diff options
author | Jann Horn <jannh@google.com> | 2022-11-17 15:43:22 -0800 |
---|---|---|
committer | Kees Cook <keescook@chromium.org> | 2022-12-01 08:50:38 -0800 |
commit | d4ccd54d28d3c8598e2354acc13e28c060961dbb (patch) | |
tree | d6554f29890e7559df9465c6bdd7e20ff851980a /kernel/exit.c | |
parent | 9360d035a579d95d1e76c471061b9065b18a0eb1 (diff) |
exit: Put an upper limit on how often we can oops
Many Linux systems are configured to not panic on oops; but allowing an
attacker to oops the system **really** often can make even bugs that look
completely unexploitable exploitable (like NULL dereferences and such) if
each crash elevates a refcount by one or a lock is taken in read mode, and
this causes a counter to eventually overflow.
The most interesting counters for this are 32 bits wide (like open-coded
refcounts that don't use refcount_t). (The ldsem reader count on 32-bit
platforms is just 16 bits, but probably nobody cares about 32-bit platforms
that much nowadays.)
So let's panic the system if the kernel is constantly oopsing.
The speed of oopsing 2^32 times probably depends on several factors, like
how long the stack trace is and which unwinder you're using; an empirically
important one is whether your console is showing a graphical environment or
a text console that oopses will be printed to.
In a quick single-threaded benchmark, it looks like oopsing in a vfork()
child with a very short stack trace only takes ~510 microseconds per run
when a graphical console is active; but switching to a text console that
oopses are printed to slows it down around 87x, to ~45 milliseconds per
run.
(Adding more threads makes this faster, but the actual oops printing
happens under &die_lock on x86, so you can maybe speed this up by a factor
of around 2 and then any further improvement gets eaten up by lock
contention.)
It looks like it would take around 8-12 days to overflow a 32-bit counter
with repeated oopsing on a multi-core X86 system running a graphical
environment; both me (in an X86 VM) and Seth (with a distro kernel on
normal hardware in a standard configuration) got numbers in that ballpark.
12 days aren't *that* short on a desktop system, and you'd likely need much
longer on a typical server system (assuming that people don't run graphical
desktop environments on their servers), and this is a *very* noisy and
violent approach to exploiting the kernel; and it also seems to take orders
of magnitude longer on some machines, probably because stuff like EFI
pstore will slow it down a ton if that's active.
Signed-off-by: Jann Horn <jannh@google.com>
Link: https://lore.kernel.org/r/20221107201317.324457-1-jannh@google.com
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221117234328.594699-2-keescook@chromium.org
Diffstat (limited to 'kernel/exit.c')
-rw-r--r-- | kernel/exit.c | 42 |
1 files changed, 42 insertions, 0 deletions
diff --git a/kernel/exit.c b/kernel/exit.c index 35e0a31a0315..2ab3ead62118 100644 --- a/kernel/exit.c +++ b/kernel/exit.c @@ -72,6 +72,33 @@ #include <asm/unistd.h> #include <asm/mmu_context.h> +/* + * The default value should be high enough to not crash a system that randomly + * crashes its kernel from time to time, but low enough to at least not permit + * overflowing 32-bit refcounts or the ldsem writer count. + */ +static unsigned int oops_limit = 10000; + +#ifdef CONFIG_SYSCTL +static struct ctl_table kern_exit_table[] = { + { + .procname = "oops_limit", + .data = &oops_limit, + .maxlen = sizeof(oops_limit), + .mode = 0644, + .proc_handler = proc_douintvec, + }, + { } +}; + +static __init int kernel_exit_sysctls_init(void) +{ + register_sysctl_init("kernel", kern_exit_table); + return 0; +} +late_initcall(kernel_exit_sysctls_init); +#endif + static void __unhash_process(struct task_struct *p, bool group_dead) { nr_threads--; @@ -874,6 +901,8 @@ void __noreturn do_exit(long code) void __noreturn make_task_dead(int signr) { + static atomic_t oops_count = ATOMIC_INIT(0); + /* * Take the task off the cpu after something catastrophic has * happened. @@ -898,6 +927,19 @@ void __noreturn make_task_dead(int signr) } /* + * Every time the system oopses, if the oops happens while a reference + * to an object was held, the reference leaks. + * If the oops doesn't also leak memory, repeated oopsing can cause + * reference counters to wrap around (if they're not using refcount_t). + * This means that repeated oopsing can make unexploitable-looking bugs + * exploitable through repeated oopsing. + * To make sure this can't happen, place an upper bound on how often the + * kernel may oops without panic(). + */ + if (atomic_inc_return(&oops_count) >= READ_ONCE(oops_limit)) + panic("Oopsed too often (kernel.oops_limit is %d)", oops_limit); + + /* * We're taking recursive faults here in make_task_dead. Safest is to just * leave this task alone and wait for reboot. */ |