diff options
-rw-r--r-- | include/linux/damon.h | 13 | ||||
-rw-r--r-- | mm/damon/Kconfig | 8 | ||||
-rw-r--r-- | mm/damon/Makefile | 1 | ||||
-rw-r--r-- | mm/damon/vaddr.c | 665 |
4 files changed, 687 insertions, 0 deletions
diff --git a/include/linux/damon.h b/include/linux/damon.h index ce2a84b26cd7..edb350e52b93 100644 --- a/include/linux/damon.h +++ b/include/linux/damon.h @@ -249,4 +249,17 @@ int damon_stop(struct damon_ctx **ctxs, int nr_ctxs); #endif /* CONFIG_DAMON */ +#ifdef CONFIG_DAMON_VADDR + +/* Monitoring primitives for virtual memory address spaces */ +void damon_va_init(struct damon_ctx *ctx); +void damon_va_update(struct damon_ctx *ctx); +void damon_va_prepare_access_checks(struct damon_ctx *ctx); +unsigned int damon_va_check_accesses(struct damon_ctx *ctx); +bool damon_va_target_valid(void *t); +void damon_va_cleanup(struct damon_ctx *ctx); +void damon_va_set_primitives(struct damon_ctx *ctx); + +#endif /* CONFIG_DAMON_VADDR */ + #endif /* _DAMON_H */ diff --git a/mm/damon/Kconfig b/mm/damon/Kconfig index d00e99ac1a15..5cbb5db54158 100644 --- a/mm/damon/Kconfig +++ b/mm/damon/Kconfig @@ -12,4 +12,12 @@ config DAMON See https://damonitor.github.io/doc/html/latest-damon/index.html for more information. +config DAMON_VADDR + bool "Data access monitoring primitives for virtual address spaces" + depends on DAMON && MMU + select PAGE_IDLE_FLAG + help + This builds the default data access monitoring primitives for DAMON + that works for virtual address spaces. + endmenu diff --git a/mm/damon/Makefile b/mm/damon/Makefile index 4fd2edb4becf..6ebbd08aed67 100644 --- a/mm/damon/Makefile +++ b/mm/damon/Makefile @@ -1,3 +1,4 @@ # SPDX-License-Identifier: GPL-2.0 obj-$(CONFIG_DAMON) := core.o +obj-$(CONFIG_DAMON_VADDR) += vaddr.o diff --git a/mm/damon/vaddr.c b/mm/damon/vaddr.c new file mode 100644 index 000000000000..897aa8cf96c8 --- /dev/null +++ b/mm/damon/vaddr.c @@ -0,0 +1,665 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * DAMON Primitives for Virtual Address Spaces + * + * Author: SeongJae Park <sjpark@amazon.de> + */ + +#define pr_fmt(fmt) "damon-va: " fmt + +#include <linux/damon.h> +#include <linux/hugetlb.h> +#include <linux/mm.h> +#include <linux/mmu_notifier.h> +#include <linux/highmem.h> +#include <linux/page_idle.h> +#include <linux/pagewalk.h> +#include <linux/random.h> +#include <linux/sched/mm.h> +#include <linux/slab.h> + +/* Get a random number in [l, r) */ +#define damon_rand(l, r) (l + prandom_u32_max(r - l)) + +/* + * 't->id' should be the pointer to the relevant 'struct pid' having reference + * count. Caller must put the returned task, unless it is NULL. + */ +#define damon_get_task_struct(t) \ + (get_pid_task((struct pid *)t->id, PIDTYPE_PID)) + +/* + * Get the mm_struct of the given target + * + * Caller _must_ put the mm_struct after use, unless it is NULL. + * + * Returns the mm_struct of the target on success, NULL on failure + */ +static struct mm_struct *damon_get_mm(struct damon_target *t) +{ + struct task_struct *task; + struct mm_struct *mm; + + task = damon_get_task_struct(t); + if (!task) + return NULL; + + mm = get_task_mm(task); + put_task_struct(task); + return mm; +} + +/* + * Functions for the initial monitoring target regions construction + */ + +/* + * Size-evenly split a region into 'nr_pieces' small regions + * + * Returns 0 on success, or negative error code otherwise. + */ +static int damon_va_evenly_split_region(struct damon_target *t, + struct damon_region *r, unsigned int nr_pieces) +{ + unsigned long sz_orig, sz_piece, orig_end; + struct damon_region *n = NULL, *next; + unsigned long start; + + if (!r || !nr_pieces) + return -EINVAL; + + orig_end = r->ar.end; + sz_orig = r->ar.end - r->ar.start; + sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION); + + if (!sz_piece) + return -EINVAL; + + r->ar.end = r->ar.start + sz_piece; + next = damon_next_region(r); + for (start = r->ar.end; start + sz_piece <= orig_end; + start += sz_piece) { + n = damon_new_region(start, start + sz_piece); + if (!n) + return -ENOMEM; + damon_insert_region(n, r, next, t); + r = n; + } + /* complement last region for possible rounding error */ + if (n) + n->ar.end = orig_end; + + return 0; +} + +static unsigned long sz_range(struct damon_addr_range *r) +{ + return r->end - r->start; +} + +static void swap_ranges(struct damon_addr_range *r1, + struct damon_addr_range *r2) +{ + struct damon_addr_range tmp; + + tmp = *r1; + *r1 = *r2; + *r2 = tmp; +} + +/* + * Find three regions separated by two biggest unmapped regions + * + * vma the head vma of the target address space + * regions an array of three address ranges that results will be saved + * + * This function receives an address space and finds three regions in it which + * separated by the two biggest unmapped regions in the space. Please refer to + * below comments of '__damon_va_init_regions()' function to know why this is + * necessary. + * + * Returns 0 if success, or negative error code otherwise. + */ +static int __damon_va_three_regions(struct vm_area_struct *vma, + struct damon_addr_range regions[3]) +{ + struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0}; + struct vm_area_struct *last_vma = NULL; + unsigned long start = 0; + struct rb_root rbroot; + + /* Find two biggest gaps so that first_gap > second_gap > others */ + for (; vma; vma = vma->vm_next) { + if (!last_vma) { + start = vma->vm_start; + goto next; + } + + if (vma->rb_subtree_gap <= sz_range(&second_gap)) { + rbroot.rb_node = &vma->vm_rb; + vma = rb_entry(rb_last(&rbroot), + struct vm_area_struct, vm_rb); + goto next; + } + + gap.start = last_vma->vm_end; + gap.end = vma->vm_start; + if (sz_range(&gap) > sz_range(&second_gap)) { + swap_ranges(&gap, &second_gap); + if (sz_range(&second_gap) > sz_range(&first_gap)) + swap_ranges(&second_gap, &first_gap); + } +next: + last_vma = vma; + } + + if (!sz_range(&second_gap) || !sz_range(&first_gap)) + return -EINVAL; + + /* Sort the two biggest gaps by address */ + if (first_gap.start > second_gap.start) + swap_ranges(&first_gap, &second_gap); + + /* Store the result */ + regions[0].start = ALIGN(start, DAMON_MIN_REGION); + regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION); + regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION); + regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION); + regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION); + regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION); + + return 0; +} + +/* + * Get the three regions in the given target (task) + * + * Returns 0 on success, negative error code otherwise. + */ +static int damon_va_three_regions(struct damon_target *t, + struct damon_addr_range regions[3]) +{ + struct mm_struct *mm; + int rc; + + mm = damon_get_mm(t); + if (!mm) + return -EINVAL; + + mmap_read_lock(mm); + rc = __damon_va_three_regions(mm->mmap, regions); + mmap_read_unlock(mm); + + mmput(mm); + return rc; +} + +/* + * Initialize the monitoring target regions for the given target (task) + * + * t the given target + * + * Because only a number of small portions of the entire address space + * is actually mapped to the memory and accessed, monitoring the unmapped + * regions is wasteful. That said, because we can deal with small noises, + * tracking every mapping is not strictly required but could even incur a high + * overhead if the mapping frequently changes or the number of mappings is + * high. The adaptive regions adjustment mechanism will further help to deal + * with the noise by simply identifying the unmapped areas as a region that + * has no access. Moreover, applying the real mappings that would have many + * unmapped areas inside will make the adaptive mechanism quite complex. That + * said, too huge unmapped areas inside the monitoring target should be removed + * to not take the time for the adaptive mechanism. + * + * For the reason, we convert the complex mappings to three distinct regions + * that cover every mapped area of the address space. Also the two gaps + * between the three regions are the two biggest unmapped areas in the given + * address space. In detail, this function first identifies the start and the + * end of the mappings and the two biggest unmapped areas of the address space. + * Then, it constructs the three regions as below: + * + * [mappings[0]->start, big_two_unmapped_areas[0]->start) + * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) + * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) + * + * As usual memory map of processes is as below, the gap between the heap and + * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed + * region and the stack will be two biggest unmapped regions. Because these + * gaps are exceptionally huge areas in usual address space, excluding these + * two biggest unmapped regions will be sufficient to make a trade-off. + * + * <heap> + * <BIG UNMAPPED REGION 1> + * <uppermost mmap()-ed region> + * (other mmap()-ed regions and small unmapped regions) + * <lowermost mmap()-ed region> + * <BIG UNMAPPED REGION 2> + * <stack> + */ +static void __damon_va_init_regions(struct damon_ctx *ctx, + struct damon_target *t) +{ + struct damon_region *r; + struct damon_addr_range regions[3]; + unsigned long sz = 0, nr_pieces; + int i; + + if (damon_va_three_regions(t, regions)) { + pr_err("Failed to get three regions of target %lu\n", t->id); + return; + } + + for (i = 0; i < 3; i++) + sz += regions[i].end - regions[i].start; + if (ctx->min_nr_regions) + sz /= ctx->min_nr_regions; + if (sz < DAMON_MIN_REGION) + sz = DAMON_MIN_REGION; + + /* Set the initial three regions of the target */ + for (i = 0; i < 3; i++) { + r = damon_new_region(regions[i].start, regions[i].end); + if (!r) { + pr_err("%d'th init region creation failed\n", i); + return; + } + damon_add_region(r, t); + + nr_pieces = (regions[i].end - regions[i].start) / sz; + damon_va_evenly_split_region(t, r, nr_pieces); + } +} + +/* Initialize '->regions_list' of every target (task) */ +void damon_va_init(struct damon_ctx *ctx) +{ + struct damon_target *t; + + damon_for_each_target(t, ctx) { + /* the user may set the target regions as they want */ + if (!damon_nr_regions(t)) + __damon_va_init_regions(ctx, t); + } +} + +/* + * Functions for the dynamic monitoring target regions update + */ + +/* + * Check whether a region is intersecting an address range + * + * Returns true if it is. + */ +static bool damon_intersect(struct damon_region *r, struct damon_addr_range *re) +{ + return !(r->ar.end <= re->start || re->end <= r->ar.start); +} + +/* + * Update damon regions for the three big regions of the given target + * + * t the given target + * bregions the three big regions of the target + */ +static void damon_va_apply_three_regions(struct damon_target *t, + struct damon_addr_range bregions[3]) +{ + struct damon_region *r, *next; + unsigned int i = 0; + + /* Remove regions which are not in the three big regions now */ + damon_for_each_region_safe(r, next, t) { + for (i = 0; i < 3; i++) { + if (damon_intersect(r, &bregions[i])) + break; + } + if (i == 3) + damon_destroy_region(r, t); + } + + /* Adjust intersecting regions to fit with the three big regions */ + for (i = 0; i < 3; i++) { + struct damon_region *first = NULL, *last; + struct damon_region *newr; + struct damon_addr_range *br; + + br = &bregions[i]; + /* Get the first and last regions which intersects with br */ + damon_for_each_region(r, t) { + if (damon_intersect(r, br)) { + if (!first) + first = r; + last = r; + } + if (r->ar.start >= br->end) + break; + } + if (!first) { + /* no damon_region intersects with this big region */ + newr = damon_new_region( + ALIGN_DOWN(br->start, + DAMON_MIN_REGION), + ALIGN(br->end, DAMON_MIN_REGION)); + if (!newr) + continue; + damon_insert_region(newr, damon_prev_region(r), r, t); + } else { + first->ar.start = ALIGN_DOWN(br->start, + DAMON_MIN_REGION); + last->ar.end = ALIGN(br->end, DAMON_MIN_REGION); + } + } +} + +/* + * Update regions for current memory mappings + */ +void damon_va_update(struct damon_ctx *ctx) +{ + struct damon_addr_range three_regions[3]; + struct damon_target *t; + + damon_for_each_target(t, ctx) { + if (damon_va_three_regions(t, three_regions)) + continue; + damon_va_apply_three_regions(t, three_regions); + } +} + +/* + * Get an online page for a pfn if it's in the LRU list. Otherwise, returns + * NULL. + * + * The body of this function is stolen from the 'page_idle_get_page()'. We + * steal rather than reuse it because the code is quite simple. + */ +static struct page *damon_get_page(unsigned long pfn) +{ + struct page *page = pfn_to_online_page(pfn); + + if (!page || !PageLRU(page) || !get_page_unless_zero(page)) + return NULL; + + if (unlikely(!PageLRU(page))) { + put_page(page); + page = NULL; + } + return page; +} + +static void damon_ptep_mkold(pte_t *pte, struct mm_struct *mm, + unsigned long addr) +{ + bool referenced = false; + struct page *page = damon_get_page(pte_pfn(*pte)); + + if (!page) + return; + + if (pte_young(*pte)) { + referenced = true; + *pte = pte_mkold(*pte); + } + +#ifdef CONFIG_MMU_NOTIFIER + if (mmu_notifier_clear_young(mm, addr, addr + PAGE_SIZE)) + referenced = true; +#endif /* CONFIG_MMU_NOTIFIER */ + + if (referenced) + set_page_young(page); + + set_page_idle(page); + put_page(page); +} + +static void damon_pmdp_mkold(pmd_t *pmd, struct mm_struct *mm, + unsigned long addr) +{ +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + bool referenced = false; + struct page *page = damon_get_page(pmd_pfn(*pmd)); + + if (!page) + return; + + if (pmd_young(*pmd)) { + referenced = true; + *pmd = pmd_mkold(*pmd); + } + +#ifdef CONFIG_MMU_NOTIFIER + if (mmu_notifier_clear_young(mm, addr, + addr + ((1UL) << HPAGE_PMD_SHIFT))) + referenced = true; +#endif /* CONFIG_MMU_NOTIFIER */ + + if (referenced) + set_page_young(page); + + set_page_idle(page); + put_page(page); +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +} + +static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr, + unsigned long next, struct mm_walk *walk) +{ + pte_t *pte; + spinlock_t *ptl; + + if (pmd_huge(*pmd)) { + ptl = pmd_lock(walk->mm, pmd); + if (pmd_huge(*pmd)) { + damon_pmdp_mkold(pmd, walk->mm, addr); + spin_unlock(ptl); + return 0; + } + spin_unlock(ptl); + } + + if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) + return 0; + pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); + if (!pte_present(*pte)) + goto out; + damon_ptep_mkold(pte, walk->mm, addr); +out: + pte_unmap_unlock(pte, ptl); + return 0; +} + +static struct mm_walk_ops damon_mkold_ops = { + .pmd_entry = damon_mkold_pmd_entry, +}; + +static void damon_va_mkold(struct mm_struct *mm, unsigned long addr) +{ + mmap_read_lock(mm); + walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL); + mmap_read_unlock(mm); +} + +/* + * Functions for the access checking of the regions + */ + +static void damon_va_prepare_access_check(struct damon_ctx *ctx, + struct mm_struct *mm, struct damon_region *r) +{ + r->sampling_addr = damon_rand(r->ar.start, r->ar.end); + + damon_va_mkold(mm, r->sampling_addr); +} + +void damon_va_prepare_access_checks(struct damon_ctx *ctx) +{ + struct damon_target *t; + struct mm_struct *mm; + struct damon_region *r; + + damon_for_each_target(t, ctx) { + mm = damon_get_mm(t); + if (!mm) + continue; + damon_for_each_region(r, t) + damon_va_prepare_access_check(ctx, mm, r); + mmput(mm); + } +} + +struct damon_young_walk_private { + unsigned long *page_sz; + bool young; +}; + +static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr, + unsigned long next, struct mm_walk *walk) +{ + pte_t *pte; + spinlock_t *ptl; + struct page *page; + struct damon_young_walk_private *priv = walk->private; + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + if (pmd_huge(*pmd)) { + ptl = pmd_lock(walk->mm, pmd); + if (!pmd_huge(*pmd)) { + spin_unlock(ptl); + goto regular_page; + } + page = damon_get_page(pmd_pfn(*pmd)); + if (!page) + goto huge_out; + if (pmd_young(*pmd) || !page_is_idle(page) || + mmu_notifier_test_young(walk->mm, + addr)) { + *priv->page_sz = ((1UL) << HPAGE_PMD_SHIFT); + priv->young = true; + } + put_page(page); +huge_out: + spin_unlock(ptl); + return 0; + } + +regular_page: +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + + if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) + return -EINVAL; + pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); + if (!pte_present(*pte)) + goto out; + page = damon_get_page(pte_pfn(*pte)); + if (!page) + goto out; + if (pte_young(*pte) || !page_is_idle(page) || + mmu_notifier_test_young(walk->mm, addr)) { + *priv->page_sz = PAGE_SIZE; + priv->young = true; + } + put_page(page); +out: + pte_unmap_unlock(pte, ptl); + return 0; +} + +static struct mm_walk_ops damon_young_ops = { + .pmd_entry = damon_young_pmd_entry, +}; + +static bool damon_va_young(struct mm_struct *mm, unsigned long addr, + unsigned long *page_sz) +{ + struct damon_young_walk_private arg = { + .page_sz = page_sz, + .young = false, + }; + + mmap_read_lock(mm); + walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg); + mmap_read_unlock(mm); + return arg.young; +} + +/* + * Check whether the region was accessed after the last preparation + * + * mm 'mm_struct' for the given virtual address space + * r the region to be checked + */ +static void damon_va_check_access(struct damon_ctx *ctx, + struct mm_struct *mm, struct damon_region *r) +{ + static struct mm_struct *last_mm; + static unsigned long last_addr; + static unsigned long last_page_sz = PAGE_SIZE; + static bool last_accessed; + + /* If the region is in the last checked page, reuse the result */ + if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) == + ALIGN_DOWN(r->sampling_addr, last_page_sz))) { + if (last_accessed) + r->nr_accesses++; + return; + } + + last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz); + if (last_accessed) + r->nr_accesses++; + + last_mm = mm; + last_addr = r->sampling_addr; +} + +unsigned int damon_va_check_accesses(struct damon_ctx *ctx) +{ + struct damon_target *t; + struct mm_struct *mm; + struct damon_region *r; + unsigned int max_nr_accesses = 0; + + damon_for_each_target(t, ctx) { + mm = damon_get_mm(t); + if (!mm) + continue; + damon_for_each_region(r, t) { + damon_va_check_access(ctx, mm, r); + max_nr_accesses = max(r->nr_accesses, max_nr_accesses); + } + mmput(mm); + } + + return max_nr_accesses; +} + +/* + * Functions for the target validity check and cleanup + */ + +bool damon_va_target_valid(void *target) +{ + struct damon_target *t = target; + struct task_struct *task; + + task = damon_get_task_struct(t); + if (task) { + put_task_struct(task); + return true; + } + + return false; +} + +void damon_va_set_primitives(struct damon_ctx *ctx) +{ + ctx->primitive.init = damon_va_init; + ctx->primitive.update = damon_va_update; + ctx->primitive.prepare_access_checks = damon_va_prepare_access_checks; + ctx->primitive.check_accesses = damon_va_check_accesses; + ctx->primitive.reset_aggregated = NULL; + ctx->primitive.target_valid = damon_va_target_valid; + ctx->primitive.cleanup = NULL; +} |