summaryrefslogtreecommitdiff
path: root/Documentation/isdn
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/isdn')
-rw-r--r--Documentation/isdn/avmb1.rst246
-rw-r--r--Documentation/isdn/gigaset.rst465
-rw-r--r--Documentation/isdn/hysdn.rst196
-rw-r--r--Documentation/isdn/index.rst3
4 files changed, 0 insertions, 910 deletions
diff --git a/Documentation/isdn/avmb1.rst b/Documentation/isdn/avmb1.rst
deleted file mode 100644
index de3961e67553..000000000000
--- a/Documentation/isdn/avmb1.rst
+++ /dev/null
@@ -1,246 +0,0 @@
-================================
-Driver for active AVM Controller
-================================
-
-The driver provides a kernel capi2.0 Interface (kernelcapi) and
-on top of this a User-Level-CAPI2.0-interface (capi)
-and a driver to connect isdn4linux with CAPI2.0 (capidrv).
-The lowlevel interface can be used to implement a CAPI2.0
-also for passive cards since July 1999.
-
-The author can be reached at calle@calle.in-berlin.de.
-The command avmcapictrl is part of the isdn4k-utils.
-t4-files can be found at ftp://ftp.avm.de/cardware/b1/linux/firmware
-
-Currently supported cards:
-
- - B1 ISA (all versions)
- - B1 PCI
- - T1/T1B (HEMA card)
- - M1
- - M2
- - B1 PCMCIA
-
-Installing
-----------
-
-You need at least /dev/capi20 to load the firmware.
-
-::
-
- mknod /dev/capi20 c 68 0
- mknod /dev/capi20.00 c 68 1
- mknod /dev/capi20.01 c 68 2
- .
- .
- .
- mknod /dev/capi20.19 c 68 20
-
-Running
--------
-
-To use the card you need the t4-files to download the firmware.
-AVM GmbH provides several t4-files for the different D-channel
-protocols (b1.t4 for Euro-ISDN). Install these file in /lib/isdn.
-
-if you configure as modules load the modules this way::
-
- insmod /lib/modules/current/misc/capiutil.o
- insmod /lib/modules/current/misc/b1.o
- insmod /lib/modules/current/misc/kernelcapi.o
- insmod /lib/modules/current/misc/capidrv.o
- insmod /lib/modules/current/misc/capi.o
-
-if you have an B1-PCI card load the module b1pci.o::
-
- insmod /lib/modules/current/misc/b1pci.o
-
-and load the firmware with::
-
- avmcapictrl load /lib/isdn/b1.t4 1
-
-if you have an B1-ISA card load the module b1isa.o
-and add the card by calling::
-
- avmcapictrl add 0x150 15
-
-and load the firmware by calling::
-
- avmcapictrl load /lib/isdn/b1.t4 1
-
-if you have an T1-ISA card load the module t1isa.o
-and add the card by calling::
-
- avmcapictrl add 0x450 15 T1 0
-
-and load the firmware by calling::
-
- avmcapictrl load /lib/isdn/t1.t4 1
-
-if you have an PCMCIA card (B1/M1/M2) load the module b1pcmcia.o
-before you insert the card.
-
-Leased Lines with B1
---------------------
-
-Init card and load firmware.
-
-For an D64S use "FV: 1" as phone number
-
-For an D64S2 use "FV: 1" and "FV: 2" for multilink
-or "FV: 1,2" to use CAPI channel bundling.
-
-/proc-Interface
------------------
-
-/proc/capi::
-
- dr-xr-xr-x 2 root root 0 Jul 1 14:03 .
- dr-xr-xr-x 82 root root 0 Jun 30 19:08 ..
- -r--r--r-- 1 root root 0 Jul 1 14:03 applications
- -r--r--r-- 1 root root 0 Jul 1 14:03 applstats
- -r--r--r-- 1 root root 0 Jul 1 14:03 capi20
- -r--r--r-- 1 root root 0 Jul 1 14:03 capidrv
- -r--r--r-- 1 root root 0 Jul 1 14:03 controller
- -r--r--r-- 1 root root 0 Jul 1 14:03 contrstats
- -r--r--r-- 1 root root 0 Jul 1 14:03 driver
- -r--r--r-- 1 root root 0 Jul 1 14:03 ncci
- -r--r--r-- 1 root root 0 Jul 1 14:03 users
-
-/proc/capi/applications:
- applid level3cnt datablkcnt datablklen ncci-cnt recvqueuelen
- level3cnt:
- capi_register parameter
- datablkcnt:
- capi_register parameter
- ncci-cnt:
- current number of nccis (connections)
- recvqueuelen:
- number of messages on receive queue
-
- for example::
-
- 1 -2 16 2048 1 0
- 2 2 7 2048 1 0
-
-/proc/capi/applstats:
- applid recvctlmsg nrecvdatamsg nsentctlmsg nsentdatamsg
- recvctlmsg:
- capi messages received without DATA_B3_IND
- recvdatamsg:
- capi DATA_B3_IND received
- sentctlmsg:
- capi messages sent without DATA_B3_REQ
- sentdatamsg:
- capi DATA_B3_REQ sent
-
- for example::
-
- 1 2057 1699 1721 1699
-
-/proc/capi/capi20: statistics of capi.o (/dev/capi20)
- minor nopen nrecvdropmsg nrecvctlmsg nrecvdatamsg sentctlmsg sentdatamsg
- minor:
- minor device number of capi device
- nopen:
- number of calls to devices open
- nrecvdropmsg:
- capi messages dropped (messages in recvqueue in close)
- nrecvctlmsg:
- capi messages received without DATA_B3_IND
- nrecvdatamsg:
- capi DATA_B3_IND received
- nsentctlmsg:
- capi messages sent without DATA_B3_REQ
- nsentdatamsg:
- capi DATA_B3_REQ sent
-
- for example::
-
- 1 2 18 0 16 2
-
-/proc/capi/capidrv: statistics of capidrv.o (capi messages)
- nrecvctlmsg nrecvdatamsg sentctlmsg sentdatamsg
- nrecvctlmsg:
- capi messages received without DATA_B3_IND
- nrecvdatamsg:
- capi DATA_B3_IND received
- nsentctlmsg:
- capi messages sent without DATA_B3_REQ
- nsentdatamsg:
- capi DATA_B3_REQ sent
-
- for example:
- 2780 2226 2256 2226
-
-/proc/capi/controller:
- controller drivername state cardname controllerinfo
-
- for example::
-
- 1 b1pci running b1pci-e000 B1 3.07-01 0xe000 19
- 2 t1isa running t1isa-450 B1 3.07-01 0x450 11 0
- 3 b1pcmcia running m2-150 B1 3.07-01 0x150 5
-
-/proc/capi/contrstats:
- controller nrecvctlmsg nrecvdatamsg sentctlmsg sentdatamsg
- nrecvctlmsg:
- capi messages received without DATA_B3_IND
- nrecvdatamsg:
- capi DATA_B3_IND received
- nsentctlmsg:
- capi messages sent without DATA_B3_REQ
- nsentdatamsg:
- capi DATA_B3_REQ sent
-
- for example::
-
- 1 2845 2272 2310 2274
- 2 2 0 2 0
- 3 2 0 2 0
-
-/proc/capi/driver:
- drivername ncontroller
-
- for example::
-
- b1pci 1
- t1isa 1
- b1pcmcia 1
- b1isa 0
-
-/proc/capi/ncci:
- apllid ncci winsize sendwindow
-
- for example::
-
- 1 0x10101 8 0
-
-/proc/capi/users: kernelmodules that use the kernelcapi.
- name
-
- for example::
-
- capidrv
- capi20
-
-Questions
----------
-
-Check out the FAQ (ftp.isdn4linux.de) or subscribe to the
-linux-avmb1@calle.in-berlin.de mailing list by sending
-a mail to majordomo@calle.in-berlin.de with
-subscribe linux-avmb1
-in the body.
-
-German documentation and several scripts can be found at
-ftp://ftp.avm.de/cardware/b1/linux/
-
-Bugs
-----
-
-If you find any please let me know.
-
-Enjoy,
-
-Carsten Paeth (calle@calle.in-berlin.de)
diff --git a/Documentation/isdn/gigaset.rst b/Documentation/isdn/gigaset.rst
deleted file mode 100644
index 98b4ec521c51..000000000000
--- a/Documentation/isdn/gigaset.rst
+++ /dev/null
@@ -1,465 +0,0 @@
-==========================
-GigaSet 307x Device Driver
-==========================
-
-1. Requirements
-=================
-
-1.1. Hardware
--------------
-
- This driver supports the connection of the Gigaset 307x/417x family of
- ISDN DECT bases via Gigaset M101 Data, Gigaset M105 Data or direct USB
- connection. The following devices are reported to be compatible:
-
- Bases:
- - Siemens Gigaset 3070/3075 isdn
- - Siemens Gigaset 4170/4175 isdn
- - Siemens Gigaset SX205/255
- - Siemens Gigaset SX353
- - T-Com Sinus 45 [AB] isdn
- - T-Com Sinus 721X[A] [SE]
- - Vox Chicago 390 ISDN (KPN Telecom)
-
- RS232 data boxes:
- - Siemens Gigaset M101 Data
- - T-Com Sinus 45 Data 1
-
- USB data boxes:
- - Siemens Gigaset M105 Data
- - Siemens Gigaset USB Adapter DECT
- - T-Com Sinus 45 Data 2
- - T-Com Sinus 721 data
- - Chicago 390 USB (KPN)
-
- See also http://www.erbze.info/sinus_gigaset.htm
- (archived at https://web.archive.org/web/20100717020421/http://www.erbze.info:80/sinus_gigaset.htm ) and
- http://gigaset307x.sourceforge.net/
-
- We had also reports from users of Gigaset M105 who could use the drivers
- with SX 100 and CX 100 ISDN bases (only in unimodem mode, see section 2.5.)
- If you have another device that works with our driver, please let us know.
-
- Chances of getting an USB device to work are good if the output of::
-
- lsusb
-
- at the command line contains one of the following::
-
- ID 0681:0001
- ID 0681:0002
- ID 0681:0009
- ID 0681:0021
- ID 0681:0022
-
-1.2. Software
--------------
-
- The driver works with the Kernel CAPI subsystem and can be used with any
- software which is able to use CAPI 2.0 for ISDN connections (voice or data).
-
- There are some user space tools available at
- https://sourceforge.net/projects/gigaset307x/
- which provide access to additional device specific functions like SMS,
- phonebook or call journal.
-
-
-2. How to use the driver
-==========================
-
-2.1. Modules
-------------
-
- For the devices to work, the proper kernel modules have to be loaded.
- This normally happens automatically when the system detects the USB
- device (base, M105) or when the line discipline is attached (M101). It
- can also be triggered manually using the modprobe(8) command, for example
- for troubleshooting or to pass module parameters.
-
- The module ser_gigaset provides a serial line discipline N_GIGASET_M101
- which uses the regular serial port driver to access the device, and must
- therefore be attached to the serial device to which the M101 is connected.
- The ldattach(8) command (included in util-linux-ng release 2.14 or later)
- can be used for that purpose, for example::
-
- ldattach GIGASET_M101 /dev/ttyS1
-
- This will open the device file, attach the line discipline to it, and
- then sleep in the background, keeping the device open so that the line
- discipline remains active. To deactivate it, kill the daemon, for example
- with::
-
- killall ldattach
-
- before disconnecting the device. To have this happen automatically at
- system startup/shutdown on an LSB compatible system, create and activate
- an appropriate LSB startup script /etc/init.d/gigaset. (The init name
- 'gigaset' is officially assigned to this project by LANANA.)
- Alternatively, just add the 'ldattach' command line to /etc/rc.local.
-
- The modules accept the following parameters:
-
- =============== ========== ==========================================
- Module Parameter Meaning
-
- gigaset debug debug level (see section 3.2.)
-
- startmode initial operation mode (see section 2.5.):
- bas_gigaset ) 1=CAPI (default), 0=Unimodem
- ser_gigaset )
- usb_gigaset ) cidmode initial Call-ID mode setting (see section
- 2.5.): 1=on (default), 0=off
-
- =============== ========== ==========================================
-
- Depending on your distribution you may want to create a separate module
- configuration file like /etc/modprobe.d/gigaset.conf for these.
-
-2.2. Device nodes for user space programs
------------------------------------------
-
- The device can be accessed from user space (eg. by the user space tools
- mentioned in 1.2.) through the device nodes:
-
- - /dev/ttyGS0 for M101 (RS232 data boxes)
- - /dev/ttyGU0 for M105 (USB data boxes)
- - /dev/ttyGB0 for the base driver (direct USB connection)
-
- If you connect more than one device of a type, they will get consecutive
- device nodes, eg. /dev/ttyGU1 for a second M105.
-
- You can also set a "default device" for the user space tools to use when
- no device node is given as parameter, by creating a symlink /dev/ttyG to
- one of them, eg.::
-
- ln -s /dev/ttyGB0 /dev/ttyG
-
- The devices accept the following device specific ioctl calls
- (defined in gigaset_dev.h):
-
- ``ioctl(int fd, GIGASET_REDIR, int *cmd);``
-
- If cmd==1, the device is set to be controlled exclusively through the
- character device node; access from the ISDN subsystem is blocked.
-
- If cmd==0, the device is set to be used from the ISDN subsystem and does
- not communicate through the character device node.
-
- ``ioctl(int fd, GIGASET_CONFIG, int *cmd);``
-
- (ser_gigaset and usb_gigaset only)
-
- If cmd==1, the device is set to adapter configuration mode where commands
- are interpreted by the M10x DECT adapter itself instead of being
- forwarded to the base station. In this mode, the device accepts the
- commands described in Siemens document "AT-Kommando Alignment M10x Data"
- for setting the operation mode, associating with a base station and
- querying parameters like field strengh and signal quality.
-
- Note that there is no ioctl command for leaving adapter configuration
- mode and returning to regular operation. In order to leave adapter
- configuration mode, write the command ATO to the device.
-
- ``ioctl(int fd, GIGASET_BRKCHARS, unsigned char brkchars[6]);``
-
- (usb_gigaset only)
-
- Set the break characters on an M105's internal serial adapter to the six
- bytes stored in brkchars[]. Unused bytes should be set to zero.
-
- ioctl(int fd, GIGASET_VERSION, unsigned version[4]);
- Retrieve version information from the driver. version[0] must be set to
- one of:
-
- - GIGVER_DRIVER: retrieve driver version
- - GIGVER_COMPAT: retrieve interface compatibility version
- - GIGVER_FWBASE: retrieve the firmware version of the base
-
- Upon return, version[] is filled with the requested version information.
-
-2.3. CAPI
----------
-
- The devices will show up as CAPI controllers as soon as the
- corresponding driver module is loaded, and can then be used with
- CAPI 2.0 kernel and user space applications. For user space access,
- the module capi.ko must be loaded.
-
- Most distributions handle loading and unloading of the various CAPI
- modules automatically via the command capiinit(1) from the capi4k-utils
- package or a similar mechanism. Note that capiinit(1) cannot unload the
- Gigaset drivers because it doesn't support more than one module per
- driver.
-
-2.5. Unimodem mode
-------------------
-
- In this mode the device works like a modem connected to a serial port
- (the /dev/ttyGU0, ... mentioned above) which understands the commands::
-
- ATZ init, reset
- => OK or ERROR
- ATD
- ATDT dial
- => OK, CONNECT,
- BUSY,
- NO DIAL TONE,
- NO CARRIER,
- NO ANSWER
- <pause>+++<pause> change to command mode when connected
- ATH hangup
-
- You can use some configuration tool of your distribution to configure this
- "modem" or configure pppd/wvdial manually. There are some example ppp
- configuration files and chat scripts in the gigaset-VERSION/ppp directory
- in the driver packages from https://sourceforge.net/projects/gigaset307x/.
- Please note that the USB drivers are not able to change the state of the
- control lines. This means you must use "Stupid Mode" if you are using
- wvdial or you should use the nocrtscts option of pppd.
- You must also assure that the ppp_async module is loaded with the parameter
- flag_time=0. You can do this e.g. by adding a line like::
-
- options ppp_async flag_time=0
-
- to an appropriate module configuration file, like::
-
- /etc/modprobe.d/gigaset.conf.
-
- Unimodem mode is needed for making some devices [e.g. SX100] work which
- do not support the regular Gigaset command set. If debug output (see
- section 3.2.) shows something like this when dialing::
-
- CMD Received: ERROR
- Available Params: 0
- Connection State: 0, Response: -1
- gigaset_process_response: resp_code -1 in ConState 0 !
- Timeout occurred
-
- then switching to unimodem mode may help.
-
- If you have installed the command line tool gigacontr, you can enter
- unimodem mode using::
-
- gigacontr --mode unimodem
-
- You can switch back using::
-
- gigacontr --mode isdn
-
- You can also put the driver directly into Unimodem mode when it's loaded,
- by passing the module parameter startmode=0 to the hardware specific
- module, e.g.::
-
- modprobe usb_gigaset startmode=0
-
- or by adding a line like::
-
- options usb_gigaset startmode=0
-
- to an appropriate module configuration file, like::
-
- /etc/modprobe.d/gigaset.conf
-
-2.6. Call-ID (CID) mode
------------------------
-
- Call-IDs are numbers used to tag commands to, and responses from, the
- Gigaset base in order to support the simultaneous handling of multiple
- ISDN calls. Their use can be enabled ("CID mode") or disabled ("Unimodem
- mode"). Without Call-IDs (in Unimodem mode), only a very limited set of
- functions is available. It allows outgoing data connections only, but
- does not signal incoming calls or other base events.
-
- DECT cordless data devices (M10x) permanently occupy the cordless
- connection to the base while Call-IDs are activated. As the Gigaset
- bases only support one DECT data connection at a time, this prevents
- other DECT cordless data devices from accessing the base.
-
- During active operation, the driver switches to the necessary mode
- automatically. However, for the reasons above, the mode chosen when
- the device is not in use (idle) can be selected by the user.
-
- - If you want to receive incoming calls, you can use the default
- settings (CID mode).
- - If you have several DECT data devices (M10x) which you want to use
- in turn, select Unimodem mode by passing the parameter "cidmode=0" to
- the appropriate driver module (ser_gigaset or usb_gigaset).
-
- If you want both of these at once, you are out of luck.
-
- You can also use the tty class parameter "cidmode" of the device to
- change its CID mode while the driver is loaded, eg.::
-
- echo 0 > /sys/class/tty/ttyGU0/cidmode
-
-2.7. Dialing Numbers
---------------------
-provided by an application for dialing out must
- be a public network number according to the local dialing plan, without
- any dial prefix for getting an outside line.
-
- Internal calls can be made by providing an internal extension number
- prefixed with ``**`` (two asterisks) as the called party number. So to dial
- eg. the first registered DECT handset, give ``**11`` as the called party
- number. Dialing ``***`` (three asterisks) calls all extensions
- simultaneously (global call).
-
- Unimodem mode does not support internal calls.
-
-2.8. Unregistered Wireless Devices (M101/M105)
-----------------------------------------------
-
- The main purpose of the ser_gigaset and usb_gigaset drivers is to allow
- the M101 and M105 wireless devices to be used as ISDN devices for ISDN
- connections through a Gigaset base. Therefore they assume that the device
- is registered to a DECT base.
-
- If the M101/M105 device is not registered to a base, initialization of
- the device fails, and a corresponding error message is logged by the
- driver. In that situation, a restricted set of functions is available
- which includes, in particular, those necessary for registering the device
- to a base or for switching it between Fixed Part and Portable Part
- modes. See the gigacontr(8) manpage for details.
-
-3. Troubleshooting
-====================
-
-3.1. Solutions to frequently reported problems
-----------------------------------------------
-
- Problem:
- You have a slow provider and isdn4linux gives up dialing too early.
- Solution:
- Load the isdn module using the dialtimeout option. You can do this e.g.
- by adding a line like::
-
- options isdn dialtimeout=15
-
- to /etc/modprobe.d/gigaset.conf or a similar file.
-
- Problem:
- The isdnlog program emits error messages or just doesn't work.
- Solution:
- Isdnlog supports only the HiSax driver. Do not attempt to use it with
- other drivers such as Gigaset.
-
- Problem:
- You have two or more DECT data adapters (M101/M105) and only the
- first one you turn on works.
- Solution:
- Select Unimodem mode for all DECT data adapters. (see section 2.5.)
-
- Problem:
- Messages like this::
-
- usb_gigaset 3-2:1.0: Could not initialize the device.
-
- appear in your syslog.
- Solution:
- Check whether your M10x wireless device is correctly registered to the
- Gigaset base. (see section 2.7.)
-
-3.2. Telling the driver to provide more information
----------------------------------------------------
- Building the driver with the "Gigaset debugging" kernel configuration
- option (CONFIG_GIGASET_DEBUG) gives it the ability to produce additional
- information useful for debugging.
-
- You can control the amount of debugging information the driver produces by
- writing an appropriate value to /sys/module/gigaset/parameters/debug,
- e.g.::
-
- echo 0 > /sys/module/gigaset/parameters/debug
-
- switches off debugging output completely,
-
- ::
-
- echo 0x302020 > /sys/module/gigaset/parameters/debug
-
- enables a reasonable set of debugging output messages. These values are
- bit patterns where every bit controls a certain type of debugging output.
- See the constants DEBUG_* in the source file gigaset.h for details.
-
- The initial value can be set using the debug parameter when loading the
- module "gigaset", e.g. by adding a line::
-
- options gigaset debug=0
-
- to your module configuration file, eg. /etc/modprobe.d/gigaset.conf
-
- Generated debugging information can be found
- - as output of the command::
-
- dmesg
-
- - in system log files written by your syslog daemon, usually
- in /var/log/, e.g. /var/log/messages.
-
-3.3. Reporting problems and bugs
---------------------------------
- If you can't solve problems with the driver on your own, feel free to
- use one of the forums, bug trackers, or mailing lists on
-
- https://sourceforge.net/projects/gigaset307x
-
- or write an electronic mail to the maintainers.
-
- Try to provide as much information as possible, such as
-
- - distribution
- - kernel version (uname -r)
- - gcc version (gcc --version)
- - hardware architecture (uname -m, ...)
- - type and firmware version of your device (base and wireless module,
- if any)
- - output of "lsusb -v" (if using an USB device)
- - error messages
- - relevant system log messages (it would help if you activate debug
- output as described in 3.2.)
-
- For help with general configuration problems not specific to our driver,
- such as isdn4linux and network configuration issues, please refer to the
- appropriate forums and newsgroups.
-
-3.4. Reporting problem solutions
---------------------------------
- If you solved a problem with our drivers, wrote startup scripts for your
- distribution, ... feel free to contact us (using one of the places
- mentioned in 3.3.). We'd like to add scripts, hints, documentation
- to the driver and/or the project web page.
-
-
-4. Links, other software
-==========================
-
- - Sourceforge project developing this driver and associated tools
- https://sourceforge.net/projects/gigaset307x
- - Yahoo! Group on the Siemens Gigaset family of devices
- https://de.groups.yahoo.com/group/Siemens-Gigaset
- - Siemens Gigaset/T-Sinus compatibility table
- http://www.erbze.info/sinus_gigaset.htm
- (archived at https://web.archive.org/web/20100717020421/http://www.erbze.info:80/sinus_gigaset.htm )
-
-
-5. Credits
-============
-
- Thanks to
-
- Karsten Keil
- for his help with isdn4linux
- Deti Fliegl
- for his base driver code
- Dennis Dietrich
- for his kernel 2.6 patches
- Andreas Rummel
- for his work and logs to get unimodem mode working
- Andreas Degert
- for his logs and patches to get cx 100 working
- Dietrich Feist
- for his generous donation of one M105 and two M101 cordless adapters
- Christoph Schweers
- for his generous donation of a M34 device
-
- and all the other people who sent logs and other information.
diff --git a/Documentation/isdn/hysdn.rst b/Documentation/isdn/hysdn.rst
deleted file mode 100644
index 0a168d1cbffc..000000000000
--- a/Documentation/isdn/hysdn.rst
+++ /dev/null
@@ -1,196 +0,0 @@
-============
-Hysdn Driver
-============
-
-The hysdn driver has been written by
-Werner Cornelius (werner@isdn4linux.de or werner@titro.de)
-for Hypercope GmbH Aachen Germany. Hypercope agreed to publish this driver
-under the GNU General Public License.
-
-The CAPI 2.0-support was added by Ulrich Albrecht (ualbrecht@hypercope.de)
-for Hypercope GmbH Aachen, Germany.
-
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
-
-.. Table of contents
-
- 1. About the driver
-
- 2. Loading/Unloading the driver
-
- 3. Entries in the /proc filesystem
-
- 4. The /proc/net/hysdn/cardconfX file
-
- 5. The /proc/net/hysdn/cardlogX file
-
- 6. Where to get additional info and help
-
-
-1. About the driver
-===================
-
- The drivers/isdn/hysdn subdir contains a driver for HYPERCOPEs active
- PCI isdn cards Champ, Ergo and Metro. To enable support for this cards
- enable ISDN support in the kernel config and support for HYSDN cards in
- the active cards submenu. The driver may only be compiled and used if
- support for loadable modules and the process filesystem have been enabled.
-
- These cards provide two different interfaces to the kernel. Without the
- optional CAPI 2.0 support, they register as ethernet card. IP-routing
- to a ISDN-destination is performed on the card itself. All necessary
- handlers for various protocols like ppp and others as well as config info
- and firmware may be fetched from Hypercopes WWW-Site www.hypercope.de.
-
- With CAPI 2.0 support enabled, the card can also be used as a CAPI 2.0
- compliant devices with either CAPI 2.0 applications
- (check isdn4k-utils) or -using the capidrv module- as a regular
- isdn4linux device. This is done via the same mechanism as with the
- active AVM cards and in fact uses the same module.
-
-
-2. Loading/Unloading the driver
-===============================
-
- The module has no command line parameters and auto detects up to 10 cards
- in the id-range 0-9.
- If a loaded driver shall be unloaded all open files in the /proc/net/hysdn
- subdir need to be closed and all ethernet interfaces allocated by this
- driver must be shut down. Otherwise the module counter will avoid a module
- unload.
-
- If you are using the CAPI 2.0-interface, make sure to load/modprobe the
- kernelcapi-module first.
-
- If you plan to use the capidrv-link to isdn4linux, make sure to load
- capidrv.o after all modules using this driver (i.e. after hysdn and
- any avm-specific modules).
-
-3. Entries in the /proc filesystem
-==================================
-
- When the module has been loaded it adds the directory hysdn in the
- /proc/net tree. This directory contains exactly 2 file entries for each
- card. One is called cardconfX and the other cardlogX, where X is the
- card id number from 0 to 9.
- The cards are numbered in the order found in the PCI config data.
-
-4. The /proc/net/hysdn/cardconfX file
-=====================================
-
- This file may be read to get by everyone to get info about the cards type,
- actual state, available features and used resources.
- The first 3 entries (id, bus and slot) are PCI info fields, the following
- type field gives the information about the cards type:
-
- - 4 -> Ergo card (server card with 2 b-chans)
- - 5 -> Metro card (server card with 4 or 8 b-chans)
- - 6 -> Champ card (client card with 2 b-chans)
-
- The following 3 fields show the hardware assignments for irq, iobase and the
- dual ported memory (dp-mem).
-
- The fields b-chans and fax-chans announce the available card resources of
- this types for the user.
-
- The state variable indicates the actual drivers state for this card with the
- following assignments.
-
- - 0 -> card has not been booted since driver load
- - 1 -> card booting is actually in progess
- - 2 -> card is in an error state due to a previous boot failure
- - 3 -> card is booted and active
-
- And the last field (device) shows the name of the ethernet device assigned
- to this card. Up to the first successful boot this field only shows a -
- to tell that no net device has been allocated up to now. Once a net device
- has been allocated it remains assigned to this card, even if a card is
- rebooted and an boot error occurs.
-
- Writing to the cardconfX file boots the card or transfers config lines to
- the cards firmware. The type of data is automatically detected when the
- first data is written. Only root has write access to this file.
- The firmware boot files are normally called hyclient.pof for client cards
- and hyserver.pof for server cards.
- After successfully writing the boot file, complete config files or single
- config lines may be copied to this file.
- If an error occurs the return value given to the writing process has the
- following additional codes (decimal):
-
- ==== ============================================
- 1000 Another process is currently bootng the card
- 1001 Invalid firmware header
- 1002 Boards dual-port RAM test failed
- 1003 Internal firmware handler error
- 1004 Boot image size invalid
- 1005 First boot stage (bootstrap loader) failed
- 1006 Second boot stage failure
- 1007 Timeout waiting for card ready during boot
- 1008 Operation only allowed in booted state
- 1009 Config line too long
- 1010 Invalid channel number
- 1011 Timeout sending config data
- ==== ============================================
-
- Additional info about error reasons may be fetched from the log output.
-
-5. The /proc/net/hysdn/cardlogX file
-====================================
-
- The cardlogX file entry may be opened multiple for reading by everyone to
- get the cards and drivers log data. Card messages always start with the
- keyword LOG. All other lines are output from the driver.
- The driver log data may be redirected to the syslog by selecting the
- appropriate bitmask. The cards log messages will always be send to this
- interface but never to the syslog.
-
- A root user may write a decimal or hex (with 0x) value t this file to select
- desired output options. As mentioned above the cards log dat is always
- written to the cardlog file independent of the following options only used
- to check and debug the driver itself:
-
- For example::
-
- echo "0x34560078" > /proc/net/hysdn/cardlog0
-
- to output the hex log mask 34560078 for card 0.
-
- The written value is regarded as an unsigned 32-Bit value, bit ored for
- desired output. The following bits are already assigned:
-
- ========== ============================================================
- 0x80000000 All driver log data is alternatively via syslog
- 0x00000001 Log memory allocation errors
- 0x00000010 Firmware load start and close are logged
- 0x00000020 Log firmware record parser
- 0x00000040 Log every firmware write actions
- 0x00000080 Log all card related boot messages
- 0x00000100 Output all config data sent for debugging purposes
- 0x00000200 Only non comment config lines are shown wth channel
- 0x00000400 Additional conf log output
- 0x00001000 Log the asynchronous scheduler actions (config and log)
- 0x00100000 Log all open and close actions to /proc/net/hysdn/card files
- 0x00200000 Log all actions from /proc file entries
- 0x00010000 Log network interface init and deinit
- ========== ============================================================
-
-6. Where to get additional info and help
-========================================
-
- If you have any problems concerning the driver or configuration contact
- the Hypercope support team (support@hypercope.de) and or the authors
- Werner Cornelius (werner@isdn4linux or cornelius@titro.de) or
- Ulrich Albrecht (ualbrecht@hypercope.de).
diff --git a/Documentation/isdn/index.rst b/Documentation/isdn/index.rst
index 407e74b78372..9622939fa526 100644
--- a/Documentation/isdn/index.rst
+++ b/Documentation/isdn/index.rst
@@ -9,9 +9,6 @@ ISDN
interface_capi
- avmb1
- gigaset
- hysdn
m_isdn
credits