diff options
Diffstat (limited to 'crypto')
-rw-r--r-- | crypto/Kconfig | 9 | ||||
-rw-r--r-- | crypto/Makefile | 1 | ||||
-rw-r--r-- | crypto/gf128mul.c | 416 |
3 files changed, 3 insertions, 423 deletions
diff --git a/crypto/Kconfig b/crypto/Kconfig index d779667671b2..9c86f7045157 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -175,9 +175,6 @@ config CRYPTO_MANAGER_EXTRA_TESTS This is intended for developer use only, as these tests take much longer to run than the normal self tests. -config CRYPTO_GF128MUL - tristate - config CRYPTO_NULL tristate "Null algorithms" select CRYPTO_NULL2 @@ -714,9 +711,9 @@ config CRYPTO_KEYWRAP config CRYPTO_LRW tristate "LRW (Liskov Rivest Wagner)" + select CRYPTO_LIB_GF128MUL select CRYPTO_SKCIPHER select CRYPTO_MANAGER - select CRYPTO_GF128MUL select CRYPTO_ECB help LRW (Liskov Rivest Wagner) mode @@ -926,8 +923,8 @@ config CRYPTO_CMAC config CRYPTO_GHASH tristate "GHASH" - select CRYPTO_GF128MUL select CRYPTO_HASH + select CRYPTO_LIB_GF128MUL help GCM GHASH function (NIST SP800-38D) @@ -967,8 +964,8 @@ config CRYPTO_MICHAEL_MIC config CRYPTO_POLYVAL tristate - select CRYPTO_GF128MUL select CRYPTO_HASH + select CRYPTO_LIB_GF128MUL help POLYVAL hash function for HCTR2 diff --git a/crypto/Makefile b/crypto/Makefile index 303b21c43df0..d0126c915834 100644 --- a/crypto/Makefile +++ b/crypto/Makefile @@ -85,7 +85,6 @@ obj-$(CONFIG_CRYPTO_WP512) += wp512.o CFLAGS_wp512.o := $(call cc-option,-fno-schedule-insns) # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79149 obj-$(CONFIG_CRYPTO_BLAKE2B) += blake2b_generic.o CFLAGS_blake2b_generic.o := -Wframe-larger-than=4096 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105930 -obj-$(CONFIG_CRYPTO_GF128MUL) += gf128mul.o obj-$(CONFIG_CRYPTO_ECB) += ecb.o obj-$(CONFIG_CRYPTO_CBC) += cbc.o obj-$(CONFIG_CRYPTO_CFB) += cfb.o diff --git a/crypto/gf128mul.c b/crypto/gf128mul.c deleted file mode 100644 index a69ae3e6c16c..000000000000 --- a/crypto/gf128mul.c +++ /dev/null @@ -1,416 +0,0 @@ -/* gf128mul.c - GF(2^128) multiplication functions - * - * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. - * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org> - * - * Based on Dr Brian Gladman's (GPL'd) work published at - * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php - * See the original copyright notice below. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the Free - * Software Foundation; either version 2 of the License, or (at your option) - * any later version. - */ - -/* - --------------------------------------------------------------------------- - Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. - - LICENSE TERMS - - The free distribution and use of this software in both source and binary - form is allowed (with or without changes) provided that: - - 1. distributions of this source code include the above copyright - notice, this list of conditions and the following disclaimer; - - 2. distributions in binary form include the above copyright - notice, this list of conditions and the following disclaimer - in the documentation and/or other associated materials; - - 3. the copyright holder's name is not used to endorse products - built using this software without specific written permission. - - ALTERNATIVELY, provided that this notice is retained in full, this product - may be distributed under the terms of the GNU General Public License (GPL), - in which case the provisions of the GPL apply INSTEAD OF those given above. - - DISCLAIMER - - This software is provided 'as is' with no explicit or implied warranties - in respect of its properties, including, but not limited to, correctness - and/or fitness for purpose. - --------------------------------------------------------------------------- - Issue 31/01/2006 - - This file provides fast multiplication in GF(2^128) as required by several - cryptographic authentication modes -*/ - -#include <crypto/gf128mul.h> -#include <linux/kernel.h> -#include <linux/module.h> -#include <linux/slab.h> - -#define gf128mul_dat(q) { \ - q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\ - q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\ - q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\ - q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\ - q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\ - q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\ - q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\ - q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\ - q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\ - q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\ - q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\ - q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\ - q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\ - q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\ - q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\ - q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\ - q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\ - q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\ - q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\ - q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\ - q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\ - q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\ - q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\ - q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\ - q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\ - q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\ - q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\ - q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\ - q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\ - q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\ - q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\ - q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \ -} - -/* - * Given a value i in 0..255 as the byte overflow when a field element - * in GF(2^128) is multiplied by x^8, the following macro returns the - * 16-bit value that must be XOR-ed into the low-degree end of the - * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1. - * - * There are two versions of the macro, and hence two tables: one for - * the "be" convention where the highest-order bit is the coefficient of - * the highest-degree polynomial term, and one for the "le" convention - * where the highest-order bit is the coefficient of the lowest-degree - * polynomial term. In both cases the values are stored in CPU byte - * endianness such that the coefficients are ordered consistently across - * bytes, i.e. in the "be" table bits 15..0 of the stored value - * correspond to the coefficients of x^15..x^0, and in the "le" table - * bits 15..0 correspond to the coefficients of x^0..x^15. - * - * Therefore, provided that the appropriate byte endianness conversions - * are done by the multiplication functions (and these must be in place - * anyway to support both little endian and big endian CPUs), the "be" - * table can be used for multiplications of both "bbe" and "ble" - * elements, and the "le" table can be used for multiplications of both - * "lle" and "lbe" elements. - */ - -#define xda_be(i) ( \ - (i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \ - (i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \ - (i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \ - (i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \ -) - -#define xda_le(i) ( \ - (i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \ - (i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \ - (i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \ - (i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \ -) - -static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le); -static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be); - -/* - * The following functions multiply a field element by x^8 in - * the polynomial field representation. They use 64-bit word operations - * to gain speed but compensate for machine endianness and hence work - * correctly on both styles of machine. - */ - -static void gf128mul_x8_lle(be128 *x) -{ - u64 a = be64_to_cpu(x->a); - u64 b = be64_to_cpu(x->b); - u64 _tt = gf128mul_table_le[b & 0xff]; - - x->b = cpu_to_be64((b >> 8) | (a << 56)); - x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); -} - -static void gf128mul_x8_bbe(be128 *x) -{ - u64 a = be64_to_cpu(x->a); - u64 b = be64_to_cpu(x->b); - u64 _tt = gf128mul_table_be[a >> 56]; - - x->a = cpu_to_be64((a << 8) | (b >> 56)); - x->b = cpu_to_be64((b << 8) ^ _tt); -} - -void gf128mul_x8_ble(le128 *r, const le128 *x) -{ - u64 a = le64_to_cpu(x->a); - u64 b = le64_to_cpu(x->b); - u64 _tt = gf128mul_table_be[a >> 56]; - - r->a = cpu_to_le64((a << 8) | (b >> 56)); - r->b = cpu_to_le64((b << 8) ^ _tt); -} -EXPORT_SYMBOL(gf128mul_x8_ble); - -void gf128mul_lle(be128 *r, const be128 *b) -{ - be128 p[8]; - int i; - - p[0] = *r; - for (i = 0; i < 7; ++i) - gf128mul_x_lle(&p[i + 1], &p[i]); - - memset(r, 0, sizeof(*r)); - for (i = 0;;) { - u8 ch = ((u8 *)b)[15 - i]; - - if (ch & 0x80) - be128_xor(r, r, &p[0]); - if (ch & 0x40) - be128_xor(r, r, &p[1]); - if (ch & 0x20) - be128_xor(r, r, &p[2]); - if (ch & 0x10) - be128_xor(r, r, &p[3]); - if (ch & 0x08) - be128_xor(r, r, &p[4]); - if (ch & 0x04) - be128_xor(r, r, &p[5]); - if (ch & 0x02) - be128_xor(r, r, &p[6]); - if (ch & 0x01) - be128_xor(r, r, &p[7]); - - if (++i >= 16) - break; - - gf128mul_x8_lle(r); - } -} -EXPORT_SYMBOL(gf128mul_lle); - -void gf128mul_bbe(be128 *r, const be128 *b) -{ - be128 p[8]; - int i; - - p[0] = *r; - for (i = 0; i < 7; ++i) - gf128mul_x_bbe(&p[i + 1], &p[i]); - - memset(r, 0, sizeof(*r)); - for (i = 0;;) { - u8 ch = ((u8 *)b)[i]; - - if (ch & 0x80) - be128_xor(r, r, &p[7]); - if (ch & 0x40) - be128_xor(r, r, &p[6]); - if (ch & 0x20) - be128_xor(r, r, &p[5]); - if (ch & 0x10) - be128_xor(r, r, &p[4]); - if (ch & 0x08) - be128_xor(r, r, &p[3]); - if (ch & 0x04) - be128_xor(r, r, &p[2]); - if (ch & 0x02) - be128_xor(r, r, &p[1]); - if (ch & 0x01) - be128_xor(r, r, &p[0]); - - if (++i >= 16) - break; - - gf128mul_x8_bbe(r); - } -} -EXPORT_SYMBOL(gf128mul_bbe); - -/* This version uses 64k bytes of table space. - A 16 byte buffer has to be multiplied by a 16 byte key - value in GF(2^128). If we consider a GF(2^128) value in - the buffer's lowest byte, we can construct a table of - the 256 16 byte values that result from the 256 values - of this byte. This requires 4096 bytes. But we also - need tables for each of the 16 higher bytes in the - buffer as well, which makes 64 kbytes in total. -*/ -/* additional explanation - * t[0][BYTE] contains g*BYTE - * t[1][BYTE] contains g*x^8*BYTE - * .. - * t[15][BYTE] contains g*x^120*BYTE */ -struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g) -{ - struct gf128mul_64k *t; - int i, j, k; - - t = kzalloc(sizeof(*t), GFP_KERNEL); - if (!t) - goto out; - - for (i = 0; i < 16; i++) { - t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); - if (!t->t[i]) { - gf128mul_free_64k(t); - t = NULL; - goto out; - } - } - - t->t[0]->t[1] = *g; - for (j = 1; j <= 64; j <<= 1) - gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]); - - for (i = 0;;) { - for (j = 2; j < 256; j += j) - for (k = 1; k < j; ++k) - be128_xor(&t->t[i]->t[j + k], - &t->t[i]->t[j], &t->t[i]->t[k]); - - if (++i >= 16) - break; - - for (j = 128; j > 0; j >>= 1) { - t->t[i]->t[j] = t->t[i - 1]->t[j]; - gf128mul_x8_bbe(&t->t[i]->t[j]); - } - } - -out: - return t; -} -EXPORT_SYMBOL(gf128mul_init_64k_bbe); - -void gf128mul_free_64k(struct gf128mul_64k *t) -{ - int i; - - for (i = 0; i < 16; i++) - kfree_sensitive(t->t[i]); - kfree_sensitive(t); -} -EXPORT_SYMBOL(gf128mul_free_64k); - -void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t) -{ - u8 *ap = (u8 *)a; - be128 r[1]; - int i; - - *r = t->t[0]->t[ap[15]]; - for (i = 1; i < 16; ++i) - be128_xor(r, r, &t->t[i]->t[ap[15 - i]]); - *a = *r; -} -EXPORT_SYMBOL(gf128mul_64k_bbe); - -/* This version uses 4k bytes of table space. - A 16 byte buffer has to be multiplied by a 16 byte key - value in GF(2^128). If we consider a GF(2^128) value in a - single byte, we can construct a table of the 256 16 byte - values that result from the 256 values of this byte. - This requires 4096 bytes. If we take the highest byte in - the buffer and use this table to get the result, we then - have to multiply by x^120 to get the final value. For the - next highest byte the result has to be multiplied by x^112 - and so on. But we can do this by accumulating the result - in an accumulator starting with the result for the top - byte. We repeatedly multiply the accumulator value by - x^8 and then add in (i.e. xor) the 16 bytes of the next - lower byte in the buffer, stopping when we reach the - lowest byte. This requires a 4096 byte table. -*/ -struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g) -{ - struct gf128mul_4k *t; - int j, k; - - t = kzalloc(sizeof(*t), GFP_KERNEL); - if (!t) - goto out; - - t->t[128] = *g; - for (j = 64; j > 0; j >>= 1) - gf128mul_x_lle(&t->t[j], &t->t[j+j]); - - for (j = 2; j < 256; j += j) - for (k = 1; k < j; ++k) - be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); - -out: - return t; -} -EXPORT_SYMBOL(gf128mul_init_4k_lle); - -struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g) -{ - struct gf128mul_4k *t; - int j, k; - - t = kzalloc(sizeof(*t), GFP_KERNEL); - if (!t) - goto out; - - t->t[1] = *g; - for (j = 1; j <= 64; j <<= 1) - gf128mul_x_bbe(&t->t[j + j], &t->t[j]); - - for (j = 2; j < 256; j += j) - for (k = 1; k < j; ++k) - be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); - -out: - return t; -} -EXPORT_SYMBOL(gf128mul_init_4k_bbe); - -void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t) -{ - u8 *ap = (u8 *)a; - be128 r[1]; - int i = 15; - - *r = t->t[ap[15]]; - while (i--) { - gf128mul_x8_lle(r); - be128_xor(r, r, &t->t[ap[i]]); - } - *a = *r; -} -EXPORT_SYMBOL(gf128mul_4k_lle); - -void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t) -{ - u8 *ap = (u8 *)a; - be128 r[1]; - int i = 0; - - *r = t->t[ap[0]]; - while (++i < 16) { - gf128mul_x8_bbe(r); - be128_xor(r, r, &t->t[ap[i]]); - } - *a = *r; -} -EXPORT_SYMBOL(gf128mul_4k_bbe); - -MODULE_LICENSE("GPL"); -MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)"); |