diff options
author | Andrey Konovalov <andreyknvl@google.com> | 2022-03-24 18:10:04 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2022-03-24 19:06:46 -0700 |
commit | 94ae8b83fefcdaf281e0bcfb76a19f5ed5019c8d (patch) | |
tree | e7697824b5804507bf0de62dcaa021a709e79291 /mm/page_alloc.c | |
parent | 4cc79b3303f224a920f3aff21f3d231749d73384 (diff) |
kasan, page_alloc: deduplicate should_skip_kasan_poison
Patch series "kasan, vmalloc, arm64: add vmalloc tagging support for SW/HW_TAGS", v6.
This patchset adds vmalloc tagging support for SW_TAGS and HW_TAGS
KASAN modes.
About half of patches are cleanups I went for along the way. None of them
seem to be important enough to go through stable, so I decided not to
split them out into separate patches/series.
The patchset is partially based on an early version of the HW_TAGS
patchset by Vincenzo that had vmalloc support. Thus, I added a
Co-developed-by tag into a few patches.
SW_TAGS vmalloc tagging support is straightforward. It reuses all of the
generic KASAN machinery, but uses shadow memory to store tags instead of
magic values. Naturally, vmalloc tagging requires adding a few
kasan_reset_tag() annotations to the vmalloc code.
HW_TAGS vmalloc tagging support stands out. HW_TAGS KASAN is based on Arm
MTE, which can only assigns tags to physical memory. As a result, HW_TAGS
KASAN only tags vmalloc() allocations, which are backed by page_alloc
memory. It ignores vmap() and others.
This patch (of 39):
Currently, should_skip_kasan_poison() has two definitions: one for when
CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, one for when it's not.
Instead of duplicating the checks, add a deferred_pages_enabled() helper
and use it in a single should_skip_kasan_poison() definition.
Also move should_skip_kasan_poison() closer to its caller and clarify all
conditions in the comment.
Link: https://lkml.kernel.org/r/cover.1643047180.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/658b79f5fb305edaf7dc16bc52ea870d3220d4a8.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/page_alloc.c')
-rw-r--r-- | mm/page_alloc.c | 55 |
1 files changed, 33 insertions, 22 deletions
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 6e0b4596cde9..3e7bbb5dae41 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -378,25 +378,9 @@ int page_group_by_mobility_disabled __read_mostly; */ static DEFINE_STATIC_KEY_TRUE(deferred_pages); -/* - * Calling kasan_poison_pages() only after deferred memory initialization - * has completed. Poisoning pages during deferred memory init will greatly - * lengthen the process and cause problem in large memory systems as the - * deferred pages initialization is done with interrupt disabled. - * - * Assuming that there will be no reference to those newly initialized - * pages before they are ever allocated, this should have no effect on - * KASAN memory tracking as the poison will be properly inserted at page - * allocation time. The only corner case is when pages are allocated by - * on-demand allocation and then freed again before the deferred pages - * initialization is done, but this is not likely to happen. - */ -static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) +static inline bool deferred_pages_enabled(void) { - return static_branch_unlikely(&deferred_pages) || - (!IS_ENABLED(CONFIG_KASAN_GENERIC) && - (fpi_flags & FPI_SKIP_KASAN_POISON)) || - PageSkipKASanPoison(page); + return static_branch_unlikely(&deferred_pages); } /* Returns true if the struct page for the pfn is uninitialised */ @@ -447,11 +431,9 @@ defer_init(int nid, unsigned long pfn, unsigned long end_pfn) return false; } #else -static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) +static inline bool deferred_pages_enabled(void) { - return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && - (fpi_flags & FPI_SKIP_KASAN_POISON)) || - PageSkipKASanPoison(page); + return false; } static inline bool early_page_uninitialised(unsigned long pfn) @@ -1267,6 +1249,35 @@ out: return ret; } +/* + * Skip KASAN memory poisoning when either: + * + * 1. Deferred memory initialization has not yet completed, + * see the explanation below. + * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, + * see the comment next to it. + * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, + * see the comment next to it. + * + * Poisoning pages during deferred memory init will greatly lengthen the + * process and cause problem in large memory systems as the deferred pages + * initialization is done with interrupt disabled. + * + * Assuming that there will be no reference to those newly initialized + * pages before they are ever allocated, this should have no effect on + * KASAN memory tracking as the poison will be properly inserted at page + * allocation time. The only corner case is when pages are allocated by + * on-demand allocation and then freed again before the deferred pages + * initialization is done, but this is not likely to happen. + */ +static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) +{ + return deferred_pages_enabled() || + (!IS_ENABLED(CONFIG_KASAN_GENERIC) && + (fpi_flags & FPI_SKIP_KASAN_POISON)) || + PageSkipKASanPoison(page); +} + static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags) { int i; |