diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2020-08-10 19:07:44 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2020-08-10 19:07:44 -0700 |
commit | 97d052ea3fa853b9aabcc4baca1a605cb1188611 (patch) | |
tree | 48901cbccafdc5870c7dad9cce98e9338065f8a3 /kernel/time | |
parent | 086ba2ec163b638abd2a90ef3e8bab0238d02e56 (diff) | |
parent | 0cd39f4600ed4de859383018eb10f0f724900e1b (diff) |
Merge tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Thomas Gleixner:
"A set of locking fixes and updates:
- Untangle the header spaghetti which causes build failures in
various situations caused by the lockdep additions to seqcount to
validate that the write side critical sections are non-preemptible.
- The seqcount associated lock debug addons which were blocked by the
above fallout.
seqcount writers contrary to seqlock writers must be externally
serialized, which usually happens via locking - except for strict
per CPU seqcounts. As the lock is not part of the seqcount, lockdep
cannot validate that the lock is held.
This new debug mechanism adds the concept of associated locks.
sequence count has now lock type variants and corresponding
initializers which take a pointer to the associated lock used for
writer serialization. If lockdep is enabled the pointer is stored
and write_seqcount_begin() has a lockdep assertion to validate that
the lock is held.
Aside of the type and the initializer no other code changes are
required at the seqcount usage sites. The rest of the seqcount API
is unchanged and determines the type at compile time with the help
of _Generic which is possible now that the minimal GCC version has
been moved up.
Adding this lockdep coverage unearthed a handful of seqcount bugs
which have been addressed already independent of this.
While generally useful this comes with a Trojan Horse twist: On RT
kernels the write side critical section can become preemtible if
the writers are serialized by an associated lock, which leads to
the well known reader preempts writer livelock. RT prevents this by
storing the associated lock pointer independent of lockdep in the
seqcount and changing the reader side to block on the lock when a
reader detects that a writer is in the write side critical section.
- Conversion of seqcount usage sites to associated types and
initializers"
* tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
locking/seqlock, headers: Untangle the spaghetti monster
locking, arch/ia64: Reduce <asm/smp.h> header dependencies by moving XTP bits into the new <asm/xtp.h> header
x86/headers: Remove APIC headers from <asm/smp.h>
seqcount: More consistent seqprop names
seqcount: Compress SEQCNT_LOCKNAME_ZERO()
seqlock: Fold seqcount_LOCKNAME_init() definition
seqlock: Fold seqcount_LOCKNAME_t definition
seqlock: s/__SEQ_LOCKDEP/__SEQ_LOCK/g
hrtimer: Use sequence counter with associated raw spinlock
kvm/eventfd: Use sequence counter with associated spinlock
userfaultfd: Use sequence counter with associated spinlock
NFSv4: Use sequence counter with associated spinlock
iocost: Use sequence counter with associated spinlock
raid5: Use sequence counter with associated spinlock
vfs: Use sequence counter with associated spinlock
timekeeping: Use sequence counter with associated raw spinlock
xfrm: policy: Use sequence counters with associated lock
netfilter: nft_set_rbtree: Use sequence counter with associated rwlock
netfilter: conntrack: Use sequence counter with associated spinlock
sched: tasks: Use sequence counter with associated spinlock
...
Diffstat (limited to 'kernel/time')
-rw-r--r-- | kernel/time/hrtimer.c | 13 | ||||
-rw-r--r-- | kernel/time/timekeeping.c | 19 |
2 files changed, 21 insertions, 11 deletions
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c index d89da1c7e005..c4038511d5c9 100644 --- a/kernel/time/hrtimer.c +++ b/kernel/time/hrtimer.c @@ -135,7 +135,11 @@ static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { * timer->base->cpu_base */ static struct hrtimer_cpu_base migration_cpu_base = { - .clock_base = { { .cpu_base = &migration_cpu_base, }, }, + .clock_base = { { + .cpu_base = &migration_cpu_base, + .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, + &migration_cpu_base.lock), + }, }, }; #define migration_base migration_cpu_base.clock_base[0] @@ -1998,8 +2002,11 @@ int hrtimers_prepare_cpu(unsigned int cpu) int i; for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { - cpu_base->clock_base[i].cpu_base = cpu_base; - timerqueue_init_head(&cpu_base->clock_base[i].active); + struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; + + clock_b->cpu_base = cpu_base; + seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); + timerqueue_init_head(&clock_b->active); } cpu_base->cpu = cpu; diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index 63a632f9896c..406306b33452 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c @@ -39,18 +39,19 @@ enum timekeeping_adv_mode { TK_ADV_FREQ }; +static DEFINE_RAW_SPINLOCK(timekeeper_lock); + /* * The most important data for readout fits into a single 64 byte * cache line. */ static struct { - seqcount_t seq; + seqcount_raw_spinlock_t seq; struct timekeeper timekeeper; } tk_core ____cacheline_aligned = { - .seq = SEQCNT_ZERO(tk_core.seq), + .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), }; -static DEFINE_RAW_SPINLOCK(timekeeper_lock); static struct timekeeper shadow_timekeeper; /** @@ -63,7 +64,7 @@ static struct timekeeper shadow_timekeeper; * See @update_fast_timekeeper() below. */ struct tk_fast { - seqcount_t seq; + seqcount_raw_spinlock_t seq; struct tk_read_base base[2]; }; @@ -80,11 +81,13 @@ static struct clocksource dummy_clock = { }; static struct tk_fast tk_fast_mono ____cacheline_aligned = { + .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_fast_mono.seq, &timekeeper_lock), .base[0] = { .clock = &dummy_clock, }, .base[1] = { .clock = &dummy_clock, }, }; static struct tk_fast tk_fast_raw ____cacheline_aligned = { + .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_fast_raw.seq, &timekeeper_lock), .base[0] = { .clock = &dummy_clock, }, .base[1] = { .clock = &dummy_clock, }, }; @@ -157,7 +160,7 @@ static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) * tk_clock_read - atomic clocksource read() helper * * This helper is necessary to use in the read paths because, while the - * seqlock ensures we don't return a bad value while structures are updated, + * seqcount ensures we don't return a bad value while structures are updated, * it doesn't protect from potential crashes. There is the possibility that * the tkr's clocksource may change between the read reference, and the * clock reference passed to the read function. This can cause crashes if @@ -222,10 +225,10 @@ static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) unsigned int seq; /* - * Since we're called holding a seqlock, the data may shift + * Since we're called holding a seqcount, the data may shift * under us while we're doing the calculation. This can cause * false positives, since we'd note a problem but throw the - * results away. So nest another seqlock here to atomically + * results away. So nest another seqcount here to atomically * grab the points we are checking with. */ do { @@ -486,7 +489,7 @@ EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); * * To keep it NMI safe since we're accessing from tracing, we're not using a * separate timekeeper with updates to monotonic clock and boot offset - * protected with seqlocks. This has the following minor side effects: + * protected with seqcounts. This has the following minor side effects: * * (1) Its possible that a timestamp be taken after the boot offset is updated * but before the timekeeper is updated. If this happens, the new boot offset |