diff options
Diffstat (limited to 'crypto/jitterentropy-kcapi.c')
-rw-r--r-- | crypto/jitterentropy-kcapi.c | 190 |
1 files changed, 170 insertions, 20 deletions
diff --git a/crypto/jitterentropy-kcapi.c b/crypto/jitterentropy-kcapi.c index b9edfaa51b27..7d1463a1562a 100644 --- a/crypto/jitterentropy-kcapi.c +++ b/crypto/jitterentropy-kcapi.c @@ -2,7 +2,7 @@ * Non-physical true random number generator based on timing jitter -- * Linux Kernel Crypto API specific code * - * Copyright Stephan Mueller <smueller@chronox.de>, 2015 + * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions @@ -37,6 +37,8 @@ * DAMAGE. */ +#include <crypto/hash.h> +#include <crypto/sha3.h> #include <linux/fips.h> #include <linux/kernel.h> #include <linux/module.h> @@ -46,6 +48,8 @@ #include "jitterentropy.h" +#define JENT_CONDITIONING_HASH "sha3-256-generic" + /*************************************************************************** * Helper function ***************************************************************************/ @@ -60,11 +64,6 @@ void jent_zfree(void *ptr) kfree_sensitive(ptr); } -void jent_memcpy(void *dest, const void *src, unsigned int n) -{ - memcpy(dest, src, n); -} - /* * Obtain a high-resolution time stamp value. The time stamp is used to measure * the execution time of a given code path and its variations. Hence, the time @@ -89,6 +88,92 @@ void jent_get_nstime(__u64 *out) tmp = ktime_get_ns(); *out = tmp; + jent_raw_hires_entropy_store(tmp); +} + +int jent_hash_time(void *hash_state, __u64 time, u8 *addtl, + unsigned int addtl_len, __u64 hash_loop_cnt, + unsigned int stuck) +{ + struct shash_desc *hash_state_desc = (struct shash_desc *)hash_state; + SHASH_DESC_ON_STACK(desc, hash_state_desc->tfm); + u8 intermediary[SHA3_256_DIGEST_SIZE]; + __u64 j = 0; + int ret; + + desc->tfm = hash_state_desc->tfm; + + if (sizeof(intermediary) != crypto_shash_digestsize(desc->tfm)) { + pr_warn_ratelimited("Unexpected digest size\n"); + return -EINVAL; + } + + /* + * This loop fills a buffer which is injected into the entropy pool. + * The main reason for this loop is to execute something over which we + * can perform a timing measurement. The injection of the resulting + * data into the pool is performed to ensure the result is used and + * the compiler cannot optimize the loop away in case the result is not + * used at all. Yet that data is considered "additional information" + * considering the terminology from SP800-90A without any entropy. + * + * Note, it does not matter which or how much data you inject, we are + * interested in one Keccack1600 compression operation performed with + * the crypto_shash_final. + */ + for (j = 0; j < hash_loop_cnt; j++) { + ret = crypto_shash_init(desc) ?: + crypto_shash_update(desc, intermediary, + sizeof(intermediary)) ?: + crypto_shash_finup(desc, addtl, addtl_len, intermediary); + if (ret) + goto err; + } + + /* + * Inject the data from the previous loop into the pool. This data is + * not considered to contain any entropy, but it stirs the pool a bit. + */ + ret = crypto_shash_update(desc, intermediary, sizeof(intermediary)); + if (ret) + goto err; + + /* + * Insert the time stamp into the hash context representing the pool. + * + * If the time stamp is stuck, do not finally insert the value into the + * entropy pool. Although this operation should not do any harm even + * when the time stamp has no entropy, SP800-90B requires that any + * conditioning operation to have an identical amount of input data + * according to section 3.1.5. + */ + if (!stuck) { + ret = crypto_shash_update(hash_state_desc, (u8 *)&time, + sizeof(__u64)); + } + +err: + shash_desc_zero(desc); + memzero_explicit(intermediary, sizeof(intermediary)); + + return ret; +} + +int jent_read_random_block(void *hash_state, char *dst, unsigned int dst_len) +{ + struct shash_desc *hash_state_desc = (struct shash_desc *)hash_state; + u8 jent_block[SHA3_256_DIGEST_SIZE]; + /* Obtain data from entropy pool and re-initialize it */ + int ret = crypto_shash_final(hash_state_desc, jent_block) ?: + crypto_shash_init(hash_state_desc) ?: + crypto_shash_update(hash_state_desc, jent_block, + sizeof(jent_block)); + + if (!ret && dst_len) + memcpy(dst, jent_block, dst_len); + + memzero_explicit(jent_block, sizeof(jent_block)); + return ret; } /*************************************************************************** @@ -98,32 +183,82 @@ void jent_get_nstime(__u64 *out) struct jitterentropy { spinlock_t jent_lock; struct rand_data *entropy_collector; + struct crypto_shash *tfm; + struct shash_desc *sdesc; }; -static int jent_kcapi_init(struct crypto_tfm *tfm) +static void jent_kcapi_cleanup(struct crypto_tfm *tfm) { struct jitterentropy *rng = crypto_tfm_ctx(tfm); - int ret = 0; - rng->entropy_collector = jent_entropy_collector_alloc(1, 0); - if (!rng->entropy_collector) - ret = -ENOMEM; + spin_lock(&rng->jent_lock); - spin_lock_init(&rng->jent_lock); - return ret; -} + if (rng->sdesc) { + shash_desc_zero(rng->sdesc); + kfree(rng->sdesc); + } + rng->sdesc = NULL; -static void jent_kcapi_cleanup(struct crypto_tfm *tfm) -{ - struct jitterentropy *rng = crypto_tfm_ctx(tfm); + if (rng->tfm) + crypto_free_shash(rng->tfm); + rng->tfm = NULL; - spin_lock(&rng->jent_lock); if (rng->entropy_collector) jent_entropy_collector_free(rng->entropy_collector); rng->entropy_collector = NULL; spin_unlock(&rng->jent_lock); } +static int jent_kcapi_init(struct crypto_tfm *tfm) +{ + struct jitterentropy *rng = crypto_tfm_ctx(tfm); + struct crypto_shash *hash; + struct shash_desc *sdesc; + int size, ret = 0; + + spin_lock_init(&rng->jent_lock); + + /* + * Use SHA3-256 as conditioner. We allocate only the generic + * implementation as we are not interested in high-performance. The + * execution time of the SHA3 operation is measured and adds to the + * Jitter RNG's unpredictable behavior. If we have a slower hash + * implementation, the execution timing variations are larger. When + * using a fast implementation, we would need to call it more often + * as its variations are lower. + */ + hash = crypto_alloc_shash(JENT_CONDITIONING_HASH, 0, 0); + if (IS_ERR(hash)) { + pr_err("Cannot allocate conditioning digest\n"); + return PTR_ERR(hash); + } + rng->tfm = hash; + + size = sizeof(struct shash_desc) + crypto_shash_descsize(hash); + sdesc = kmalloc(size, GFP_KERNEL); + if (!sdesc) { + ret = -ENOMEM; + goto err; + } + + sdesc->tfm = hash; + crypto_shash_init(sdesc); + rng->sdesc = sdesc; + + rng->entropy_collector = jent_entropy_collector_alloc(1, 0, sdesc); + if (!rng->entropy_collector) { + ret = -ENOMEM; + goto err; + } + + spin_lock_init(&rng->jent_lock); + return 0; + +err: + jent_kcapi_cleanup(tfm); + return ret; +} + static int jent_kcapi_random(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *rdata, unsigned int dlen) @@ -180,20 +315,34 @@ static struct rng_alg jent_alg = { .cra_module = THIS_MODULE, .cra_init = jent_kcapi_init, .cra_exit = jent_kcapi_cleanup, - } }; static int __init jent_mod_init(void) { + SHASH_DESC_ON_STACK(desc, tfm); + struct crypto_shash *tfm; int ret = 0; - ret = jent_entropy_init(); + jent_testing_init(); + + tfm = crypto_alloc_shash(JENT_CONDITIONING_HASH, 0, 0); + if (IS_ERR(tfm)) { + jent_testing_exit(); + return PTR_ERR(tfm); + } + + desc->tfm = tfm; + crypto_shash_init(desc); + ret = jent_entropy_init(desc); + shash_desc_zero(desc); + crypto_free_shash(tfm); if (ret) { /* Handle permanent health test error */ if (fips_enabled) panic("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret); + jent_testing_exit(); pr_info("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret); return -EFAULT; } @@ -202,6 +351,7 @@ static int __init jent_mod_init(void) static void __exit jent_mod_exit(void) { + jent_testing_exit(); crypto_unregister_rng(&jent_alg); } |