diff options
author | Yunsheng Lin <linyunsheng@huawei.com> | 2023-10-20 17:59:48 +0800 |
---|---|---|
committer | Jakub Kicinski <kuba@kernel.org> | 2023-10-23 19:14:48 -0700 |
commit | 58d53d8f7da63dd13903bec0a40b3009a841b61b (patch) | |
tree | 9d5396f381a24cf61441595d6451657548b916b6 /net/core | |
parent | f4dbc2bb7a54d3bff234a9f1915f1b7187bedb1f (diff) |
page_pool: unify frag_count handling in page_pool_is_last_frag()
Currently when page_pool_create() is called with
PP_FLAG_PAGE_FRAG flag, page_pool_alloc_pages() is only
allowed to be called under the below constraints:
1. page_pool_fragment_page() need to be called to setup
page->pp_frag_count immediately.
2. page_pool_defrag_page() often need to be called to drain
the page->pp_frag_count when there is no more user will
be holding on to that page.
Those constraints exist in order to support a page to be
split into multi fragments.
And those constraints have some overhead because of the
cache line dirtying/bouncing and atomic update.
Those constraints are unavoidable for case when we need a
page to be split into more than one fragment, but there is
also case that we want to avoid the above constraints and
their overhead when a page can't be split as it can only
hold a fragment as requested by user, depending on different
use cases:
use case 1: allocate page without page splitting.
use case 2: allocate page with page splitting.
use case 3: allocate page with or without page splitting
depending on the fragment size.
Currently page pool only provide page_pool_alloc_pages() and
page_pool_alloc_frag() API to enable the 1 & 2 separately,
so we can not use a combination of 1 & 2 to enable 3, it is
not possible yet because of the per page_pool flag
PP_FLAG_PAGE_FRAG.
So in order to allow allocating unsplit page without the
overhead of split page while still allow allocating split
page we need to remove the per page_pool flag in
page_pool_is_last_frag(), as best as I can think of, it seems
there are two methods as below:
1. Add per page flag/bit to indicate a page is split or
not, which means we might need to update that flag/bit
everytime the page is recycled, dirtying the cache line
of 'struct page' for use case 1.
2. Unify the page->pp_frag_count handling for both split and
unsplit page by assuming all pages in the page pool is split
into a big fragment initially.
As page pool already supports use case 1 without dirtying the
cache line of 'struct page' whenever a page is recyclable, we
need to support the above use case 3 with minimal overhead,
especially not adding any noticeable overhead for use case 1,
and we are already doing an optimization by not updating
pp_frag_count in page_pool_defrag_page() for the last fragment
user, this patch chooses to unify the pp_frag_count handling
to support the above use case 3.
There is no noticeable performance degradation and some
justification for unifying the frag_count handling with this
patch applied using a micro-benchmark testing in [1].
1. https://lore.kernel.org/all/bf2591f8-7b3c-4480-bb2c-31dc9da1d6ac@huawei.com/
Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com>
CC: Lorenzo Bianconi <lorenzo@kernel.org>
CC: Alexander Duyck <alexander.duyck@gmail.com>
CC: Liang Chen <liangchen.linux@gmail.com>
CC: Alexander Lobakin <aleksander.lobakin@intel.com>
Link: https://lore.kernel.org/r/20231020095952.11055-2-linyunsheng@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Diffstat (limited to 'net/core')
-rw-r--r-- | net/core/page_pool.c | 10 |
1 files changed, 9 insertions, 1 deletions
diff --git a/net/core/page_pool.c b/net/core/page_pool.c index 8a9868ea5067..953535cab081 100644 --- a/net/core/page_pool.c +++ b/net/core/page_pool.c @@ -376,6 +376,14 @@ static void page_pool_set_pp_info(struct page_pool *pool, { page->pp = pool; page->pp_magic |= PP_SIGNATURE; + + /* Ensuring all pages have been split into one fragment initially: + * page_pool_set_pp_info() is only called once for every page when it + * is allocated from the page allocator and page_pool_fragment_page() + * is dirtying the same cache line as the page->pp_magic above, so + * the overhead is negligible. + */ + page_pool_fragment_page(page, 1); if (pool->p.init_callback) pool->p.init_callback(page, pool->p.init_arg); } @@ -672,7 +680,7 @@ void page_pool_put_page_bulk(struct page_pool *pool, void **data, struct page *page = virt_to_head_page(data[i]); /* It is not the last user for the page frag case */ - if (!page_pool_is_last_frag(pool, page)) + if (!page_pool_is_last_frag(page)) continue; page = __page_pool_put_page(pool, page, -1, false); |