summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--tools/objtool/arch/x86/special.c95
-rw-r--r--tools/objtool/check.c90
-rw-r--r--tools/objtool/check.h1
-rw-r--r--tools/objtool/special.h4
4 files changed, 103 insertions, 87 deletions
diff --git a/tools/objtool/arch/x86/special.c b/tools/objtool/arch/x86/special.c
index 34e0e162e6fd..fd4af88c0ea5 100644
--- a/tools/objtool/arch/x86/special.c
+++ b/tools/objtool/arch/x86/special.c
@@ -1,4 +1,6 @@
// SPDX-License-Identifier: GPL-2.0-or-later
+#include <string.h>
+
#include "../../special.h"
#include "../../builtin.h"
@@ -48,3 +50,96 @@ bool arch_support_alt_relocation(struct special_alt *special_alt,
return insn->offset == special_alt->new_off &&
(insn->type == INSN_CALL || is_static_jump(insn));
}
+
+/*
+ * There are 3 basic jump table patterns:
+ *
+ * 1. jmpq *[rodata addr](,%reg,8)
+ *
+ * This is the most common case by far. It jumps to an address in a simple
+ * jump table which is stored in .rodata.
+ *
+ * 2. jmpq *[rodata addr](%rip)
+ *
+ * This is caused by a rare GCC quirk, currently only seen in three driver
+ * functions in the kernel, only with certain obscure non-distro configs.
+ *
+ * As part of an optimization, GCC makes a copy of an existing switch jump
+ * table, modifies it, and then hard-codes the jump (albeit with an indirect
+ * jump) to use a single entry in the table. The rest of the jump table and
+ * some of its jump targets remain as dead code.
+ *
+ * In such a case we can just crudely ignore all unreachable instruction
+ * warnings for the entire object file. Ideally we would just ignore them
+ * for the function, but that would require redesigning the code quite a
+ * bit. And honestly that's just not worth doing: unreachable instruction
+ * warnings are of questionable value anyway, and this is such a rare issue.
+ *
+ * 3. mov [rodata addr],%reg1
+ * ... some instructions ...
+ * jmpq *(%reg1,%reg2,8)
+ *
+ * This is a fairly uncommon pattern which is new for GCC 6. As of this
+ * writing, there are 11 occurrences of it in the allmodconfig kernel.
+ *
+ * As of GCC 7 there are quite a few more of these and the 'in between' code
+ * is significant. Esp. with KASAN enabled some of the code between the mov
+ * and jmpq uses .rodata itself, which can confuse things.
+ *
+ * TODO: Once we have DWARF CFI and smarter instruction decoding logic,
+ * ensure the same register is used in the mov and jump instructions.
+ *
+ * NOTE: RETPOLINE made it harder still to decode dynamic jumps.
+ */
+struct reloc *arch_find_switch_table(struct objtool_file *file,
+ struct instruction *insn)
+{
+ struct reloc *text_reloc, *rodata_reloc;
+ struct section *table_sec;
+ unsigned long table_offset;
+
+ /* look for a relocation which references .rodata */
+ text_reloc = find_reloc_by_dest_range(file->elf, insn->sec,
+ insn->offset, insn->len);
+ if (!text_reloc || text_reloc->sym->type != STT_SECTION ||
+ !text_reloc->sym->sec->rodata)
+ return NULL;
+
+ table_offset = text_reloc->addend;
+ table_sec = text_reloc->sym->sec;
+
+ if (text_reloc->type == R_X86_64_PC32)
+ table_offset += 4;
+
+ /*
+ * Make sure the .rodata address isn't associated with a
+ * symbol. GCC jump tables are anonymous data.
+ *
+ * Also support C jump tables which are in the same format as
+ * switch jump tables. For objtool to recognize them, they
+ * need to be placed in the C_JUMP_TABLE_SECTION section. They
+ * have symbols associated with them.
+ */
+ if (find_symbol_containing(table_sec, table_offset) &&
+ strcmp(table_sec->name, C_JUMP_TABLE_SECTION))
+ return NULL;
+
+ /*
+ * Each table entry has a rela associated with it. The rela
+ * should reference text in the same function as the original
+ * instruction.
+ */
+ rodata_reloc = find_reloc_by_dest(file->elf, table_sec, table_offset);
+ if (!rodata_reloc)
+ return NULL;
+
+ /*
+ * Use of RIP-relative switch jumps is quite rare, and
+ * indicates a rare GCC quirk/bug which can leave dead
+ * code behind.
+ */
+ if (text_reloc->type == R_X86_64_PC32)
+ file->ignore_unreachables = true;
+
+ return rodata_reloc;
+}
diff --git a/tools/objtool/check.c b/tools/objtool/check.c
index 1796a7c464eb..a94ad88d036c 100644
--- a/tools/objtool/check.c
+++ b/tools/objtool/check.c
@@ -20,8 +20,6 @@
#define FAKE_JUMP_OFFSET -1
-#define C_JUMP_TABLE_SECTION ".rodata..c_jump_table"
-
struct alternative {
struct list_head list;
struct instruction *insn;
@@ -1190,56 +1188,15 @@ static int add_jump_table(struct objtool_file *file, struct instruction *insn,
}
/*
- * find_jump_table() - Given a dynamic jump, find the switch jump table in
- * .rodata associated with it.
- *
- * There are 3 basic patterns:
- *
- * 1. jmpq *[rodata addr](,%reg,8)
- *
- * This is the most common case by far. It jumps to an address in a simple
- * jump table which is stored in .rodata.
- *
- * 2. jmpq *[rodata addr](%rip)
- *
- * This is caused by a rare GCC quirk, currently only seen in three driver
- * functions in the kernel, only with certain obscure non-distro configs.
- *
- * As part of an optimization, GCC makes a copy of an existing switch jump
- * table, modifies it, and then hard-codes the jump (albeit with an indirect
- * jump) to use a single entry in the table. The rest of the jump table and
- * some of its jump targets remain as dead code.
- *
- * In such a case we can just crudely ignore all unreachable instruction
- * warnings for the entire object file. Ideally we would just ignore them
- * for the function, but that would require redesigning the code quite a
- * bit. And honestly that's just not worth doing: unreachable instruction
- * warnings are of questionable value anyway, and this is such a rare issue.
- *
- * 3. mov [rodata addr],%reg1
- * ... some instructions ...
- * jmpq *(%reg1,%reg2,8)
- *
- * This is a fairly uncommon pattern which is new for GCC 6. As of this
- * writing, there are 11 occurrences of it in the allmodconfig kernel.
- *
- * As of GCC 7 there are quite a few more of these and the 'in between' code
- * is significant. Esp. with KASAN enabled some of the code between the mov
- * and jmpq uses .rodata itself, which can confuse things.
- *
- * TODO: Once we have DWARF CFI and smarter instruction decoding logic,
- * ensure the same register is used in the mov and jump instructions.
- *
- * NOTE: RETPOLINE made it harder still to decode dynamic jumps.
+ * find_jump_table() - Given a dynamic jump, find the switch jump table
+ * associated with it.
*/
static struct reloc *find_jump_table(struct objtool_file *file,
struct symbol *func,
struct instruction *insn)
{
- struct reloc *text_reloc, *table_reloc;
+ struct reloc *table_reloc;
struct instruction *dest_insn, *orig_insn = insn;
- struct section *table_sec;
- unsigned long table_offset;
/*
* Backward search using the @first_jump_src links, these help avoid
@@ -1260,52 +1217,13 @@ static struct reloc *find_jump_table(struct objtool_file *file,
insn->jump_dest->offset > orig_insn->offset))
break;
- /* look for a relocation which references .rodata */
- text_reloc = find_reloc_by_dest_range(file->elf, insn->sec,
- insn->offset, insn->len);
- if (!text_reloc || text_reloc->sym->type != STT_SECTION ||
- !text_reloc->sym->sec->rodata)
- continue;
-
- table_offset = text_reloc->addend;
- table_sec = text_reloc->sym->sec;
-
- if (text_reloc->type == R_X86_64_PC32)
- table_offset += 4;
-
- /*
- * Make sure the .rodata address isn't associated with a
- * symbol. GCC jump tables are anonymous data.
- *
- * Also support C jump tables which are in the same format as
- * switch jump tables. For objtool to recognize them, they
- * need to be placed in the C_JUMP_TABLE_SECTION section. They
- * have symbols associated with them.
- */
- if (find_symbol_containing(table_sec, table_offset) &&
- strcmp(table_sec->name, C_JUMP_TABLE_SECTION))
- continue;
-
- /*
- * Each table entry has a reloc associated with it. The reloc
- * should reference text in the same function as the original
- * instruction.
- */
- table_reloc = find_reloc_by_dest(file->elf, table_sec, table_offset);
+ table_reloc = arch_find_switch_table(file, insn);
if (!table_reloc)
continue;
dest_insn = find_insn(file, table_reloc->sym->sec, table_reloc->addend);
if (!dest_insn || !dest_insn->func || dest_insn->func->pfunc != func)
continue;
- /*
- * Use of RIP-relative switch jumps is quite rare, and
- * indicates a rare GCC quirk/bug which can leave dead code
- * behind.
- */
- if (text_reloc->type == R_X86_64_PC32)
- file->ignore_unreachables = true;
-
return table_reloc;
}
diff --git a/tools/objtool/check.h b/tools/objtool/check.h
index 1de1188b23cd..5ec00a4b891b 100644
--- a/tools/objtool/check.h
+++ b/tools/objtool/check.h
@@ -66,5 +66,4 @@ struct instruction *find_insn(struct objtool_file *file,
insn->sec == sec; \
insn = list_next_entry(insn, list))
-
#endif /* _CHECK_H */
diff --git a/tools/objtool/special.h b/tools/objtool/special.h
index 1dc1bb3e74c6..abddf38ef334 100644
--- a/tools/objtool/special.h
+++ b/tools/objtool/special.h
@@ -10,6 +10,8 @@
#include "check.h"
#include "elf.h"
+#define C_JUMP_TABLE_SECTION ".rodata..c_jump_table"
+
struct special_alt {
struct list_head list;
@@ -34,4 +36,6 @@ void arch_handle_alternative(unsigned short feature, struct special_alt *alt);
bool arch_support_alt_relocation(struct special_alt *special_alt,
struct instruction *insn,
struct reloc *reloc);
+struct reloc *arch_find_switch_table(struct objtool_file *file,
+ struct instruction *insn);
#endif /* _SPECIAL_H */