summaryrefslogtreecommitdiff
path: root/kernel/locking
diff options
context:
space:
mode:
authorIngo Molnar <mingo@kernel.org>2016-06-08 14:35:29 +0200
committerIngo Molnar <mingo@kernel.org>2016-06-08 14:35:29 +0200
commitae0b5c2f0334f35d2b2effb13aa418bc1e2039b7 (patch)
treecf2174ac4de949d2bb0a639bdc4cb10be8336137 /kernel/locking
parent331b6d8c7afc2e5b900b9dcd850c265e1ba8d8e7 (diff)
parent2c610022711675ee908b903d242f0b90e1db661f (diff)
Merge branch 'locking/urgent' into locking/core, to pick up dependency
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel/locking')
-rw-r--r--kernel/locking/qspinlock.c60
1 files changed, 60 insertions, 0 deletions
diff --git a/kernel/locking/qspinlock.c b/kernel/locking/qspinlock.c
index ce2f75e32ae1..5fc8c311b8fe 100644
--- a/kernel/locking/qspinlock.c
+++ b/kernel/locking/qspinlock.c
@@ -267,6 +267,66 @@ static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
#define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
#endif
+/*
+ * queued_spin_lock_slowpath() can (load-)ACQUIRE the lock before
+ * issuing an _unordered_ store to set _Q_LOCKED_VAL.
+ *
+ * This means that the store can be delayed, but no later than the
+ * store-release from the unlock. This means that simply observing
+ * _Q_LOCKED_VAL is not sufficient to determine if the lock is acquired.
+ *
+ * There are two paths that can issue the unordered store:
+ *
+ * (1) clear_pending_set_locked(): *,1,0 -> *,0,1
+ *
+ * (2) set_locked(): t,0,0 -> t,0,1 ; t != 0
+ * atomic_cmpxchg_relaxed(): t,0,0 -> 0,0,1
+ *
+ * However, in both cases we have other !0 state we've set before to queue
+ * ourseves:
+ *
+ * For (1) we have the atomic_cmpxchg_acquire() that set _Q_PENDING_VAL, our
+ * load is constrained by that ACQUIRE to not pass before that, and thus must
+ * observe the store.
+ *
+ * For (2) we have a more intersting scenario. We enqueue ourselves using
+ * xchg_tail(), which ends up being a RELEASE. This in itself is not
+ * sufficient, however that is followed by an smp_cond_acquire() on the same
+ * word, giving a RELEASE->ACQUIRE ordering. This again constrains our load and
+ * guarantees we must observe that store.
+ *
+ * Therefore both cases have other !0 state that is observable before the
+ * unordered locked byte store comes through. This means we can use that to
+ * wait for the lock store, and then wait for an unlock.
+ */
+#ifndef queued_spin_unlock_wait
+void queued_spin_unlock_wait(struct qspinlock *lock)
+{
+ u32 val;
+
+ for (;;) {
+ val = atomic_read(&lock->val);
+
+ if (!val) /* not locked, we're done */
+ goto done;
+
+ if (val & _Q_LOCKED_MASK) /* locked, go wait for unlock */
+ break;
+
+ /* not locked, but pending, wait until we observe the lock */
+ cpu_relax();
+ }
+
+ /* any unlock is good */
+ while (atomic_read(&lock->val) & _Q_LOCKED_MASK)
+ cpu_relax();
+
+done:
+ smp_rmb(); /* CTRL + RMB -> ACQUIRE */
+}
+EXPORT_SYMBOL(queued_spin_unlock_wait);
+#endif
+
#endif /* _GEN_PV_LOCK_SLOWPATH */
/**