ * Check whether @from is allowed to transfer @file to @to.
+ * @from contains the task_struct for the sending task.
+ * @file contains the struct file being transferred.
+ * @to contains the task_struct for the receiving task.
+ *
+ * @ptrace_access_check:
+ * Check permission before allowing the current process to trace the
+ * @child process.
+ * Security modules may also want to perform a process tracing check
+ * during an execve in the set_security or apply_creds hooks of
+ * tracing check during an execve in the bprm_set_creds hook of
+ * binprm_security_ops if the process is being traced and its security
+ * attributes would be changed by the execve.
+ * @child contains the task_struct structure for the target process.
+ * @mode contains the PTRACE_MODE flags indicating the form of access.
+ * Return 0 if permission is granted.
+ * @ptrace_traceme:
+ * Check that the @parent process has sufficient permission to trace the
+ * current process before allowing the current process to present itself
+ * to the @parent process for tracing.
+ * @parent contains the task_struct structure for debugger process.
+ * Return 0 if permission is granted.
+ * @capget:
+ * Get the @effective, @inheritable, and @permitted capability sets for
+ * the @target process. The hook may also perform permission checking to
+ * determine if the current process is allowed to see the capability sets
+ * of the @target process.
+ * @target contains the task_struct structure for target process.
+ * @effective contains the effective capability set.
+ * @inheritable contains the inheritable capability set.
+ * @permitted contains the permitted capability set.
+ * Return 0 if the capability sets were successfully obtained.
+ * @capset:
+ * Set the @effective, @inheritable, and @permitted capability sets for
+ * the current process.
+ * @new contains the new credentials structure for target process.
+ * @old contains the current credentials structure for target process.
+ * @effective contains the effective capability set.
+ * @inheritable contains the inheritable capability set.
+ * @permitted contains the permitted capability set.
+ * Return 0 and update @new if permission is granted.
+ * @capable:
+ * Check whether the @tsk process has the @cap capability in the indicated
+ * credentials.
+ * @cred contains the credentials to use.
+ * @ns contains the user namespace we want the capability in
+ * @cap contains the capability <include/linux/capability.h>.
+ * @audit: Whether to write an audit message or not
+ * Return 0 if the capability is granted for @tsk.
+ * @syslog:
+ * Check permission before accessing the kernel message ring or changing
+ * logging to the console.
+ * See the syslog(2) manual page for an explanation of the @type values.
+ * @type contains the type of action.
+ * @from_file indicates the context of action (if it came from /proc).
+ * Return 0 if permission is granted.
+ * @settime:
+ * Check permission to change the system time.
+ * struct timespec and timezone are defined in include/linux/time.h
+ * @ts contains new time
+ * @tz contains new timezone
+ * Return 0 if permission is granted.
+ * @vm_enough_memory:
+ * Check permissions for allocating a new virtual mapping.
+ * @mm contains the mm struct it is being added to.
+ * @pages contains the number of pages.
+ * Return 0 if permission is granted.
+ *
+ * @ismaclabel:
+ * Check if the extended attribute specified by @name
+ * represents a MAC label. Returns 1 if name is a MAC
+ * attribute otherwise returns 0.
+ * @name full extended attribute name to check against
+ * LSM as a MAC label.
+ *
+ * @secid_to_secctx:
+ * Convert secid to security context. If secdata is NULL the length of
+ * the result will be returned in seclen, but no secdata will be returned.
+ * This does mean that the length could change between calls to check the
+ * length and the next call which actually allocates and returns the
+ * secdata.
+ * @secid contains the security ID.
+ * @secdata contains the pointer that stores the converted security
+ * context.
+ * @seclen pointer which contains the length of the data
+ * @secctx_to_secid:
+ * Convert security context to secid.
+ * @secid contains the pointer to the generated security ID.
+ * @secdata contains the security context.
+ *
+ * @release_secctx:
+ * Release the security context.
+ * @secdata contains the security context.
+ * @seclen contains the length of the security context.
+ *
+ * Security hooks for Audit
+ *
+ * @audit_rule_init:
+ * Allocate and initialize an LSM audit rule structure.
+ * @field contains the required Audit action.
+ * Fields flags are defined in include/linux/audit.h
+ * @op contains the operator the rule uses.
+ * @rulestr contains the context where the rule will be applied to.
+ * @lsmrule contains a pointer to receive the result.
+ * Return 0 if @lsmrule has been successfully set,
+ * -EINVAL in case of an invalid rule.
+ *
+ * @audit_rule_known:
+ * Specifies whether given @rule contains any fields related to
+ * current LSM.
+ * @rule contains the audit rule of interest.
+ * Return 1 in case of relation found, 0 otherwise.
+ *
+ * @audit_rule_match:
+ * Determine if given @secid matches a rule previously approved
+ * by @audit_rule_known.
+ * @secid contains the security id in question.
+ * @field contains the field which relates to current LSM.
+ * @op contains the operator that will be used for matching.
+ * @rule points to the audit rule that will be checked against.
+ * @actx points to the audit context associated with the check.
+ * Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure.
+ *
+ * @audit_rule_free:
+ * Deallocate the LSM audit rule structure previously allocated by
+ * audit_rule_init.
+ * @rule contains the allocated rule
+ *
+ * @inode_notifysecctx:
+ * Notify the security module of what the security context of an inode
+ * should be. Initializes the incore security context managed by the
+ * security module for this inode. Example usage: NFS client invokes
+ * this hook to initialize the security context in its incore inode to the
+ * value provided by the server for the file when the server returned the
+ * file's attributes to the client.
+ *
+ * Must be called with inode->i_mutex locked.
+ *
+ * @inode we wish to set the security context of.
+ * @ctx contains the string which we wish to set in the inode.
+ * @ctxlen contains the length of @ctx.
+ *
+ * @inode_setsecctx:
+ * Change the security context of an inode. Updates the
+ * incore security context managed by the security module and invokes the
+ * fs code as needed (via __vfs_setxattr_noperm) to update any backing
+ * xattrs that represent the context. Example usage: NFS server invokes
+ * this hook to change the security context in its incore inode and on the
+ * backing filesystem to a value provided by the client on a SETATTR
+ * operation.
+ *
+ * Must be called with inode->i_mutex locked.
+ *
+ * @dentry contains the inode we wish to set the security context of.
+ * @ctx contains the string which we wish to set in the inode.
+ * @ctxlen contains the length of @ctx.
+ *
+ * @inode_getsecctx:
+ * On success, returns 0 and fills out @ctx and @ctxlen with the security
+ * context for the given @inode.
+ *
+ * @inode we wish to get the security context of.
+ * @ctx is a pointer in which to place the allocated security context.
+ * @ctxlen points to the place to put the length of @ctx.
+ * This is the main security structure.
+ */
+
struct security_operations {
char name[SECURITY_NAME_MAX + 1];