diff options
author | Yang Shi <shy828301@gmail.com> | 2020-12-05 22:14:48 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2020-12-06 10:19:07 -0800 |
commit | 8199be001a470209f5c938570cc199abb012fe53 (patch) | |
tree | e0d146c9ddfd9df9c157b68caf5465c19607cb40 /mm | |
parent | becaba65f62f88e553ec92ed98370e9d2b18e629 (diff) |
mm: list_lru: set shrinker map bit when child nr_items is not zero
When investigating a slab cache bloat problem, significant amount of
negative dentry cache was seen, but confusingly they neither got shrunk
by reclaimer (the host has very tight memory) nor be shrunk by dropping
cache. The vmcore shows there are over 14M negative dentry objects on
lru, but tracing result shows they were even not scanned at all.
Further investigation shows the memcg's vfs shrinker_map bit is not set.
So the reclaimer or dropping cache just skip calling vfs shrinker. So
we have to reboot the hosts to get the memory back.
I didn't manage to come up with a reproducer in test environment, and
the problem can't be reproduced after rebooting. But it seems there is
race between shrinker map bit clear and reparenting by code inspection.
The hypothesis is elaborated as below.
The memcg hierarchy on our production environment looks like:
root
/ \
system user
The main workloads are running under user slice's children, and it
creates and removes memcg frequently. So reparenting happens very often
under user slice, but no task is under user slice directly.
So with the frequent reparenting and tight memory pressure, the below
hypothetical race condition may happen:
CPU A CPU B
reparent
dst->nr_items == 0
shrinker:
total_objects == 0
add src->nr_items to dst
set_bit
return SHRINK_EMPTY
clear_bit
child memcg offline
replace child's kmemcg_id with
parent's (in memcg_offline_kmem())
list_lru_del() between shrinker runs
see parent's kmemcg_id
dec dst->nr_items
reparent again
dst->nr_items may go negative
due to concurrent list_lru_del()
The second run of shrinker:
read nr_items without any
synchronization, so it may
see intermediate negative
nr_items then total_objects
may return 0 coincidently
keep the bit cleared
dst->nr_items != 0
skip set_bit
add scr->nr_item to dst
After this point dst->nr_item may never go zero, so reparenting will not
set shrinker_map bit anymore. And since there is no task under user
slice directly, so no new object will be added to its lru to set the
shrinker map bit either. That bit is kept cleared forever.
How does list_lru_del() race with reparenting? It is because reparenting
replaces children's kmemcg_id to parent's without protecting from
nlru->lock, so list_lru_del() may see parent's kmemcg_id but actually
deleting items from child's lru, but dec'ing parent's nr_items, so the
parent's nr_items may go negative as commit 2788cf0c401c ("memcg:
reparent list_lrus and free kmemcg_id on css offline") says.
Since it is impossible that dst->nr_items goes negative and
src->nr_items goes zero at the same time, so it seems we could set the
shrinker map bit iff src->nr_items != 0. We could synchronize
list_lru_count_one() and reparenting with nlru->lock, but it seems
checking src->nr_items in reparenting is the simplest and avoids lock
contention.
Fixes: fae91d6d8be5 ("mm/list_lru.c: set bit in memcg shrinker bitmap on first list_lru item appearance")
Suggested-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org> [4.19]
Link: https://lkml.kernel.org/r/20201202171749.264354-1-shy828301@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm')
-rw-r--r-- | mm/list_lru.c | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/mm/list_lru.c b/mm/list_lru.c index 5aa6e44bc2ae..fe230081690b 100644 --- a/mm/list_lru.c +++ b/mm/list_lru.c @@ -534,7 +534,6 @@ static void memcg_drain_list_lru_node(struct list_lru *lru, int nid, struct list_lru_node *nlru = &lru->node[nid]; int dst_idx = dst_memcg->kmemcg_id; struct list_lru_one *src, *dst; - bool set; /* * Since list_lru_{add,del} may be called under an IRQ-safe lock, @@ -546,11 +545,12 @@ static void memcg_drain_list_lru_node(struct list_lru *lru, int nid, dst = list_lru_from_memcg_idx(nlru, dst_idx); list_splice_init(&src->list, &dst->list); - set = (!dst->nr_items && src->nr_items); - dst->nr_items += src->nr_items; - if (set) + + if (src->nr_items) { + dst->nr_items += src->nr_items; memcg_set_shrinker_bit(dst_memcg, nid, lru_shrinker_id(lru)); - src->nr_items = 0; + src->nr_items = 0; + } spin_unlock_irq(&nlru->lock); } |