summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/fpsimd.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm64/kvm/fpsimd.c')
-rw-r--r--arch/arm64/kvm/fpsimd.c110
1 files changed, 110 insertions, 0 deletions
diff --git a/arch/arm64/kvm/fpsimd.c b/arch/arm64/kvm/fpsimd.c
new file mode 100644
index 000000000000..dc6ecfa5a2d2
--- /dev/null
+++ b/arch/arm64/kvm/fpsimd.c
@@ -0,0 +1,110 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * arch/arm64/kvm/fpsimd.c: Guest/host FPSIMD context coordination helpers
+ *
+ * Copyright 2018 Arm Limited
+ * Author: Dave Martin <Dave.Martin@arm.com>
+ */
+#include <linux/bottom_half.h>
+#include <linux/sched.h>
+#include <linux/thread_info.h>
+#include <linux/kvm_host.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_host.h>
+#include <asm/kvm_mmu.h>
+
+/*
+ * Called on entry to KVM_RUN unless this vcpu previously ran at least
+ * once and the most recent prior KVM_RUN for this vcpu was called from
+ * the same task as current (highly likely).
+ *
+ * This is guaranteed to execute before kvm_arch_vcpu_load_fp(vcpu),
+ * such that on entering hyp the relevant parts of current are already
+ * mapped.
+ */
+int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu)
+{
+ int ret;
+
+ struct thread_info *ti = &current->thread_info;
+ struct user_fpsimd_state *fpsimd = &current->thread.uw.fpsimd_state;
+
+ /*
+ * Make sure the host task thread flags and fpsimd state are
+ * visible to hyp:
+ */
+ ret = create_hyp_mappings(ti, ti + 1, PAGE_HYP);
+ if (ret)
+ goto error;
+
+ ret = create_hyp_mappings(fpsimd, fpsimd + 1, PAGE_HYP);
+ if (ret)
+ goto error;
+
+ vcpu->arch.host_thread_info = kern_hyp_va(ti);
+ vcpu->arch.host_fpsimd_state = kern_hyp_va(fpsimd);
+error:
+ return ret;
+}
+
+/*
+ * Prepare vcpu for saving the host's FPSIMD state and loading the guest's.
+ * The actual loading is done by the FPSIMD access trap taken to hyp.
+ *
+ * Here, we just set the correct metadata to indicate that the FPSIMD
+ * state in the cpu regs (if any) belongs to current on the host.
+ *
+ * TIF_SVE is backed up here, since it may get clobbered with guest state.
+ * This flag is restored by kvm_arch_vcpu_put_fp(vcpu).
+ */
+void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu)
+{
+ BUG_ON(!current->mm);
+
+ vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED | KVM_ARM64_HOST_SVE_IN_USE);
+ vcpu->arch.flags |= KVM_ARM64_FP_HOST;
+ if (test_thread_flag(TIF_SVE))
+ vcpu->arch.flags |= KVM_ARM64_HOST_SVE_IN_USE;
+}
+
+/*
+ * If the guest FPSIMD state was loaded, update the host's context
+ * tracking data mark the CPU FPSIMD regs as dirty and belonging to vcpu
+ * so that they will be written back if the kernel clobbers them due to
+ * kernel-mode NEON before re-entry into the guest.
+ */
+void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
+{
+ WARN_ON_ONCE(!irqs_disabled());
+
+ if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) {
+ fpsimd_bind_state_to_cpu(&vcpu->arch.ctxt.gp_regs.fp_regs);
+ clear_thread_flag(TIF_FOREIGN_FPSTATE);
+ clear_thread_flag(TIF_SVE);
+ }
+}
+
+/*
+ * Write back the vcpu FPSIMD regs if they are dirty, and invalidate the
+ * cpu FPSIMD regs so that they can't be spuriously reused if this vcpu
+ * disappears and another task or vcpu appears that recycles the same
+ * struct fpsimd_state.
+ */
+void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu)
+{
+ local_bh_disable();
+
+ update_thread_flag(TIF_SVE,
+ vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE);
+
+ if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) {
+ /* Clean guest FP state to memory and invalidate cpu view */
+ fpsimd_save();
+ fpsimd_flush_cpu_state();
+ } else if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
+ /* Ensure user trap controls are correctly restored */
+ fpsimd_bind_task_to_cpu();
+ }
+
+ local_bh_enable();
+}