diff options
-rw-r--r-- | fs/io_uring.c | 23 |
1 files changed, 22 insertions, 1 deletions
diff --git a/fs/io_uring.c b/fs/io_uring.c index bb4f0b2d5138..5e1c08e22990 100644 --- a/fs/io_uring.c +++ b/fs/io_uring.c @@ -2952,6 +2952,16 @@ static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe, return io_rw_prep_async(req, READ, force_nonblock); } +/* + * This is our waitqueue callback handler, registered through lock_page_async() + * when we initially tried to do the IO with the iocb armed our waitqueue. + * This gets called when the page is unlocked, and we generally expect that to + * happen when the page IO is completed and the page is now uptodate. This will + * queue a task_work based retry of the operation, attempting to copy the data + * again. If the latter fails because the page was NOT uptodate, then we will + * do a thread based blocking retry of the operation. That's the unexpected + * slow path. + */ static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode, int sync, void *arg) { @@ -3004,7 +3014,18 @@ static inline int kiocb_wait_page_queue_init(struct kiocb *kiocb, return -EOPNOTSUPP; } - +/* + * This controls whether a given IO request should be armed for async page + * based retry. If we return false here, the request is handed to the async + * worker threads for retry. If we're doing buffered reads on a regular file, + * we prepare a private wait_page_queue entry and retry the operation. This + * will either succeed because the page is now uptodate and unlocked, or it + * will register a callback when the page is unlocked at IO completion. Through + * that callback, io_uring uses task_work to setup a retry of the operation. + * That retry will attempt the buffered read again. The retry will generally + * succeed, or in rare cases where it fails, we then fall back to using the + * async worker threads for a blocking retry. + */ static bool io_rw_should_retry(struct io_kiocb *req) { struct kiocb *kiocb = &req->rw.kiocb; |