summaryrefslogtreecommitdiff
path: root/arch/x86
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86')
-rw-r--r--arch/x86/Kconfig1
-rw-r--r--arch/x86/include/asm/pgtable-3level.h46
-rw-r--r--arch/x86/kernel/cpu/intel.c8
-rw-r--r--arch/x86/mm/Makefile2
-rw-r--r--arch/x86/mm/pat.c8
-rw-r--r--arch/x86/mm/pat_internal.h20
-rw-r--r--arch/x86/mm/pat_interval.c185
-rw-r--r--arch/x86/mm/pat_rbtree.c268
8 files changed, 229 insertions, 309 deletions
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index 2e6a53881b7b..b89eb1f0c0d2 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -1462,6 +1462,7 @@ config X86_PAE
config X86_5LEVEL
bool "Enable 5-level page tables support"
+ default y
select DYNAMIC_MEMORY_LAYOUT
select SPARSEMEM_VMEMMAP
depends on X86_64
diff --git a/arch/x86/include/asm/pgtable-3level.h b/arch/x86/include/asm/pgtable-3level.h
index e3633795fb22..5afb5e0fe903 100644
--- a/arch/x86/include/asm/pgtable-3level.h
+++ b/arch/x86/include/asm/pgtable-3level.h
@@ -36,39 +36,41 @@ static inline void native_set_pte(pte_t *ptep, pte_t pte)
#define pmd_read_atomic pmd_read_atomic
/*
- * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
- * a "*pmdp" dereference done by gcc. Problem is, in certain places
- * where pte_offset_map_lock is called, concurrent page faults are
+ * pte_offset_map_lock() on 32-bit PAE kernels was reading the pmd_t with
+ * a "*pmdp" dereference done by GCC. Problem is, in certain places
+ * where pte_offset_map_lock() is called, concurrent page faults are
* allowed, if the mmap_sem is hold for reading. An example is mincore
* vs page faults vs MADV_DONTNEED. On the page fault side
- * pmd_populate rightfully does a set_64bit, but if we're reading the
+ * pmd_populate() rightfully does a set_64bit(), but if we're reading the
* pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
- * because gcc will not read the 64bit of the pmd atomically. To fix
- * this all places running pmd_offset_map_lock() while holding the
+ * because GCC will not read the 64-bit value of the pmd atomically.
+ *
+ * To fix this all places running pte_offset_map_lock() while holding the
* mmap_sem in read mode, shall read the pmdp pointer using this
- * function to know if the pmd is null nor not, and in turn to know if
- * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
+ * function to know if the pmd is null or not, and in turn to know if
+ * they can run pte_offset_map_lock() or pmd_trans_huge() or other pmd
* operations.
*
- * Without THP if the mmap_sem is hold for reading, the pmd can only
- * transition from null to not null while pmd_read_atomic runs. So
+ * Without THP if the mmap_sem is held for reading, the pmd can only
+ * transition from null to not null while pmd_read_atomic() runs. So
* we can always return atomic pmd values with this function.
*
- * With THP if the mmap_sem is hold for reading, the pmd can become
+ * With THP if the mmap_sem is held for reading, the pmd can become
* trans_huge or none or point to a pte (and in turn become "stable")
- * at any time under pmd_read_atomic. We could read it really
- * atomically here with a atomic64_read for the THP enabled case (and
+ * at any time under pmd_read_atomic(). We could read it truly
+ * atomically here with an atomic64_read() for the THP enabled case (and
* it would be a whole lot simpler), but to avoid using cmpxchg8b we
* only return an atomic pmdval if the low part of the pmdval is later
- * found stable (i.e. pointing to a pte). And we're returning a none
- * pmdval if the low part of the pmd is none. In some cases the high
- * and low part of the pmdval returned may not be consistent if THP is
- * enabled (the low part may point to previously mapped hugepage,
- * while the high part may point to a more recently mapped hugepage),
- * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
- * of the pmd to be read atomically to decide if the pmd is unstable
- * or not, with the only exception of when the low part of the pmd is
- * zero in which case we return a none pmd.
+ * found to be stable (i.e. pointing to a pte). We are also returning a
+ * 'none' (zero) pmdval if the low part of the pmd is zero.
+ *
+ * In some cases the high and low part of the pmdval returned may not be
+ * consistent if THP is enabled (the low part may point to previously
+ * mapped hugepage, while the high part may point to a more recently
+ * mapped hugepage), but pmd_none_or_trans_huge_or_clear_bad() only
+ * needs the low part of the pmd to be read atomically to decide if the
+ * pmd is unstable or not, with the only exception when the low part
+ * of the pmd is zero, in which case we return a 'none' pmd.
*/
static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
{
diff --git a/arch/x86/kernel/cpu/intel.c b/arch/x86/kernel/cpu/intel.c
index 11d5c5950e2d..4a900804a023 100644
--- a/arch/x86/kernel/cpu/intel.c
+++ b/arch/x86/kernel/cpu/intel.c
@@ -819,7 +819,7 @@ static const struct _tlb_table intel_tlb_table[] = {
{ 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
{ 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
{ 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
- { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
+ { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages" },
{ 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
{ 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
{ 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
@@ -847,7 +847,7 @@ static const struct _tlb_table intel_tlb_table[] = {
{ 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
{ 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
{ 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
- { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
+ { 0xc2, TLB_DATA_2M_4M, 16, " TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
{ 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
{ 0x00, 0, 0 }
};
@@ -859,8 +859,8 @@ static void intel_tlb_lookup(const unsigned char desc)
return;
/* look up this descriptor in the table */
- for (k = 0; intel_tlb_table[k].descriptor != desc && \
- intel_tlb_table[k].descriptor != 0; k++)
+ for (k = 0; intel_tlb_table[k].descriptor != desc &&
+ intel_tlb_table[k].descriptor != 0; k++)
;
if (intel_tlb_table[k].tlb_type == 0)
diff --git a/arch/x86/mm/Makefile b/arch/x86/mm/Makefile
index bbc68a54795e..3b89c201ac26 100644
--- a/arch/x86/mm/Makefile
+++ b/arch/x86/mm/Makefile
@@ -23,7 +23,7 @@ CFLAGS_mem_encrypt_identity.o := $(nostackp)
CFLAGS_fault.o := -I $(srctree)/$(src)/../include/asm/trace
-obj-$(CONFIG_X86_PAT) += pat_rbtree.o
+obj-$(CONFIG_X86_PAT) += pat_interval.o
obj-$(CONFIG_X86_32) += pgtable_32.o iomap_32.o
diff --git a/arch/x86/mm/pat.c b/arch/x86/mm/pat.c
index d9fbd4f69920..2d758e19ef22 100644
--- a/arch/x86/mm/pat.c
+++ b/arch/x86/mm/pat.c
@@ -603,7 +603,7 @@ int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
spin_lock(&memtype_lock);
- err = rbt_memtype_check_insert(new, new_type);
+ err = memtype_check_insert(new, new_type);
if (err) {
pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
start, end - 1,
@@ -650,7 +650,7 @@ int free_memtype(u64 start, u64 end)
}
spin_lock(&memtype_lock);
- entry = rbt_memtype_erase(start, end);
+ entry = memtype_erase(start, end);
spin_unlock(&memtype_lock);
if (IS_ERR(entry)) {
@@ -693,7 +693,7 @@ static enum page_cache_mode lookup_memtype(u64 paddr)
spin_lock(&memtype_lock);
- entry = rbt_memtype_lookup(paddr);
+ entry = memtype_lookup(paddr);
if (entry != NULL)
rettype = entry->type;
else
@@ -1109,7 +1109,7 @@ static struct memtype *memtype_get_idx(loff_t pos)
return NULL;
spin_lock(&memtype_lock);
- ret = rbt_memtype_copy_nth_element(print_entry, pos);
+ ret = memtype_copy_nth_element(print_entry, pos);
spin_unlock(&memtype_lock);
if (!ret) {
diff --git a/arch/x86/mm/pat_internal.h b/arch/x86/mm/pat_internal.h
index eeb5caeb089b..79a06684349e 100644
--- a/arch/x86/mm/pat_internal.h
+++ b/arch/x86/mm/pat_internal.h
@@ -29,20 +29,20 @@ static inline char *cattr_name(enum page_cache_mode pcm)
}
#ifdef CONFIG_X86_PAT
-extern int rbt_memtype_check_insert(struct memtype *new,
- enum page_cache_mode *new_type);
-extern struct memtype *rbt_memtype_erase(u64 start, u64 end);
-extern struct memtype *rbt_memtype_lookup(u64 addr);
-extern int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos);
+extern int memtype_check_insert(struct memtype *new,
+ enum page_cache_mode *new_type);
+extern struct memtype *memtype_erase(u64 start, u64 end);
+extern struct memtype *memtype_lookup(u64 addr);
+extern int memtype_copy_nth_element(struct memtype *out, loff_t pos);
#else
-static inline int rbt_memtype_check_insert(struct memtype *new,
- enum page_cache_mode *new_type)
+static inline int memtype_check_insert(struct memtype *new,
+ enum page_cache_mode *new_type)
{ return 0; }
-static inline struct memtype *rbt_memtype_erase(u64 start, u64 end)
+static inline struct memtype *memtype_erase(u64 start, u64 end)
{ return NULL; }
-static inline struct memtype *rbt_memtype_lookup(u64 addr)
+static inline struct memtype *memtype_lookup(u64 addr)
{ return NULL; }
-static inline int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos)
+static inline int memtype_copy_nth_element(struct memtype *out, loff_t pos)
{ return 0; }
#endif
diff --git a/arch/x86/mm/pat_interval.c b/arch/x86/mm/pat_interval.c
new file mode 100644
index 000000000000..47a1bf30748f
--- /dev/null
+++ b/arch/x86/mm/pat_interval.c
@@ -0,0 +1,185 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Handle caching attributes in page tables (PAT)
+ *
+ * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
+ * Suresh B Siddha <suresh.b.siddha@intel.com>
+ *
+ * Interval tree used to store the PAT memory type reservations.
+ */
+
+#include <linux/seq_file.h>
+#include <linux/debugfs.h>
+#include <linux/kernel.h>
+#include <linux/interval_tree_generic.h>
+#include <linux/sched.h>
+#include <linux/gfp.h>
+
+#include <asm/pgtable.h>
+#include <asm/pat.h>
+
+#include "pat_internal.h"
+
+/*
+ * The memtype tree keeps track of memory type for specific
+ * physical memory areas. Without proper tracking, conflicting memory
+ * types in different mappings can cause CPU cache corruption.
+ *
+ * The tree is an interval tree (augmented rbtree) with tree ordered
+ * on starting address. Tree can contain multiple entries for
+ * different regions which overlap. All the aliases have the same
+ * cache attributes of course.
+ *
+ * memtype_lock protects the rbtree.
+ */
+static inline u64 memtype_interval_start(struct memtype *memtype)
+{
+ return memtype->start;
+}
+
+static inline u64 memtype_interval_end(struct memtype *memtype)
+{
+ return memtype->end - 1;
+}
+INTERVAL_TREE_DEFINE(struct memtype, rb, u64, subtree_max_end,
+ memtype_interval_start, memtype_interval_end,
+ static, memtype_interval)
+
+static struct rb_root_cached memtype_rbroot = RB_ROOT_CACHED;
+
+enum {
+ MEMTYPE_EXACT_MATCH = 0,
+ MEMTYPE_END_MATCH = 1
+};
+
+static struct memtype *memtype_match(u64 start, u64 end, int match_type)
+{
+ struct memtype *match;
+
+ match = memtype_interval_iter_first(&memtype_rbroot, start, end);
+ while (match != NULL && match->start < end) {
+ if ((match_type == MEMTYPE_EXACT_MATCH) &&
+ (match->start == start) && (match->end == end))
+ return match;
+
+ if ((match_type == MEMTYPE_END_MATCH) &&
+ (match->start < start) && (match->end == end))
+ return match;
+
+ match = memtype_interval_iter_next(match, start, end);
+ }
+
+ return NULL; /* Returns NULL if there is no match */
+}
+
+static int memtype_check_conflict(u64 start, u64 end,
+ enum page_cache_mode reqtype,
+ enum page_cache_mode *newtype)
+{
+ struct memtype *match;
+ enum page_cache_mode found_type = reqtype;
+
+ match = memtype_interval_iter_first(&memtype_rbroot, start, end);
+ if (match == NULL)
+ goto success;
+
+ if (match->type != found_type && newtype == NULL)
+ goto failure;
+
+ dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
+ found_type = match->type;
+
+ match = memtype_interval_iter_next(match, start, end);
+ while (match) {
+ if (match->type != found_type)
+ goto failure;
+
+ match = memtype_interval_iter_next(match, start, end);
+ }
+success:
+ if (newtype)
+ *newtype = found_type;
+
+ return 0;
+
+failure:
+ pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
+ current->comm, current->pid, start, end,
+ cattr_name(found_type), cattr_name(match->type));
+ return -EBUSY;
+}
+
+int memtype_check_insert(struct memtype *new,
+ enum page_cache_mode *ret_type)
+{
+ int err = 0;
+
+ err = memtype_check_conflict(new->start, new->end, new->type, ret_type);
+ if (err)
+ return err;
+
+ if (ret_type)
+ new->type = *ret_type;
+
+ memtype_interval_insert(new, &memtype_rbroot);
+ return 0;
+}
+
+struct memtype *memtype_erase(u64 start, u64 end)
+{
+ struct memtype *data;
+
+ /*
+ * Since the memtype_rbroot tree allows overlapping ranges,
+ * memtype_erase() checks with EXACT_MATCH first, i.e. free
+ * a whole node for the munmap case. If no such entry is found,
+ * it then checks with END_MATCH, i.e. shrink the size of a node
+ * from the end for the mremap case.
+ */
+ data = memtype_match(start, end, MEMTYPE_EXACT_MATCH);
+ if (!data) {
+ data = memtype_match(start, end, MEMTYPE_END_MATCH);
+ if (!data)
+ return ERR_PTR(-EINVAL);
+ }
+
+ if (data->start == start) {
+ /* munmap: erase this node */
+ memtype_interval_remove(data, &memtype_rbroot);
+ } else {
+ /* mremap: update the end value of this node */
+ memtype_interval_remove(data, &memtype_rbroot);
+ data->end = start;
+ memtype_interval_insert(data, &memtype_rbroot);
+ return NULL;
+ }
+
+ return data;
+}
+
+struct memtype *memtype_lookup(u64 addr)
+{
+ return memtype_interval_iter_first(&memtype_rbroot, addr,
+ addr + PAGE_SIZE);
+}
+
+#if defined(CONFIG_DEBUG_FS)
+int memtype_copy_nth_element(struct memtype *out, loff_t pos)
+{
+ struct memtype *match;
+ int i = 1;
+
+ match = memtype_interval_iter_first(&memtype_rbroot, 0, ULONG_MAX);
+ while (match && pos != i) {
+ match = memtype_interval_iter_next(match, 0, ULONG_MAX);
+ i++;
+ }
+
+ if (match) { /* pos == i */
+ *out = *match;
+ return 0;
+ } else {
+ return 1;
+ }
+}
+#endif
diff --git a/arch/x86/mm/pat_rbtree.c b/arch/x86/mm/pat_rbtree.c
deleted file mode 100644
index 65ebe4b88f7c..000000000000
--- a/arch/x86/mm/pat_rbtree.c
+++ /dev/null
@@ -1,268 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-/*
- * Handle caching attributes in page tables (PAT)
- *
- * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
- * Suresh B Siddha <suresh.b.siddha@intel.com>
- *
- * Interval tree (augmented rbtree) used to store the PAT memory type
- * reservations.
- */
-
-#include <linux/seq_file.h>
-#include <linux/debugfs.h>
-#include <linux/kernel.h>
-#include <linux/rbtree_augmented.h>
-#include <linux/sched.h>
-#include <linux/gfp.h>
-
-#include <asm/pgtable.h>
-#include <asm/pat.h>
-
-#include "pat_internal.h"
-
-/*
- * The memtype tree keeps track of memory type for specific
- * physical memory areas. Without proper tracking, conflicting memory
- * types in different mappings can cause CPU cache corruption.
- *
- * The tree is an interval tree (augmented rbtree) with tree ordered
- * on starting address. Tree can contain multiple entries for
- * different regions which overlap. All the aliases have the same
- * cache attributes of course.
- *
- * memtype_lock protects the rbtree.
- */
-
-static struct rb_root memtype_rbroot = RB_ROOT;
-
-static int is_node_overlap(struct memtype *node, u64 start, u64 end)
-{
- if (node->start >= end || node->end <= start)
- return 0;
-
- return 1;
-}
-
-static u64 get_subtree_max_end(struct rb_node *node)
-{
- u64 ret = 0;
- if (node) {
- struct memtype *data = rb_entry(node, struct memtype, rb);
- ret = data->subtree_max_end;
- }
- return ret;
-}
-
-#define NODE_END(node) ((node)->end)
-
-RB_DECLARE_CALLBACKS_MAX(static, memtype_rb_augment_cb,
- struct memtype, rb, u64, subtree_max_end, NODE_END)
-
-/* Find the first (lowest start addr) overlapping range from rb tree */
-static struct memtype *memtype_rb_lowest_match(struct rb_root *root,
- u64 start, u64 end)
-{
- struct rb_node *node = root->rb_node;
- struct memtype *last_lower = NULL;
-
- while (node) {
- struct memtype *data = rb_entry(node, struct memtype, rb);
-
- if (get_subtree_max_end(node->rb_left) > start) {
- /* Lowest overlap if any must be on left side */
- node = node->rb_left;
- } else if (is_node_overlap(data, start, end)) {
- last_lower = data;
- break;
- } else if (start >= data->start) {
- /* Lowest overlap if any must be on right side */
- node = node->rb_right;
- } else {
- break;
- }
- }
- return last_lower; /* Returns NULL if there is no overlap */
-}
-
-enum {
- MEMTYPE_EXACT_MATCH = 0,
- MEMTYPE_END_MATCH = 1
-};
-
-static struct memtype *memtype_rb_match(struct rb_root *root,
- u64 start, u64 end, int match_type)
-{
- struct memtype *match;
-
- match = memtype_rb_lowest_match(root, start, end);
- while (match != NULL && match->start < end) {
- struct rb_node *node;
-
- if ((match_type == MEMTYPE_EXACT_MATCH) &&
- (match->start == start) && (match->end == end))
- return match;
-
- if ((match_type == MEMTYPE_END_MATCH) &&
- (match->start < start) && (match->end == end))
- return match;
-
- node = rb_next(&match->rb);
- if (node)
- match = rb_entry(node, struct memtype, rb);
- else
- match = NULL;
- }
-
- return NULL; /* Returns NULL if there is no match */
-}
-
-static int memtype_rb_check_conflict(struct rb_root *root,
- u64 start, u64 end,
- enum page_cache_mode reqtype,
- enum page_cache_mode *newtype)
-{
- struct rb_node *node;
- struct memtype *match;
- enum page_cache_mode found_type = reqtype;
-
- match = memtype_rb_lowest_match(&memtype_rbroot, start, end);
- if (match == NULL)
- goto success;
-
- if (match->type != found_type && newtype == NULL)
- goto failure;
-
- dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
- found_type = match->type;
-
- node = rb_next(&match->rb);
- while (node) {
- match = rb_entry(node, struct memtype, rb);
-
- if (match->start >= end) /* Checked all possible matches */
- goto success;
-
- if (is_node_overlap(match, start, end) &&
- match->type != found_type) {
- goto failure;
- }
-
- node = rb_next(&match->rb);
- }
-success:
- if (newtype)
- *newtype = found_type;
-
- return 0;
-
-failure:
- pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
- current->comm, current->pid, start, end,
- cattr_name(found_type), cattr_name(match->type));
- return -EBUSY;
-}
-
-static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata)
-{
- struct rb_node **node = &(root->rb_node);
- struct rb_node *parent = NULL;
-
- while (*node) {
- struct memtype *data = rb_entry(*node, struct memtype, rb);
-
- parent = *node;
- if (data->subtree_max_end < newdata->end)
- data->subtree_max_end = newdata->end;
- if (newdata->start <= data->start)
- node = &((*node)->rb_left);
- else if (newdata->start > data->start)
- node = &((*node)->rb_right);
- }
-
- newdata->subtree_max_end = newdata->end;
- rb_link_node(&newdata->rb, parent, node);
- rb_insert_augmented(&newdata->rb, root, &memtype_rb_augment_cb);
-}
-
-int rbt_memtype_check_insert(struct memtype *new,
- enum page_cache_mode *ret_type)
-{
- int err = 0;
-
- err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end,
- new->type, ret_type);
-
- if (!err) {
- if (ret_type)
- new->type = *ret_type;
-
- new->subtree_max_end = new->end;
- memtype_rb_insert(&memtype_rbroot, new);
- }
- return err;
-}
-
-struct memtype *rbt_memtype_erase(u64 start, u64 end)
-{
- struct memtype *data;
-
- /*
- * Since the memtype_rbroot tree allows overlapping ranges,
- * rbt_memtype_erase() checks with EXACT_MATCH first, i.e. free
- * a whole node for the munmap case. If no such entry is found,
- * it then checks with END_MATCH, i.e. shrink the size of a node
- * from the end for the mremap case.
- */
- data = memtype_rb_match(&memtype_rbroot, start, end,
- MEMTYPE_EXACT_MATCH);
- if (!data) {
- data = memtype_rb_match(&memtype_rbroot, start, end,
- MEMTYPE_END_MATCH);
- if (!data)
- return ERR_PTR(-EINVAL);
- }
-
- if (data->start == start) {
- /* munmap: erase this node */
- rb_erase_augmented(&data->rb, &memtype_rbroot,
- &memtype_rb_augment_cb);
- } else {
- /* mremap: update the end value of this node */
- rb_erase_augmented(&data->rb, &memtype_rbroot,
- &memtype_rb_augment_cb);
- data->end = start;
- data->subtree_max_end = data->end;
- memtype_rb_insert(&memtype_rbroot, data);
- return NULL;
- }
-
- return data;
-}
-
-struct memtype *rbt_memtype_lookup(u64 addr)
-{
- return memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE);
-}
-
-#if defined(CONFIG_DEBUG_FS)
-int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos)
-{
- struct rb_node *node;
- int i = 1;
-
- node = rb_first(&memtype_rbroot);
- while (node && pos != i) {
- node = rb_next(node);
- i++;
- }
-
- if (node) { /* pos == i */
- struct memtype *this = rb_entry(node, struct memtype, rb);
- *out = *this;
- return 0;
- } else {
- return 1;
- }
-}
-#endif