summaryrefslogtreecommitdiff
path: root/mm/page_alloc.c
diff options
context:
space:
mode:
authorAndrey Konovalov <andreyknvl@google.com>2022-03-24 18:10:04 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2022-03-24 19:06:46 -0700
commit94ae8b83fefcdaf281e0bcfb76a19f5ed5019c8d (patch)
treee7697824b5804507bf0de62dcaa021a709e79291 /mm/page_alloc.c
parent4cc79b3303f224a920f3aff21f3d231749d73384 (diff)
kasan, page_alloc: deduplicate should_skip_kasan_poison
Patch series "kasan, vmalloc, arm64: add vmalloc tagging support for SW/HW_TAGS", v6. This patchset adds vmalloc tagging support for SW_TAGS and HW_TAGS KASAN modes. About half of patches are cleanups I went for along the way. None of them seem to be important enough to go through stable, so I decided not to split them out into separate patches/series. The patchset is partially based on an early version of the HW_TAGS patchset by Vincenzo that had vmalloc support. Thus, I added a Co-developed-by tag into a few patches. SW_TAGS vmalloc tagging support is straightforward. It reuses all of the generic KASAN machinery, but uses shadow memory to store tags instead of magic values. Naturally, vmalloc tagging requires adding a few kasan_reset_tag() annotations to the vmalloc code. HW_TAGS vmalloc tagging support stands out. HW_TAGS KASAN is based on Arm MTE, which can only assigns tags to physical memory. As a result, HW_TAGS KASAN only tags vmalloc() allocations, which are backed by page_alloc memory. It ignores vmap() and others. This patch (of 39): Currently, should_skip_kasan_poison() has two definitions: one for when CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, one for when it's not. Instead of duplicating the checks, add a deferred_pages_enabled() helper and use it in a single should_skip_kasan_poison() definition. Also move should_skip_kasan_poison() closer to its caller and clarify all conditions in the comment. Link: https://lkml.kernel.org/r/cover.1643047180.git.andreyknvl@google.com Link: https://lkml.kernel.org/r/658b79f5fb305edaf7dc16bc52ea870d3220d4a8.1643047180.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/page_alloc.c')
-rw-r--r--mm/page_alloc.c55
1 files changed, 33 insertions, 22 deletions
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 6e0b4596cde9..3e7bbb5dae41 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -378,25 +378,9 @@ int page_group_by_mobility_disabled __read_mostly;
*/
static DEFINE_STATIC_KEY_TRUE(deferred_pages);
-/*
- * Calling kasan_poison_pages() only after deferred memory initialization
- * has completed. Poisoning pages during deferred memory init will greatly
- * lengthen the process and cause problem in large memory systems as the
- * deferred pages initialization is done with interrupt disabled.
- *
- * Assuming that there will be no reference to those newly initialized
- * pages before they are ever allocated, this should have no effect on
- * KASAN memory tracking as the poison will be properly inserted at page
- * allocation time. The only corner case is when pages are allocated by
- * on-demand allocation and then freed again before the deferred pages
- * initialization is done, but this is not likely to happen.
- */
-static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
+static inline bool deferred_pages_enabled(void)
{
- return static_branch_unlikely(&deferred_pages) ||
- (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
- (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
- PageSkipKASanPoison(page);
+ return static_branch_unlikely(&deferred_pages);
}
/* Returns true if the struct page for the pfn is uninitialised */
@@ -447,11 +431,9 @@ defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
return false;
}
#else
-static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
+static inline bool deferred_pages_enabled(void)
{
- return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
- (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
- PageSkipKASanPoison(page);
+ return false;
}
static inline bool early_page_uninitialised(unsigned long pfn)
@@ -1267,6 +1249,35 @@ out:
return ret;
}
+/*
+ * Skip KASAN memory poisoning when either:
+ *
+ * 1. Deferred memory initialization has not yet completed,
+ * see the explanation below.
+ * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
+ * see the comment next to it.
+ * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
+ * see the comment next to it.
+ *
+ * Poisoning pages during deferred memory init will greatly lengthen the
+ * process and cause problem in large memory systems as the deferred pages
+ * initialization is done with interrupt disabled.
+ *
+ * Assuming that there will be no reference to those newly initialized
+ * pages before they are ever allocated, this should have no effect on
+ * KASAN memory tracking as the poison will be properly inserted at page
+ * allocation time. The only corner case is when pages are allocated by
+ * on-demand allocation and then freed again before the deferred pages
+ * initialization is done, but this is not likely to happen.
+ */
+static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
+{
+ return deferred_pages_enabled() ||
+ (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
+ (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
+ PageSkipKASanPoison(page);
+}
+
static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
{
int i;