diff options
author | Peter Zijlstra <peterz@infradead.org> | 2024-10-10 11:38:10 +0200 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2024-10-14 09:14:35 +0200 |
commit | cd9626e9ebc77edec33023fe95dab4b04ffc819d (patch) | |
tree | f634627362f80150130afc99ccda5cf58e584614 /kernel | |
parent | c6508124193d42bbc3224571eb75bfa4c1821fbb (diff) |
sched/fair: Fix external p->on_rq users
Sean noted that ever since commit 152e11f6df29 ("sched/fair: Implement
delayed dequeue") KVM's preemption notifiers have started
mis-classifying preemption vs blocking.
Notably p->on_rq is no longer sufficient to determine if a task is
runnable or blocked -- the aforementioned commit introduces tasks that
remain on the runqueue even through they will not run again, and
should be considered blocked for many cases.
Add the task_is_runnable() helper to classify things and audit all
external users of the p->on_rq state. Also add a few comments.
Fixes: 152e11f6df29 ("sched/fair: Implement delayed dequeue")
Reported-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20241010091843.GK33184@noisy.programming.kicks-ass.net
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/events/core.c | 2 | ||||
-rw-r--r-- | kernel/freezer.c | 7 | ||||
-rw-r--r-- | kernel/rcu/tasks.h | 9 | ||||
-rw-r--r-- | kernel/sched/core.c | 12 | ||||
-rw-r--r-- | kernel/time/tick-sched.c | 6 | ||||
-rw-r--r-- | kernel/trace/trace_selftest.c | 2 |
6 files changed, 32 insertions, 6 deletions
diff --git a/kernel/events/core.c b/kernel/events/core.c index e3589c4287cb..cdd09769e6c5 100644 --- a/kernel/events/core.c +++ b/kernel/events/core.c @@ -9251,7 +9251,7 @@ static void perf_event_switch(struct task_struct *task, }, }; - if (!sched_in && task->on_rq) { + if (!sched_in && task_is_runnable(task)) { switch_event.event_id.header.misc |= PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; } diff --git a/kernel/freezer.c b/kernel/freezer.c index 44bbd7dbd2c8..8d530d0949ff 100644 --- a/kernel/freezer.c +++ b/kernel/freezer.c @@ -109,7 +109,12 @@ static int __set_task_frozen(struct task_struct *p, void *arg) { unsigned int state = READ_ONCE(p->__state); - if (p->on_rq) + /* + * Allow freezing the sched_delayed tasks; they will not execute until + * ttwu() fixes them up, so it is safe to swap their state now, instead + * of waiting for them to get fully dequeued. + */ + if (task_is_runnable(p)) return 0; if (p != current && task_curr(p)) diff --git a/kernel/rcu/tasks.h b/kernel/rcu/tasks.h index 6333f4ccf024..4d7ee95df06e 100644 --- a/kernel/rcu/tasks.h +++ b/kernel/rcu/tasks.h @@ -986,6 +986,15 @@ static bool rcu_tasks_is_holdout(struct task_struct *t) return false; /* + * t->on_rq && !t->se.sched_delayed *could* be considered sleeping but + * since it is a spurious state (it will transition into the + * traditional blocked state or get woken up without outside + * dependencies), not considering it such should only affect timing. + * + * Be conservative for now and not include it. + */ + + /* * Idle tasks (or idle injection) within the idle loop are RCU-tasks * quiescent states. But CPU boot code performed by the idle task * isn't a quiescent state. diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 71232f8f9b96..7db711ba6d12 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -548,6 +548,11 @@ sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } * ON_RQ_MIGRATING state is used for migration without holding both * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). * + * Additionally it is possible to be ->on_rq but still be considered not + * runnable when p->se.sched_delayed is true. These tasks are on the runqueue + * but will be dequeued as soon as they get picked again. See the + * task_is_runnable() helper. + * * p->on_cpu <- { 0, 1 }: * * is set by prepare_task() and cleared by finish_task() such that it will be @@ -4317,9 +4322,10 @@ static bool __task_needs_rq_lock(struct task_struct *p) * @arg: Argument to function. * * Fix the task in it's current state by avoiding wakeups and or rq operations - * and call @func(@arg) on it. This function can use ->on_rq and task_curr() - * to work out what the state is, if required. Given that @func can be invoked - * with a runqueue lock held, it had better be quite lightweight. + * and call @func(@arg) on it. This function can use task_is_runnable() and + * task_curr() to work out what the state is, if required. Given that @func + * can be invoked with a runqueue lock held, it had better be quite + * lightweight. * * Returns: * Whatever @func returns diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c index 753a184c7090..f203f000da1a 100644 --- a/kernel/time/tick-sched.c +++ b/kernel/time/tick-sched.c @@ -434,6 +434,12 @@ static void tick_nohz_kick_task(struct task_struct *tsk) * smp_mb__after_spin_lock() * tick_nohz_task_switch() * LOAD p->tick_dep_mask + * + * XXX given a task picks up the dependency on schedule(), should we + * only care about tasks that are currently on the CPU instead of all + * that are on the runqueue? + * + * That is, does this want to be: task_on_cpu() / task_curr()? */ if (!sched_task_on_rq(tsk)) return; diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c index c4ad7cd7e778..1469dd8075fa 100644 --- a/kernel/trace/trace_selftest.c +++ b/kernel/trace/trace_selftest.c @@ -1485,7 +1485,7 @@ trace_selftest_startup_wakeup(struct tracer *trace, struct trace_array *tr) /* reset the max latency */ tr->max_latency = 0; - while (p->on_rq) { + while (task_is_runnable(p)) { /* * Sleep to make sure the -deadline thread is asleep too. * On virtual machines we can't rely on timings, |