summaryrefslogtreecommitdiff
path: root/fs/buffer.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/buffer.c')
-rw-r--r--fs/buffer.c53
1 files changed, 28 insertions, 25 deletions
diff --git a/fs/buffer.c b/fs/buffer.c
index 225d03cd622d..ec0c52c8848e 100644
--- a/fs/buffer.c
+++ b/fs/buffer.c
@@ -314,7 +314,7 @@ static void decrypt_bh(struct work_struct *work)
}
/*
- * I/O completion handler for block_read_full_page() - pages
+ * I/O completion handler for block_read_full_folio() - pages
* which come unlocked at the end of I/O.
*/
static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
@@ -1060,8 +1060,8 @@ __getblk_slow(struct block_device *bdev, sector_t block,
* Also. When blockdev buffers are explicitly read with bread(), they
* individually become uptodate. But their backing page remains not
* uptodate - even if all of its buffers are uptodate. A subsequent
- * block_read_full_page() against that page will discover all the uptodate
- * buffers, will set the page uptodate and will perform no I/O.
+ * block_read_full_folio() against that folio will discover all the uptodate
+ * buffers, will set the folio uptodate and will perform no I/O.
*/
/**
@@ -2088,7 +2088,7 @@ static int __block_commit_write(struct inode *inode, struct page *page,
/*
* If this is a partial write which happened to make all buffers
- * uptodate then we can optimize away a bogus readpage() for
+ * uptodate then we can optimize away a bogus read_folio() for
* the next read(). Here we 'discover' whether the page went
* uptodate as a result of this (potentially partial) write.
*/
@@ -2137,12 +2137,12 @@ int block_write_end(struct file *file, struct address_space *mapping,
if (unlikely(copied < len)) {
/*
- * The buffers that were written will now be uptodate, so we
- * don't have to worry about a readpage reading them and
- * overwriting a partial write. However if we have encountered
- * a short write and only partially written into a buffer, it
- * will not be marked uptodate, so a readpage might come in and
- * destroy our partial write.
+ * The buffers that were written will now be uptodate, so
+ * we don't have to worry about a read_folio reading them
+ * and overwriting a partial write. However if we have
+ * encountered a short write and only partially written
+ * into a buffer, it will not be marked uptodate, so a
+ * read_folio might come in and destroy our partial write.
*
* Do the simplest thing, and just treat any short write to a
* non uptodate page as a zero-length write, and force the
@@ -2245,26 +2245,28 @@ bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
EXPORT_SYMBOL(block_is_partially_uptodate);
/*
- * Generic "read page" function for block devices that have the normal
+ * Generic "read_folio" function for block devices that have the normal
* get_block functionality. This is most of the block device filesystems.
- * Reads the page asynchronously --- the unlock_buffer() and
+ * Reads the folio asynchronously --- the unlock_buffer() and
* set/clear_buffer_uptodate() functions propagate buffer state into the
- * page struct once IO has completed.
+ * folio once IO has completed.
*/
-int block_read_full_page(struct page *page, get_block_t *get_block)
+int block_read_full_folio(struct folio *folio, get_block_t *get_block)
{
- struct inode *inode = page->mapping->host;
+ struct inode *inode = folio->mapping->host;
sector_t iblock, lblock;
struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
unsigned int blocksize, bbits;
int nr, i;
int fully_mapped = 1;
- head = create_page_buffers(page, inode, 0);
+ VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
+
+ head = create_page_buffers(&folio->page, inode, 0);
blocksize = head->b_size;
bbits = block_size_bits(blocksize);
- iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
+ iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
lblock = (i_size_read(inode)+blocksize-1) >> bbits;
bh = head;
nr = 0;
@@ -2282,10 +2284,11 @@ int block_read_full_page(struct page *page, get_block_t *get_block)
WARN_ON(bh->b_size != blocksize);
err = get_block(inode, iblock, bh, 0);
if (err)
- SetPageError(page);
+ folio_set_error(folio);
}
if (!buffer_mapped(bh)) {
- zero_user(page, i * blocksize, blocksize);
+ folio_zero_range(folio, i * blocksize,
+ blocksize);
if (!err)
set_buffer_uptodate(bh);
continue;
@@ -2301,16 +2304,16 @@ int block_read_full_page(struct page *page, get_block_t *get_block)
} while (i++, iblock++, (bh = bh->b_this_page) != head);
if (fully_mapped)
- SetPageMappedToDisk(page);
+ folio_set_mappedtodisk(folio);
if (!nr) {
/*
- * All buffers are uptodate - we can set the page uptodate
+ * All buffers are uptodate - we can set the folio uptodate
* as well. But not if get_block() returned an error.
*/
- if (!PageError(page))
- SetPageUptodate(page);
- unlock_page(page);
+ if (!folio_test_error(folio))
+ folio_mark_uptodate(folio);
+ folio_unlock(folio);
return 0;
}
@@ -2335,7 +2338,7 @@ int block_read_full_page(struct page *page, get_block_t *get_block)
}
return 0;
}
-EXPORT_SYMBOL(block_read_full_page);
+EXPORT_SYMBOL(block_read_full_folio);
/* utility function for filesystems that need to do work on expanding
* truncates. Uses filesystem pagecache writes to allow the filesystem to