diff options
Diffstat (limited to 'fs/iomap')
-rw-r--r-- | fs/iomap/buffered-io.c | 254 | ||||
-rw-r--r-- | fs/iomap/iter.c | 19 |
2 files changed, 271 insertions, 2 deletions
diff --git a/fs/iomap/buffered-io.c b/fs/iomap/buffered-io.c index 91ee0b308e13..356193e44cf0 100644 --- a/fs/iomap/buffered-io.c +++ b/fs/iomap/buffered-io.c @@ -584,7 +584,7 @@ static int iomap_write_begin_inline(const struct iomap_iter *iter, return iomap_read_inline_data(iter, folio); } -static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos, +static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, size_t len, struct folio **foliop) { const struct iomap_page_ops *page_ops = iter->iomap.page_ops; @@ -618,6 +618,27 @@ static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos, status = (iter->flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOMEM; goto out_no_page; } + + /* + * Now we have a locked folio, before we do anything with it we need to + * check that the iomap we have cached is not stale. The inode extent + * mapping can change due to concurrent IO in flight (e.g. + * IOMAP_UNWRITTEN state can change and memory reclaim could have + * reclaimed a previously partially written page at this index after IO + * completion before this write reaches this file offset) and hence we + * could do the wrong thing here (zero a page range incorrectly or fail + * to zero) and corrupt data. + */ + if (page_ops && page_ops->iomap_valid) { + bool iomap_valid = page_ops->iomap_valid(iter->inode, + &iter->iomap); + if (!iomap_valid) { + iter->iomap.flags |= IOMAP_F_STALE; + status = 0; + goto out_unlock; + } + } + if (pos + len > folio_pos(folio) + folio_size(folio)) len = folio_pos(folio) + folio_size(folio) - pos; @@ -773,6 +794,8 @@ again: status = iomap_write_begin(iter, pos, bytes, &folio); if (unlikely(status)) break; + if (iter->iomap.flags & IOMAP_F_STALE) + break; page = folio_file_page(folio, pos >> PAGE_SHIFT); if (mapping_writably_mapped(mapping)) @@ -832,6 +855,231 @@ iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, } EXPORT_SYMBOL_GPL(iomap_file_buffered_write); +/* + * Scan the data range passed to us for dirty page cache folios. If we find a + * dirty folio, punch out the preceeding range and update the offset from which + * the next punch will start from. + * + * We can punch out storage reservations under clean pages because they either + * contain data that has been written back - in which case the delalloc punch + * over that range is a no-op - or they have been read faults in which case they + * contain zeroes and we can remove the delalloc backing range and any new + * writes to those pages will do the normal hole filling operation... + * + * This makes the logic simple: we only need to keep the delalloc extents only + * over the dirty ranges of the page cache. + * + * This function uses [start_byte, end_byte) intervals (i.e. open ended) to + * simplify range iterations. + */ +static int iomap_write_delalloc_scan(struct inode *inode, + loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, + int (*punch)(struct inode *inode, loff_t offset, loff_t length)) +{ + while (start_byte < end_byte) { + struct folio *folio; + + /* grab locked page */ + folio = filemap_lock_folio(inode->i_mapping, + start_byte >> PAGE_SHIFT); + if (!folio) { + start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + + PAGE_SIZE; + continue; + } + + /* if dirty, punch up to offset */ + if (folio_test_dirty(folio)) { + if (start_byte > *punch_start_byte) { + int error; + + error = punch(inode, *punch_start_byte, + start_byte - *punch_start_byte); + if (error) { + folio_unlock(folio); + folio_put(folio); + return error; + } + } + + /* + * Make sure the next punch start is correctly bound to + * the end of this data range, not the end of the folio. + */ + *punch_start_byte = min_t(loff_t, end_byte, + folio_next_index(folio) << PAGE_SHIFT); + } + + /* move offset to start of next folio in range */ + start_byte = folio_next_index(folio) << PAGE_SHIFT; + folio_unlock(folio); + folio_put(folio); + } + return 0; +} + +/* + * Punch out all the delalloc blocks in the range given except for those that + * have dirty data still pending in the page cache - those are going to be + * written and so must still retain the delalloc backing for writeback. + * + * As we are scanning the page cache for data, we don't need to reimplement the + * wheel - mapping_seek_hole_data() does exactly what we need to identify the + * start and end of data ranges correctly even for sub-folio block sizes. This + * byte range based iteration is especially convenient because it means we + * don't have to care about variable size folios, nor where the start or end of + * the data range lies within a folio, if they lie within the same folio or even + * if there are multiple discontiguous data ranges within the folio. + * + * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so + * can return data ranges that exist in the cache beyond EOF. e.g. a page fault + * spanning EOF will initialise the post-EOF data to zeroes and mark it up to + * date. A write page fault can then mark it dirty. If we then fail a write() + * beyond EOF into that up to date cached range, we allocate a delalloc block + * beyond EOF and then have to punch it out. Because the range is up to date, + * mapping_seek_hole_data() will return it, and we will skip the punch because + * the folio is dirty. THis is incorrect - we always need to punch out delalloc + * beyond EOF in this case as writeback will never write back and covert that + * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, + * resulting in always punching out the range from the EOF to the end of the + * range the iomap spans. + * + * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it + * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA + * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) + * returns the end of the data range (data_end). Using closed intervals would + * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose + * the code to subtle off-by-one bugs.... + */ +static int iomap_write_delalloc_release(struct inode *inode, + loff_t start_byte, loff_t end_byte, + int (*punch)(struct inode *inode, loff_t pos, loff_t length)) +{ + loff_t punch_start_byte = start_byte; + loff_t scan_end_byte = min(i_size_read(inode), end_byte); + int error = 0; + + /* + * Lock the mapping to avoid races with page faults re-instantiating + * folios and dirtying them via ->page_mkwrite whilst we walk the + * cache and perform delalloc extent removal. Failing to do this can + * leave dirty pages with no space reservation in the cache. + */ + filemap_invalidate_lock(inode->i_mapping); + while (start_byte < scan_end_byte) { + loff_t data_end; + + start_byte = mapping_seek_hole_data(inode->i_mapping, + start_byte, scan_end_byte, SEEK_DATA); + /* + * If there is no more data to scan, all that is left is to + * punch out the remaining range. + */ + if (start_byte == -ENXIO || start_byte == scan_end_byte) + break; + if (start_byte < 0) { + error = start_byte; + goto out_unlock; + } + WARN_ON_ONCE(start_byte < punch_start_byte); + WARN_ON_ONCE(start_byte > scan_end_byte); + + /* + * We find the end of this contiguous cached data range by + * seeking from start_byte to the beginning of the next hole. + */ + data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, + scan_end_byte, SEEK_HOLE); + if (data_end < 0) { + error = data_end; + goto out_unlock; + } + WARN_ON_ONCE(data_end <= start_byte); + WARN_ON_ONCE(data_end > scan_end_byte); + + error = iomap_write_delalloc_scan(inode, &punch_start_byte, + start_byte, data_end, punch); + if (error) + goto out_unlock; + + /* The next data search starts at the end of this one. */ + start_byte = data_end; + } + + if (punch_start_byte < end_byte) + error = punch(inode, punch_start_byte, + end_byte - punch_start_byte); +out_unlock: + filemap_invalidate_unlock(inode->i_mapping); + return error; +} + +/* + * When a short write occurs, the filesystem may need to remove reserved space + * that was allocated in ->iomap_begin from it's ->iomap_end method. For + * filesystems that use delayed allocation, we need to punch out delalloc + * extents from the range that are not dirty in the page cache. As the write can + * race with page faults, there can be dirty pages over the delalloc extent + * outside the range of a short write but still within the delalloc extent + * allocated for this iomap. + * + * This function uses [start_byte, end_byte) intervals (i.e. open ended) to + * simplify range iterations. + * + * The punch() callback *must* only punch delalloc extents in the range passed + * to it. It must skip over all other types of extents in the range and leave + * them completely unchanged. It must do this punch atomically with respect to + * other extent modifications. + * + * The punch() callback may be called with a folio locked to prevent writeback + * extent allocation racing at the edge of the range we are currently punching. + * The locked folio may or may not cover the range being punched, so it is not + * safe for the punch() callback to lock folios itself. + * + * Lock order is: + * + * inode->i_rwsem (shared or exclusive) + * inode->i_mapping->invalidate_lock (exclusive) + * folio_lock() + * ->punch + * internal filesystem allocation lock + */ +int iomap_file_buffered_write_punch_delalloc(struct inode *inode, + struct iomap *iomap, loff_t pos, loff_t length, + ssize_t written, + int (*punch)(struct inode *inode, loff_t pos, loff_t length)) +{ + loff_t start_byte; + loff_t end_byte; + int blocksize = i_blocksize(inode); + + if (iomap->type != IOMAP_DELALLOC) + return 0; + + /* If we didn't reserve the blocks, we're not allowed to punch them. */ + if (!(iomap->flags & IOMAP_F_NEW)) + return 0; + + /* + * start_byte refers to the first unused block after a short write. If + * nothing was written, round offset down to point at the first block in + * the range. + */ + if (unlikely(!written)) + start_byte = round_down(pos, blocksize); + else + start_byte = round_up(pos + written, blocksize); + end_byte = round_up(pos + length, blocksize); + + /* Nothing to do if we've written the entire delalloc extent */ + if (start_byte >= end_byte) + return 0; + + return iomap_write_delalloc_release(inode, start_byte, end_byte, + punch); +} +EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc); + static loff_t iomap_unshare_iter(struct iomap_iter *iter) { struct iomap *iomap = &iter->iomap; @@ -856,6 +1104,8 @@ static loff_t iomap_unshare_iter(struct iomap_iter *iter) status = iomap_write_begin(iter, pos, bytes, &folio); if (unlikely(status)) return status; + if (iter->iomap.flags & IOMAP_F_STALE) + break; status = iomap_write_end(iter, pos, bytes, bytes, folio); if (WARN_ON_ONCE(status == 0)) @@ -911,6 +1161,8 @@ static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) status = iomap_write_begin(iter, pos, bytes, &folio); if (status) return status; + if (iter->iomap.flags & IOMAP_F_STALE) + break; offset = offset_in_folio(folio, pos); if (bytes > folio_size(folio) - offset) diff --git a/fs/iomap/iter.c b/fs/iomap/iter.c index a1c7592d2ade..79a0614eaab7 100644 --- a/fs/iomap/iter.c +++ b/fs/iomap/iter.c @@ -7,12 +7,28 @@ #include <linux/iomap.h> #include "trace.h" +/* + * Advance to the next range we need to map. + * + * If the iomap is marked IOMAP_F_STALE, it means the existing map was not fully + * processed - it was aborted because the extent the iomap spanned may have been + * changed during the operation. In this case, the iteration behaviour is to + * remap the unprocessed range of the iter, and that means we may need to remap + * even when we've made no progress (i.e. iter->processed = 0). Hence the + * "finished iterating" case needs to distinguish between + * (processed = 0) meaning we are done and (processed = 0 && stale) meaning we + * need to remap the entire remaining range. + */ static inline int iomap_iter_advance(struct iomap_iter *iter) { + bool stale = iter->iomap.flags & IOMAP_F_STALE; + /* handle the previous iteration (if any) */ if (iter->iomap.length) { - if (iter->processed <= 0) + if (iter->processed < 0) return iter->processed; + if (!iter->processed && !stale) + return 0; if (WARN_ON_ONCE(iter->processed > iomap_length(iter))) return -EIO; iter->pos += iter->processed; @@ -33,6 +49,7 @@ static inline void iomap_iter_done(struct iomap_iter *iter) WARN_ON_ONCE(iter->iomap.offset > iter->pos); WARN_ON_ONCE(iter->iomap.length == 0); WARN_ON_ONCE(iter->iomap.offset + iter->iomap.length <= iter->pos); + WARN_ON_ONCE(iter->iomap.flags & IOMAP_F_STALE); trace_iomap_iter_dstmap(iter->inode, &iter->iomap); if (iter->srcmap.type != IOMAP_HOLE) |