diff options
Diffstat (limited to 'fs/btrfs/verity.c')
| -rw-r--r-- | fs/btrfs/verity.c | 811 | 
1 files changed, 811 insertions, 0 deletions
diff --git a/fs/btrfs/verity.c b/fs/btrfs/verity.c new file mode 100644 index 000000000000..28d443d3ef93 --- /dev/null +++ b/fs/btrfs/verity.c @@ -0,0 +1,811 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include <linux/init.h> +#include <linux/fs.h> +#include <linux/slab.h> +#include <linux/rwsem.h> +#include <linux/xattr.h> +#include <linux/security.h> +#include <linux/posix_acl_xattr.h> +#include <linux/iversion.h> +#include <linux/fsverity.h> +#include <linux/sched/mm.h> +#include "ctree.h" +#include "btrfs_inode.h" +#include "transaction.h" +#include "disk-io.h" +#include "locking.h" + +/* + * Implementation of the interface defined in struct fsverity_operations. + * + * The main question is how and where to store the verity descriptor and the + * Merkle tree. We store both in dedicated btree items in the filesystem tree, + * together with the rest of the inode metadata. This means we'll need to do + * extra work to encrypt them once encryption is supported in btrfs, but btrfs + * has a lot of careful code around i_size and it seems better to make a new key + * type than try and adjust all of our expectations for i_size. + * + * Note that this differs from the implementation in ext4 and f2fs, where + * this data is stored as if it were in the file, but past EOF. However, btrfs + * does not have a widespread mechanism for caching opaque metadata pages, so we + * do pretend that the Merkle tree pages themselves are past EOF for the + * purposes of caching them (as opposed to creating a virtual inode). + * + * fs verity items are stored under two different key types on disk. + * The descriptor items: + * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] + * + * At offset 0, we store a btrfs_verity_descriptor_item which tracks the + * size of the descriptor item and some extra data for encryption. + * Starting at offset 1, these hold the generic fs verity descriptor. + * The latter are opaque to btrfs, we just read and write them as a blob for + * the higher level verity code.  The most common descriptor size is 256 bytes. + * + * The merkle tree items: + * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] + * + * These also start at offset 0, and correspond to the merkle tree bytes. + * So when fsverity asks for page 0 of the merkle tree, we pull up one page + * starting at offset 0 for this key type.  These are also opaque to btrfs, + * we're blindly storing whatever fsverity sends down. + * + * Another important consideration is the fact that the Merkle tree data scales + * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's + * ~1/127th the size) so for large files, writing the tree can be a lengthy + * operation. For that reason, we guard the whole enable verity operation + * (between begin_enable_verity and end_enable_verity) with an orphan item. + * Again, because the data can be pretty large, it's quite possible that we + * could run out of space writing it, so we try our best to handle errors by + * stopping and rolling back rather than aborting the victim transaction. + */ + +#define MERKLE_START_ALIGN			65536 + +/* + * Compute the logical file offset where we cache the Merkle tree. + * + * @inode:  inode of the verity file + * + * For the purposes of caching the Merkle tree pages, as required by + * fs-verity, it is convenient to do size computations in terms of a file + * offset, rather than in terms of page indices. + * + * Use 64K to be sure it's past the last page in the file, even with 64K pages. + * That rounding operation itself can overflow loff_t, so we do it in u64 and + * check. + * + * Returns the file offset on success, negative error code on failure. + */ +static loff_t merkle_file_pos(const struct inode *inode) +{ +	u64 sz = inode->i_size; +	u64 rounded = round_up(sz, MERKLE_START_ALIGN); + +	if (rounded > inode->i_sb->s_maxbytes) +		return -EFBIG; + +	return rounded; +} + +/* + * Drop all the items for this inode with this key_type. + * + * @inode:     inode to drop items for + * @key_type:  type of items to drop (BTRFS_VERITY_DESC_ITEM or + *             BTRFS_VERITY_MERKLE_ITEM) + * + * Before doing a verity enable we cleanup any existing verity items. + * This is also used to clean up if a verity enable failed half way through. + * + * Returns number of dropped items on success, negative error code on failure. + */ +static int drop_verity_items(struct btrfs_inode *inode, u8 key_type) +{ +	struct btrfs_trans_handle *trans; +	struct btrfs_root *root = inode->root; +	struct btrfs_path *path; +	struct btrfs_key key; +	int count = 0; +	int ret; + +	path = btrfs_alloc_path(); +	if (!path) +		return -ENOMEM; + +	while (1) { +		/* 1 for the item being dropped */ +		trans = btrfs_start_transaction(root, 1); +		if (IS_ERR(trans)) { +			ret = PTR_ERR(trans); +			goto out; +		} + +		/* +		 * Walk backwards through all the items until we find one that +		 * isn't from our key type or objectid +		 */ +		key.objectid = btrfs_ino(inode); +		key.type = key_type; +		key.offset = (u64)-1; + +		ret = btrfs_search_slot(trans, root, &key, path, -1, 1); +		if (ret > 0) { +			ret = 0; +			/* No more keys of this type, we're done */ +			if (path->slots[0] == 0) +				break; +			path->slots[0]--; +		} else if (ret < 0) { +			btrfs_end_transaction(trans); +			goto out; +		} + +		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); + +		/* No more keys of this type, we're done */ +		if (key.objectid != btrfs_ino(inode) || key.type != key_type) +			break; + +		/* +		 * This shouldn't be a performance sensitive function because +		 * it's not used as part of truncate.  If it ever becomes +		 * perf sensitive, change this to walk forward and bulk delete +		 * items +		 */ +		ret = btrfs_del_items(trans, root, path, path->slots[0], 1); +		if (ret) { +			btrfs_end_transaction(trans); +			goto out; +		} +		count++; +		btrfs_release_path(path); +		btrfs_end_transaction(trans); +	} +	ret = count; +	btrfs_end_transaction(trans); +out: +	btrfs_free_path(path); +	return ret; +} + +/* + * Drop all verity items + * + * @inode:  inode to drop verity items for + * + * In most contexts where we are dropping verity items, we want to do it for all + * the types of verity items, not a particular one. + * + * Returns: 0 on success, negative error code on failure. + */ +int btrfs_drop_verity_items(struct btrfs_inode *inode) +{ +	int ret; + +	ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY); +	if (ret < 0) +		return ret; +	ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY); +	if (ret < 0) +		return ret; + +	return 0; +} + +/* + * Insert and write inode items with a given key type and offset. + * + * @inode:     inode to insert for + * @key_type:  key type to insert + * @offset:    item offset to insert at + * @src:       source data to write + * @len:       length of source data to write + * + * Write len bytes from src into items of up to 2K length. + * The inserted items will have key (ino, key_type, offset + off) where off is + * consecutively increasing from 0 up to the last item ending at offset + len. + * + * Returns 0 on success and a negative error code on failure. + */ +static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, +			   const char *src, u64 len) +{ +	struct btrfs_trans_handle *trans; +	struct btrfs_path *path; +	struct btrfs_root *root = inode->root; +	struct extent_buffer *leaf; +	struct btrfs_key key; +	unsigned long copy_bytes; +	unsigned long src_offset = 0; +	void *data; +	int ret = 0; + +	path = btrfs_alloc_path(); +	if (!path) +		return -ENOMEM; + +	while (len > 0) { +		/* 1 for the new item being inserted */ +		trans = btrfs_start_transaction(root, 1); +		if (IS_ERR(trans)) { +			ret = PTR_ERR(trans); +			break; +		} + +		key.objectid = btrfs_ino(inode); +		key.type = key_type; +		key.offset = offset; + +		/* +		 * Insert 2K at a time mostly to be friendly for smaller leaf +		 * size filesystems +		 */ +		copy_bytes = min_t(u64, len, 2048); + +		ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes); +		if (ret) { +			btrfs_end_transaction(trans); +			break; +		} + +		leaf = path->nodes[0]; + +		data = btrfs_item_ptr(leaf, path->slots[0], void); +		write_extent_buffer(leaf, src + src_offset, +				    (unsigned long)data, copy_bytes); +		offset += copy_bytes; +		src_offset += copy_bytes; +		len -= copy_bytes; + +		btrfs_release_path(path); +		btrfs_end_transaction(trans); +	} + +	btrfs_free_path(path); +	return ret; +} + +/* + * Read inode items of the given key type and offset from the btree. + * + * @inode:      inode to read items of + * @key_type:   key type to read + * @offset:     item offset to read from + * @dest:       Buffer to read into. This parameter has slightly tricky + *              semantics.  If it is NULL, the function will not do any copying + *              and will just return the size of all the items up to len bytes. + *              If dest_page is passed, then the function will kmap_local the + *              page and ignore dest, but it must still be non-NULL to avoid the + *              counting-only behavior. + * @len:        length in bytes to read + * @dest_page:  copy into this page instead of the dest buffer + * + * Helper function to read items from the btree.  This returns the number of + * bytes read or < 0 for errors.  We can return short reads if the items don't + * exist on disk or aren't big enough to fill the desired length.  Supports + * reading into a provided buffer (dest) or into the page cache + * + * Returns number of bytes read or a negative error code on failure. + */ +static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, +			  char *dest, u64 len, struct page *dest_page) +{ +	struct btrfs_path *path; +	struct btrfs_root *root = inode->root; +	struct extent_buffer *leaf; +	struct btrfs_key key; +	u64 item_end; +	u64 copy_end; +	int copied = 0; +	u32 copy_offset; +	unsigned long copy_bytes; +	unsigned long dest_offset = 0; +	void *data; +	char *kaddr = dest; +	int ret; + +	path = btrfs_alloc_path(); +	if (!path) +		return -ENOMEM; + +	if (dest_page) +		path->reada = READA_FORWARD; + +	key.objectid = btrfs_ino(inode); +	key.type = key_type; +	key.offset = offset; + +	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); +	if (ret < 0) { +		goto out; +	} else if (ret > 0) { +		ret = 0; +		if (path->slots[0] == 0) +			goto out; +		path->slots[0]--; +	} + +	while (len > 0) { +		leaf = path->nodes[0]; +		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); + +		if (key.objectid != btrfs_ino(inode) || key.type != key_type) +			break; + +		item_end = btrfs_item_size_nr(leaf, path->slots[0]) + key.offset; + +		if (copied > 0) { +			/* +			 * Once we've copied something, we want all of the items +			 * to be sequential +			 */ +			if (key.offset != offset) +				break; +		} else { +			/* +			 * Our initial offset might be in the middle of an +			 * item.  Make sure it all makes sense. +			 */ +			if (key.offset > offset) +				break; +			if (item_end <= offset) +				break; +		} + +		/* desc = NULL to just sum all the item lengths */ +		if (!dest) +			copy_end = item_end; +		else +			copy_end = min(offset + len, item_end); + +		/* Number of bytes in this item we want to copy */ +		copy_bytes = copy_end - offset; + +		/* Offset from the start of item for copying */ +		copy_offset = offset - key.offset; + +		if (dest) { +			if (dest_page) +				kaddr = kmap_local_page(dest_page); + +			data = btrfs_item_ptr(leaf, path->slots[0], void); +			read_extent_buffer(leaf, kaddr + dest_offset, +					   (unsigned long)data + copy_offset, +					   copy_bytes); + +			if (dest_page) +				kunmap_local(kaddr); +		} + +		offset += copy_bytes; +		dest_offset += copy_bytes; +		len -= copy_bytes; +		copied += copy_bytes; + +		path->slots[0]++; +		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { +			/* +			 * We've reached the last slot in this leaf and we need +			 * to go to the next leaf. +			 */ +			ret = btrfs_next_leaf(root, path); +			if (ret < 0) { +				break; +			} else if (ret > 0) { +				ret = 0; +				break; +			} +		} +	} +out: +	btrfs_free_path(path); +	if (!ret) +		ret = copied; +	return ret; +} + +/* + * Delete an fsverity orphan + * + * @trans:  transaction to do the delete in + * @inode:  inode to orphan + * + * Capture verity orphan specific logic that is repeated in the couple places + * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes + * with 0 links. + * + * Returns zero on success or a negative error code on failure. + */ +static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode) +{ +	struct btrfs_root *root = inode->root; +	int ret; + +	/* +	 * If the inode has no links, it is either already unlinked, or was +	 * created with O_TMPFILE. In either case, it should have an orphan from +	 * that other operation. Rather than reference count the orphans, we +	 * simply ignore them here, because we only invoke the verity path in +	 * the orphan logic when i_nlink is 1. +	 */ +	if (!inode->vfs_inode.i_nlink) +		return 0; + +	ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); +	if (ret == -ENOENT) +		ret = 0; +	return ret; +} + +/* + * Rollback in-progress verity if we encounter an error. + * + * @inode:  inode verity had an error for + * + * We try to handle recoverable errors while enabling verity by rolling it back + * and just failing the operation, rather than having an fs level error no + * matter what. However, any error in rollback is unrecoverable. + * + * Returns 0 on success, negative error code on failure. + */ +static int rollback_verity(struct btrfs_inode *inode) +{ +	struct btrfs_trans_handle *trans; +	struct btrfs_root *root = inode->root; +	int ret; + +	ASSERT(inode_is_locked(&inode->vfs_inode)); +	truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size); +	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); +	ret = btrfs_drop_verity_items(inode); +	if (ret) { +		btrfs_handle_fs_error(root->fs_info, ret, +				"failed to drop verity items in rollback %llu", +				(u64)inode->vfs_inode.i_ino); +		goto out; +	} + +	/* +	 * 1 for updating the inode flag +	 * 1 for deleting the orphan +	 */ +	trans = btrfs_start_transaction(root, 2); +	if (IS_ERR(trans)) { +		ret = PTR_ERR(trans); +		btrfs_handle_fs_error(root->fs_info, ret, +			"failed to start transaction in verity rollback %llu", +			(u64)inode->vfs_inode.i_ino); +		goto out; +	} +	inode->ro_flags &= ~BTRFS_INODE_RO_VERITY; +	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); +	ret = btrfs_update_inode(trans, root, inode); +	if (ret) { +		btrfs_abort_transaction(trans, ret); +		goto out; +	} +	ret = del_orphan(trans, inode); +	if (ret) { +		btrfs_abort_transaction(trans, ret); +		goto out; +	} +	btrfs_end_transaction(trans); +out: +	return ret; +} + +/* + * Finalize making the file a valid verity file + * + * @inode:      inode to be marked as verity + * @desc:       contents of the verity descriptor to write (not NULL) + * @desc_size:  size of the verity descriptor + * + * Do the actual work of finalizing verity after successfully writing the Merkle + * tree: + * + * - write out the descriptor items + * - mark the inode with the verity flag + * - delete the orphan item + * - mark the ro compat bit + * - clear the in progress bit + * + * Returns 0 on success, negative error code on failure. + */ +static int finish_verity(struct btrfs_inode *inode, const void *desc, +			 size_t desc_size) +{ +	struct btrfs_trans_handle *trans = NULL; +	struct btrfs_root *root = inode->root; +	struct btrfs_verity_descriptor_item item; +	int ret; + +	/* Write out the descriptor item */ +	memset(&item, 0, sizeof(item)); +	btrfs_set_stack_verity_descriptor_size(&item, desc_size); +	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0, +			      (const char *)&item, sizeof(item)); +	if (ret) +		goto out; + +	/* Write out the descriptor itself */ +	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1, +			      desc, desc_size); +	if (ret) +		goto out; + +	/* +	 * 1 for updating the inode flag +	 * 1 for deleting the orphan +	 */ +	trans = btrfs_start_transaction(root, 2); +	if (IS_ERR(trans)) { +		ret = PTR_ERR(trans); +		goto out; +	} +	inode->ro_flags |= BTRFS_INODE_RO_VERITY; +	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); +	ret = btrfs_update_inode(trans, root, inode); +	if (ret) +		goto end_trans; +	ret = del_orphan(trans, inode); +	if (ret) +		goto end_trans; +	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); +	btrfs_set_fs_compat_ro(root->fs_info, VERITY); +end_trans: +	btrfs_end_transaction(trans); +out: +	return ret; + +} + +/* + * fsverity op that begins enabling verity. + * + * @filp:  file to enable verity on + * + * Begin enabling fsverity for the file. We drop any existing verity items, add + * an orphan and set the in progress bit. + * + * Returns 0 on success, negative error code on failure. + */ +static int btrfs_begin_enable_verity(struct file *filp) +{ +	struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); +	struct btrfs_root *root = inode->root; +	struct btrfs_trans_handle *trans; +	int ret; + +	ASSERT(inode_is_locked(file_inode(filp))); + +	if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags)) +		return -EBUSY; + +	/* +	 * This should almost never do anything, but theoretically, it's +	 * possible that we failed to enable verity on a file, then were +	 * interrupted or failed while rolling back, failed to cleanup the +	 * orphan, and finally attempt to enable verity again. +	 */ +	ret = btrfs_drop_verity_items(inode); +	if (ret) +		return ret; + +	/* 1 for the orphan item */ +	trans = btrfs_start_transaction(root, 1); +	if (IS_ERR(trans)) +		return PTR_ERR(trans); + +	ret = btrfs_orphan_add(trans, inode); +	if (!ret) +		set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); +	btrfs_end_transaction(trans); + +	return 0; +} + +/* + * fsverity op that ends enabling verity. + * + * @filp:              file we are finishing enabling verity on + * @desc:              verity descriptor to write out (NULL in error conditions) + * @desc_size:         size of the verity descriptor (variable with signatures) + * @merkle_tree_size:  size of the merkle tree in bytes + * + * If desc is null, then VFS is signaling an error occurred during verity + * enable, and we should try to rollback. Otherwise, attempt to finish verity. + * + * Returns 0 on success, negative error code on error. + */ +static int btrfs_end_enable_verity(struct file *filp, const void *desc, +				   size_t desc_size, u64 merkle_tree_size) +{ +	struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); +	int ret = 0; +	int rollback_ret; + +	ASSERT(inode_is_locked(file_inode(filp))); + +	if (desc == NULL) +		goto rollback; + +	ret = finish_verity(inode, desc, desc_size); +	if (ret) +		goto rollback; +	return ret; + +rollback: +	rollback_ret = rollback_verity(inode); +	if (rollback_ret) +		btrfs_err(inode->root->fs_info, +			  "failed to rollback verity items: %d", rollback_ret); +	return ret; +} + +/* + * fsverity op that gets the struct fsverity_descriptor. + * + * @inode:     inode to get the descriptor of + * @buf:       output buffer for the descriptor contents + * @buf_size:  size of the output buffer. 0 to query the size + * + * fsverity does a two pass setup for reading the descriptor, in the first pass + * it calls with buf_size = 0 to query the size of the descriptor, and then in + * the second pass it actually reads the descriptor off disk. + * + * Returns the size on success or a negative error code on failure. + */ +static int btrfs_get_verity_descriptor(struct inode *inode, void *buf, +				       size_t buf_size) +{ +	u64 true_size; +	int ret = 0; +	struct btrfs_verity_descriptor_item item; + +	memset(&item, 0, sizeof(item)); +	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0, +			     (char *)&item, sizeof(item), NULL); +	if (ret < 0) +		return ret; + +	if (item.reserved[0] != 0 || item.reserved[1] != 0) +		return -EUCLEAN; + +	true_size = btrfs_stack_verity_descriptor_size(&item); +	if (true_size > INT_MAX) +		return -EUCLEAN; + +	if (buf_size == 0) +		return true_size; +	if (buf_size < true_size) +		return -ERANGE; + +	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1, +			     buf, buf_size, NULL); +	if (ret < 0) +		return ret; +	if (ret != true_size) +		return -EIO; + +	return true_size; +} + +/* + * fsverity op that reads and caches a merkle tree page. + * + * @inode:         inode to read a merkle tree page for + * @index:         page index relative to the start of the merkle tree + * @num_ra_pages:  number of pages to readahead. Optional, we ignore it + * + * The Merkle tree is stored in the filesystem btree, but its pages are cached + * with a logical position past EOF in the inode's mapping. + * + * Returns the page we read, or an ERR_PTR on error. + */ +static struct page *btrfs_read_merkle_tree_page(struct inode *inode, +						pgoff_t index, +						unsigned long num_ra_pages) +{ +	struct page *page; +	u64 off = (u64)index << PAGE_SHIFT; +	loff_t merkle_pos = merkle_file_pos(inode); +	int ret; + +	if (merkle_pos < 0) +		return ERR_PTR(merkle_pos); +	if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE) +		return ERR_PTR(-EFBIG); +	index += merkle_pos >> PAGE_SHIFT; +again: +	page = find_get_page_flags(inode->i_mapping, index, FGP_ACCESSED); +	if (page) { +		if (PageUptodate(page)) +			return page; + +		lock_page(page); +		/* +		 * We only insert uptodate pages, so !Uptodate has to be +		 * an error +		 */ +		if (!PageUptodate(page)) { +			unlock_page(page); +			put_page(page); +			return ERR_PTR(-EIO); +		} +		unlock_page(page); +		return page; +	} + +	page = __page_cache_alloc(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS)); +	if (!page) +		return ERR_PTR(-ENOMEM); + +	/* +	 * Merkle item keys are indexed from byte 0 in the merkle tree. +	 * They have the form: +	 * +	 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ] +	 */ +	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off, +			     page_address(page), PAGE_SIZE, page); +	if (ret < 0) { +		put_page(page); +		return ERR_PTR(ret); +	} +	if (ret < PAGE_SIZE) +		memzero_page(page, ret, PAGE_SIZE - ret); + +	SetPageUptodate(page); +	ret = add_to_page_cache_lru(page, inode->i_mapping, index, GFP_NOFS); + +	if (!ret) { +		/* Inserted and ready for fsverity */ +		unlock_page(page); +	} else { +		put_page(page); +		/* Did someone race us into inserting this page? */ +		if (ret == -EEXIST) +			goto again; +		page = ERR_PTR(ret); +	} +	return page; +} + +/* + * fsverity op that writes a Merkle tree block into the btree. + * + * @inode:          inode to write a Merkle tree block for + * @buf:            Merkle tree data block to write + * @index:          index of the block in the Merkle tree + * @log_blocksize:  log base 2 of the Merkle tree block size + * + * Note that the block size could be different from the page size, so it is not + * safe to assume that index is a page index. + * + * Returns 0 on success or negative error code on failure + */ +static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf, +					u64 index, int log_blocksize) +{ +	u64 off = index << log_blocksize; +	u64 len = 1ULL << log_blocksize; +	loff_t merkle_pos = merkle_file_pos(inode); + +	if (merkle_pos < 0) +		return merkle_pos; +	if (merkle_pos > inode->i_sb->s_maxbytes - off - len) +		return -EFBIG; + +	return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, +			       off, buf, len); +} + +const struct fsverity_operations btrfs_verityops = { +	.begin_enable_verity     = btrfs_begin_enable_verity, +	.end_enable_verity       = btrfs_end_enable_verity, +	.get_verity_descriptor   = btrfs_get_verity_descriptor, +	.read_merkle_tree_page   = btrfs_read_merkle_tree_page, +	.write_merkle_tree_block = btrfs_write_merkle_tree_block, +};  | 
