diff options
-rw-r--r-- | Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst b/Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst index 1a8b129cfc04..83ae3b79a643 100644 --- a/Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst +++ b/Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst @@ -4,7 +4,7 @@ A Tour Through TREE_RCU's Grace-Period Memory Ordering August 8, 2017 -This article was contributed by Paul E. McKenney +This article was contributed by Paul E. McKenney Introduction ============ @@ -48,7 +48,7 @@ Tree RCU Grace Period Memory Ordering Building Blocks The workhorse for RCU's grace-period memory ordering is the critical section for the ``rcu_node`` structure's -``->lock``. These critical sections use helper functions for lock +``->lock``. These critical sections use helper functions for lock acquisition, including ``raw_spin_lock_rcu_node()``, ``raw_spin_lock_irq_rcu_node()``, and ``raw_spin_lock_irqsave_rcu_node()``. Their lock-release counterparts are ``raw_spin_unlock_rcu_node()``, @@ -102,9 +102,9 @@ lock-acquisition and lock-release functions:: 23 r3 = READ_ONCE(x); 24 } 25 - 26 WARN_ON(r1 == 0 && r2 == 0 && r3 == 0); + 26 WARN_ON(r1 == 0 && r2 == 0 && r3 == 0); -The ``WARN_ON()`` is evaluated at “the end of time”, +The ``WARN_ON()`` is evaluated at "the end of time", after all changes have propagated throughout the system. Without the ``smp_mb__after_unlock_lock()`` provided by the acquisition functions, this ``WARN_ON()`` could trigger, for example |