summaryrefslogtreecommitdiff
path: root/kernel/time
diff options
context:
space:
mode:
authorPaul E. McKenney <paulmck@kernel.org>2024-08-02 08:46:17 -0700
committerThomas Gleixner <tglx@linutronix.de>2024-08-02 18:37:13 +0200
commit4ac1dd3245b9067f929ab30141bb0475e9e32fc5 (patch)
treeed88e578ab43ce539cd5dac73b5f81953b6d792e /kernel/time
parentf33a5d4bd9c2e545857b2cf7481eb721bcab867c (diff)
clocksource: Set cs_watchdog_read() checks based on .uncertainty_margin
Right now, cs_watchdog_read() does clocksource sanity checks based on WATCHDOG_MAX_SKEW, which sets a floor on any clocksource's .uncertainty_margin. These sanity checks can therefore act inappropriately for clocksources with large uncertainty margins. One reason for a clocksource to have a large .uncertainty_margin is when that clocksource has long read-out latency, given that it does not make sense for the .uncertainty_margin to be smaller than the read-out latency. With the current checks, cs_watchdog_read() could reject all normal reads from a clocksource with long read-out latencies, such as those from legacy clocksources that are no longer implemented in hardware. Therefore, recast the cs_watchdog_read() checks in terms of the .uncertainty_margin values of the clocksources involved in the timespan in question. The first covers two watchdog reads and one cs read, so use twice the watchdog .uncertainty_margin plus that of the cs. The second covers only a pair of watchdog reads, so use twice the watchdog .uncertainty_margin. Reported-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20240802154618.4149953-4-paulmck@kernel.org
Diffstat (limited to 'kernel/time')
-rw-r--r--kernel/time/clocksource.c9
1 files changed, 5 insertions, 4 deletions
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index ee0ad5e4d517..23336eecb4f4 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -244,6 +244,7 @@ enum wd_read_status {
static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
{
+ int64_t md = 2 * watchdog->uncertainty_margin;
unsigned int nretries, max_retries;
int64_t wd_delay, wd_seq_delay;
u64 wd_end, wd_end2;
@@ -258,7 +259,7 @@ static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow,
local_irq_enable();
wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end);
- if (wd_delay <= WATCHDOG_MAX_SKEW) {
+ if (wd_delay <= md + cs->uncertainty_margin) {
if (nretries > 1 && nretries >= max_retries) {
pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
smp_processor_id(), watchdog->name, nretries);
@@ -271,12 +272,12 @@ static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow,
* there is too much external interferences that cause
* significant delay in reading both clocksource and watchdog.
*
- * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
- * report system busy, reinit the watchdog and skip the current
+ * If consecutive WD read-back delay > md, report
+ * system busy, reinit the watchdog and skip the current
* watchdog test.
*/
wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2);
- if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
+ if (wd_seq_delay > md)
goto skip_test;
}