diff options
Diffstat (limited to 'fs/xfs/xfs_file.c')
-rw-r--r-- | fs/xfs/xfs_file.c | 114 |
1 files changed, 65 insertions, 49 deletions
diff --git a/fs/xfs/xfs_file.c b/fs/xfs/xfs_file.c index 39695b59dfcc..dc91973c0b4f 100644 --- a/fs/xfs/xfs_file.c +++ b/fs/xfs/xfs_file.c @@ -118,6 +118,54 @@ xfs_dir_fsync( return xfs_log_force_inode(ip); } +static xfs_lsn_t +xfs_fsync_lsn( + struct xfs_inode *ip, + bool datasync) +{ + if (!xfs_ipincount(ip)) + return 0; + if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) + return 0; + return ip->i_itemp->ili_last_lsn; +} + +/* + * All metadata updates are logged, which means that we just have to flush the + * log up to the latest LSN that touched the inode. + * + * If we have concurrent fsync/fdatasync() calls, we need them to all block on + * the log force before we clear the ili_fsync_fields field. This ensures that + * we don't get a racing sync operation that does not wait for the metadata to + * hit the journal before returning. If we race with clearing ili_fsync_fields, + * then all that will happen is the log force will do nothing as the lsn will + * already be on disk. We can't race with setting ili_fsync_fields because that + * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock + * shared until after the ili_fsync_fields is cleared. + */ +static int +xfs_fsync_flush_log( + struct xfs_inode *ip, + bool datasync, + int *log_flushed) +{ + int error = 0; + xfs_lsn_t lsn; + + xfs_ilock(ip, XFS_ILOCK_SHARED); + lsn = xfs_fsync_lsn(ip, datasync); + if (lsn) { + error = xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, + log_flushed); + + spin_lock(&ip->i_itemp->ili_lock); + ip->i_itemp->ili_fsync_fields = 0; + spin_unlock(&ip->i_itemp->ili_lock); + } + xfs_iunlock(ip, XFS_ILOCK_SHARED); + return error; +} + STATIC int xfs_file_fsync( struct file *file, @@ -125,13 +173,10 @@ xfs_file_fsync( loff_t end, int datasync) { - struct inode *inode = file->f_mapping->host; - struct xfs_inode *ip = XFS_I(inode); - struct xfs_inode_log_item *iip = ip->i_itemp; + struct xfs_inode *ip = XFS_I(file->f_mapping->host); struct xfs_mount *mp = ip->i_mount; int error = 0; int log_flushed = 0; - xfs_lsn_t lsn = 0; trace_xfs_file_fsync(ip); @@ -156,32 +201,13 @@ xfs_file_fsync( xfs_blkdev_issue_flush(mp->m_ddev_targp); /* - * All metadata updates are logged, which means that we just have to - * flush the log up to the latest LSN that touched the inode. If we have - * concurrent fsync/fdatasync() calls, we need them to all block on the - * log force before we clear the ili_fsync_fields field. This ensures - * that we don't get a racing sync operation that does not wait for the - * metadata to hit the journal before returning. If we race with - * clearing the ili_fsync_fields, then all that will happen is the log - * force will do nothing as the lsn will already be on disk. We can't - * race with setting ili_fsync_fields because that is done under - * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared - * until after the ili_fsync_fields is cleared. + * Any inode that has dirty modifications in the log is pinned. The + * racy check here for a pinned inode while not catch modifications + * that happen concurrently to the fsync call, but fsync semantics + * only require to sync previously completed I/O. */ - xfs_ilock(ip, XFS_ILOCK_SHARED); - if (xfs_ipincount(ip)) { - if (!datasync || - (iip->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) - lsn = iip->ili_last_lsn; - } - - if (lsn) { - error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); - spin_lock(&iip->ili_lock); - iip->ili_fsync_fields = 0; - spin_unlock(&iip->ili_lock); - } - xfs_iunlock(ip, XFS_ILOCK_SHARED); + if (xfs_ipincount(ip)) + error = xfs_fsync_flush_log(ip, datasync, &log_flushed); /* * If we only have a single device, and the log force about was @@ -408,12 +434,6 @@ restart: } else spin_unlock(&ip->i_flags_lock); - /* - * Updating the timestamps will grab the ilock again from - * xfs_fs_dirty_inode, so we have to call it after dropping the - * lock above. Eventually we should look into a way to avoid - * the pointless lock roundtrip. - */ return file_modified(file); } @@ -693,7 +713,7 @@ xfs_file_buffered_write( struct inode *inode = mapping->host; struct xfs_inode *ip = XFS_I(inode); ssize_t ret; - int enospc = 0; + bool cleared_space = false; int iolock; if (iocb->ki_flags & IOCB_NOWAIT) @@ -723,27 +743,23 @@ write_retry: * metadata space. This reduces the chances that the eofblocks scan * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this * also behaves as a filter to prevent too many eofblocks scans from - * running at the same time. + * running at the same time. Use a synchronous scan to increase the + * effectiveness of the scan. */ - if (ret == -EDQUOT && !enospc) { + if (ret == -EDQUOT && !cleared_space) { xfs_iunlock(ip, iolock); - enospc = xfs_inode_free_quota_eofblocks(ip); - if (enospc) - goto write_retry; - enospc = xfs_inode_free_quota_cowblocks(ip); - if (enospc) - goto write_retry; - iolock = 0; - } else if (ret == -ENOSPC && !enospc) { + xfs_blockgc_free_quota(ip, XFS_EOF_FLAGS_SYNC); + cleared_space = true; + goto write_retry; + } else if (ret == -ENOSPC && !cleared_space) { struct xfs_eofblocks eofb = {0}; - enospc = 1; + cleared_space = true; xfs_flush_inodes(ip->i_mount); xfs_iunlock(ip, iolock); eofb.eof_flags = XFS_EOF_FLAGS_SYNC; - xfs_icache_free_eofblocks(ip->i_mount, &eofb); - xfs_icache_free_cowblocks(ip->i_mount, &eofb); + xfs_blockgc_free_space(ip->i_mount, &eofb); goto write_retry; } |