diff options
author | Ingo Molnar <mingo@elte.hu> | 2010-12-22 11:53:20 +0100 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2010-12-22 11:53:23 +0100 |
commit | 6c529a266bdc590a870ee2d2092ff6527eff427b (patch) | |
tree | 7be65fa2578820a1258b5a1e8e063a509a5d6176 /kernel/sched.c | |
parent | 7639dae0ca11038286bbbcda05f2bef601c1eb8d (diff) | |
parent | 90a8a73c06cc32b609a880d48449d7083327e11a (diff) |
Merge commit 'v2.6.37-rc7' into perf/core
Merge reason: Pick up the latest -rc.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 287 |
1 files changed, 236 insertions, 51 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 605ab1b24d81..c68cead94dd7 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -636,22 +636,18 @@ static inline struct task_group *task_group(struct task_struct *p) #endif /* CONFIG_CGROUP_SCHED */ -static u64 irq_time_cpu(int cpu); -static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time); +static void update_rq_clock_task(struct rq *rq, s64 delta); -inline void update_rq_clock(struct rq *rq) +static void update_rq_clock(struct rq *rq) { - if (!rq->skip_clock_update) { - int cpu = cpu_of(rq); - u64 irq_time; + s64 delta; - rq->clock = sched_clock_cpu(cpu); - irq_time = irq_time_cpu(cpu); - if (rq->clock - irq_time > rq->clock_task) - rq->clock_task = rq->clock - irq_time; + if (rq->skip_clock_update) + return; - sched_irq_time_avg_update(rq, irq_time); - } + delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; + rq->clock += delta; + update_rq_clock_task(rq, delta); } /* @@ -1924,10 +1920,9 @@ static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) * They are read and saved off onto struct rq in update_rq_clock(). * This may result in other CPU reading this CPU's irq time and can * race with irq/account_system_vtime on this CPU. We would either get old - * or new value (or semi updated value on 32 bit) with a side effect of - * accounting a slice of irq time to wrong task when irq is in progress - * while we read rq->clock. That is a worthy compromise in place of having - * locks on each irq in account_system_time. + * or new value with a side effect of accounting a slice of irq time to wrong + * task when irq is in progress while we read rq->clock. That is a worthy + * compromise in place of having locks on each irq in account_system_time. */ static DEFINE_PER_CPU(u64, cpu_hardirq_time); static DEFINE_PER_CPU(u64, cpu_softirq_time); @@ -1945,19 +1940,58 @@ void disable_sched_clock_irqtime(void) sched_clock_irqtime = 0; } -static u64 irq_time_cpu(int cpu) +#ifndef CONFIG_64BIT +static DEFINE_PER_CPU(seqcount_t, irq_time_seq); + +static inline void irq_time_write_begin(void) { - if (!sched_clock_irqtime) - return 0; + __this_cpu_inc(irq_time_seq.sequence); + smp_wmb(); +} + +static inline void irq_time_write_end(void) +{ + smp_wmb(); + __this_cpu_inc(irq_time_seq.sequence); +} + +static inline u64 irq_time_read(int cpu) +{ + u64 irq_time; + unsigned seq; + do { + seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); + irq_time = per_cpu(cpu_softirq_time, cpu) + + per_cpu(cpu_hardirq_time, cpu); + } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); + + return irq_time; +} +#else /* CONFIG_64BIT */ +static inline void irq_time_write_begin(void) +{ +} + +static inline void irq_time_write_end(void) +{ +} + +static inline u64 irq_time_read(int cpu) +{ return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); } +#endif /* CONFIG_64BIT */ +/* + * Called before incrementing preempt_count on {soft,}irq_enter + * and before decrementing preempt_count on {soft,}irq_exit. + */ void account_system_vtime(struct task_struct *curr) { unsigned long flags; + s64 delta; int cpu; - u64 now, delta; if (!sched_clock_irqtime) return; @@ -1965,9 +1999,10 @@ void account_system_vtime(struct task_struct *curr) local_irq_save(flags); cpu = smp_processor_id(); - now = sched_clock_cpu(cpu); - delta = now - per_cpu(irq_start_time, cpu); - per_cpu(irq_start_time, cpu) = now; + delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); + __this_cpu_add(irq_start_time, delta); + + irq_time_write_begin(); /* * We do not account for softirq time from ksoftirqd here. * We want to continue accounting softirq time to ksoftirqd thread @@ -1975,33 +2010,55 @@ void account_system_vtime(struct task_struct *curr) * that do not consume any time, but still wants to run. */ if (hardirq_count()) - per_cpu(cpu_hardirq_time, cpu) += delta; + __this_cpu_add(cpu_hardirq_time, delta); else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD)) - per_cpu(cpu_softirq_time, cpu) += delta; + __this_cpu_add(cpu_softirq_time, delta); + irq_time_write_end(); local_irq_restore(flags); } EXPORT_SYMBOL_GPL(account_system_vtime); -static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) +static void update_rq_clock_task(struct rq *rq, s64 delta) { - if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) { - u64 delta_irq = curr_irq_time - rq->prev_irq_time; - rq->prev_irq_time = curr_irq_time; - sched_rt_avg_update(rq, delta_irq); - } + s64 irq_delta; + + irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; + + /* + * Since irq_time is only updated on {soft,}irq_exit, we might run into + * this case when a previous update_rq_clock() happened inside a + * {soft,}irq region. + * + * When this happens, we stop ->clock_task and only update the + * prev_irq_time stamp to account for the part that fit, so that a next + * update will consume the rest. This ensures ->clock_task is + * monotonic. + * + * It does however cause some slight miss-attribution of {soft,}irq + * time, a more accurate solution would be to update the irq_time using + * the current rq->clock timestamp, except that would require using + * atomic ops. + */ + if (irq_delta > delta) + irq_delta = delta; + + rq->prev_irq_time += irq_delta; + delta -= irq_delta; + rq->clock_task += delta; + + if (irq_delta && sched_feat(NONIRQ_POWER)) + sched_rt_avg_update(rq, irq_delta); } -#else +#else /* CONFIG_IRQ_TIME_ACCOUNTING */ -static u64 irq_time_cpu(int cpu) +static void update_rq_clock_task(struct rq *rq, s64 delta) { - return 0; + rq->clock_task += delta; } -static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { } - -#endif +#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ #include "sched_idletask.c" #include "sched_fair.c" @@ -2129,7 +2186,7 @@ static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) * A queue event has occurred, and we're going to schedule. In * this case, we can save a useless back to back clock update. */ - if (test_tsk_need_resched(rq->curr)) + if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr)) rq->skip_clock_update = 1; } @@ -3119,6 +3176,15 @@ static long calc_load_fold_active(struct rq *this_rq) return delta; } +static unsigned long +calc_load(unsigned long load, unsigned long exp, unsigned long active) +{ + load *= exp; + load += active * (FIXED_1 - exp); + load += 1UL << (FSHIFT - 1); + return load >> FSHIFT; +} + #ifdef CONFIG_NO_HZ /* * For NO_HZ we delay the active fold to the next LOAD_FREQ update. @@ -3148,6 +3214,128 @@ static long calc_load_fold_idle(void) return delta; } + +/** + * fixed_power_int - compute: x^n, in O(log n) time + * + * @x: base of the power + * @frac_bits: fractional bits of @x + * @n: power to raise @x to. + * + * By exploiting the relation between the definition of the natural power + * function: x^n := x*x*...*x (x multiplied by itself for n times), and + * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, + * (where: n_i \elem {0, 1}, the binary vector representing n), + * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is + * of course trivially computable in O(log_2 n), the length of our binary + * vector. + */ +static unsigned long +fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) +{ + unsigned long result = 1UL << frac_bits; + + if (n) for (;;) { + if (n & 1) { + result *= x; + result += 1UL << (frac_bits - 1); + result >>= frac_bits; + } + n >>= 1; + if (!n) + break; + x *= x; + x += 1UL << (frac_bits - 1); + x >>= frac_bits; + } + + return result; +} + +/* + * a1 = a0 * e + a * (1 - e) + * + * a2 = a1 * e + a * (1 - e) + * = (a0 * e + a * (1 - e)) * e + a * (1 - e) + * = a0 * e^2 + a * (1 - e) * (1 + e) + * + * a3 = a2 * e + a * (1 - e) + * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) + * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) + * + * ... + * + * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] + * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) + * = a0 * e^n + a * (1 - e^n) + * + * [1] application of the geometric series: + * + * n 1 - x^(n+1) + * S_n := \Sum x^i = ------------- + * i=0 1 - x + */ +static unsigned long +calc_load_n(unsigned long load, unsigned long exp, + unsigned long active, unsigned int n) +{ + + return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); +} + +/* + * NO_HZ can leave us missing all per-cpu ticks calling + * calc_load_account_active(), but since an idle CPU folds its delta into + * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold + * in the pending idle delta if our idle period crossed a load cycle boundary. + * + * Once we've updated the global active value, we need to apply the exponential + * weights adjusted to the number of cycles missed. + */ +static void calc_global_nohz(unsigned long ticks) +{ + long delta, active, n; + + if (time_before(jiffies, calc_load_update)) + return; + + /* + * If we crossed a calc_load_update boundary, make sure to fold + * any pending idle changes, the respective CPUs might have + * missed the tick driven calc_load_account_active() update + * due to NO_HZ. + */ + delta = calc_load_fold_idle(); + if (delta) + atomic_long_add(delta, &calc_load_tasks); + + /* + * If we were idle for multiple load cycles, apply them. + */ + if (ticks >= LOAD_FREQ) { + n = ticks / LOAD_FREQ; + + active = atomic_long_read(&calc_load_tasks); + active = active > 0 ? active * FIXED_1 : 0; + + avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); + avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); + avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); + + calc_load_update += n * LOAD_FREQ; + } + + /* + * Its possible the remainder of the above division also crosses + * a LOAD_FREQ period, the regular check in calc_global_load() + * which comes after this will take care of that. + * + * Consider us being 11 ticks before a cycle completion, and us + * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will + * age us 4 cycles, and the test in calc_global_load() will + * pick up the final one. + */ +} #else static void calc_load_account_idle(struct rq *this_rq) { @@ -3157,6 +3345,10 @@ static inline long calc_load_fold_idle(void) { return 0; } + +static void calc_global_nohz(unsigned long ticks) +{ +} #endif /** @@ -3174,24 +3366,17 @@ void get_avenrun(unsigned long *loads, unsigned long offset, int shift) loads[2] = (avenrun[2] + offset) << shift; } -static unsigned long -calc_load(unsigned long load, unsigned long exp, unsigned long active) -{ - load *= exp; - load += active * (FIXED_1 - exp); - return load >> FSHIFT; -} - /* * calc_load - update the avenrun load estimates 10 ticks after the * CPUs have updated calc_load_tasks. */ -void calc_global_load(void) +void calc_global_load(unsigned long ticks) { - unsigned long upd = calc_load_update + 10; long active; - if (time_before(jiffies, upd)) + calc_global_nohz(ticks); + + if (time_before(jiffies, calc_load_update + 10)) return; active = atomic_long_read(&calc_load_tasks); @@ -3845,7 +4030,6 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev) { if (prev->se.on_rq) update_rq_clock(rq); - rq->skip_clock_update = 0; prev->sched_class->put_prev_task(rq, prev); } @@ -3903,7 +4087,6 @@ need_resched_nonpreemptible: hrtick_clear(rq); raw_spin_lock_irq(&rq->lock); - clear_tsk_need_resched(prev); switch_count = &prev->nivcsw; if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { @@ -3935,6 +4118,8 @@ need_resched_nonpreemptible: put_prev_task(rq, prev); next = pick_next_task(rq); + clear_tsk_need_resched(prev); + rq->skip_clock_update = 0; if (likely(prev != next)) { sched_info_switch(prev, next); |