diff options
Diffstat (limited to 'include/linux/pwm.h')
-rw-r--r-- | include/linux/pwm.h | 66 |
1 files changed, 65 insertions, 1 deletions
diff --git a/include/linux/pwm.h b/include/linux/pwm.h index 8acd60b53f58..78827f312407 100644 --- a/include/linux/pwm.h +++ b/include/linux/pwm.h @@ -49,6 +49,31 @@ enum { PWMF_EXPORTED = 1, }; +/** + * struct pwm_waveform - description of a PWM waveform + * @period_length_ns: PWM period + * @duty_length_ns: PWM duty cycle + * @duty_offset_ns: offset of the rising edge from the period's start + * + * This is a representation of a PWM waveform alternative to struct pwm_state + * below. It's more expressive than struct pwm_state as it contains a + * duty_offset_ns and so can represent offsets other than zero (with .polarity = + * PWM_POLARITY_NORMAL) and period - duty_cycle (.polarity = + * PWM_POLARITY_INVERSED). + * + * Note there is no explicit bool for enabled. A "disabled" PWM is represented + * by .period_length_ns = 0. Note further that the behaviour of a "disabled" PWM + * is undefined. Depending on the hardware's capabilities it might drive the + * active or inactive level, go high-z or even continue to toggle. + * + * The unit for all three members is nanoseconds. + */ +struct pwm_waveform { + u64 period_length_ns; + u64 duty_length_ns; + u64 duty_offset_ns; +}; + /* * struct pwm_state - state of a PWM channel * @period: PWM period (in nanoseconds) @@ -251,6 +276,11 @@ struct pwm_capture { * @request: optional hook for requesting a PWM * @free: optional hook for freeing a PWM * @capture: capture and report PWM signal + * @sizeof_wfhw: size (in bytes) of driver specific waveform presentation + * @round_waveform_tohw: convert a struct pwm_waveform to driver specific presentation + * @round_waveform_fromhw: convert a driver specific waveform presentation to struct pwm_waveform + * @read_waveform: read driver specific waveform presentation from hardware + * @write_waveform: write driver specific waveform presentation to hardware * @apply: atomically apply a new PWM config * @get_state: get the current PWM state. */ @@ -259,6 +289,17 @@ struct pwm_ops { void (*free)(struct pwm_chip *chip, struct pwm_device *pwm); int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_capture *result, unsigned long timeout); + + size_t sizeof_wfhw; + int (*round_waveform_tohw)(struct pwm_chip *chip, struct pwm_device *pwm, + const struct pwm_waveform *wf, void *wfhw); + int (*round_waveform_fromhw)(struct pwm_chip *chip, struct pwm_device *pwm, + const void *wfhw, struct pwm_waveform *wf); + int (*read_waveform)(struct pwm_chip *chip, struct pwm_device *pwm, + void *wfhw); + int (*write_waveform)(struct pwm_chip *chip, struct pwm_device *pwm, + const void *wfhw); + int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state); int (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm, @@ -275,6 +316,9 @@ struct pwm_ops { * @of_xlate: request a PWM device given a device tree PWM specifier * @atomic: can the driver's ->apply() be called in atomic context * @uses_pwmchip_alloc: signals if pwmchip_allow was used to allocate this chip + * @operational: signals if the chip can be used (or is already deregistered) + * @nonatomic_lock: mutex for nonatomic chips + * @atomic_lock: mutex for atomic chips * @pwms: array of PWM devices allocated by the framework */ struct pwm_chip { @@ -290,6 +334,16 @@ struct pwm_chip { /* only used internally by the PWM framework */ bool uses_pwmchip_alloc; + bool operational; + union { + /* + * depending on the chip being atomic or not either the mutex or + * the spinlock is used. It protects .operational and + * synchronizes the callbacks in .ops + */ + struct mutex nonatomic_lock; + spinlock_t atomic_lock; + }; struct pwm_device pwms[] __counted_by(npwm); }; @@ -309,9 +363,14 @@ static inline void pwmchip_set_drvdata(struct pwm_chip *chip, void *data) } #if IS_ENABLED(CONFIG_PWM) -/* PWM user APIs */ + +/* PWM consumer APIs */ +int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf); +int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf); +int pwm_set_waveform_might_sleep(struct pwm_device *pwm, const struct pwm_waveform *wf, bool exact); int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state); int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state); +int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state); int pwm_adjust_config(struct pwm_device *pwm); /** @@ -436,6 +495,11 @@ static inline int pwm_apply_atomic(struct pwm_device *pwm, return -EOPNOTSUPP; } +static inline int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state) +{ + return -EOPNOTSUPP; +} + static inline int pwm_adjust_config(struct pwm_device *pwm) { return -EOPNOTSUPP; |