diff options
Diffstat (limited to 'kernel/sched')
-rw-r--r-- | kernel/sched/core.c | 16 | ||||
-rw-r--r-- | kernel/sched/debug.c | 1 | ||||
-rw-r--r-- | kernel/sched/fair.c | 175 | ||||
-rw-r--r-- | kernel/sched/psi.c | 280 | ||||
-rw-r--r-- | kernel/sched/sched.h | 1 | ||||
-rw-r--r-- | kernel/sched/stats.h | 6 |
6 files changed, 402 insertions, 77 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c index f4d02201f424..5800b0623ff3 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -701,6 +701,7 @@ static void update_rq_clock_task(struct rq *rq, s64 delta) rq->prev_irq_time += irq_delta; delta -= irq_delta; + psi_account_irqtime(rq->curr, irq_delta); #endif #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING if (static_key_false((¶virt_steal_rq_enabled))) { @@ -4389,6 +4390,17 @@ void set_numabalancing_state(bool enabled) } #ifdef CONFIG_PROC_SYSCTL +static void reset_memory_tiering(void) +{ + struct pglist_data *pgdat; + + for_each_online_pgdat(pgdat) { + pgdat->nbp_threshold = 0; + pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); + pgdat->nbp_th_start = jiffies_to_msecs(jiffies); + } +} + int sysctl_numa_balancing(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { @@ -4405,6 +4417,9 @@ int sysctl_numa_balancing(struct ctl_table *table, int write, if (err < 0) return err; if (write) { + if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && + (state & NUMA_BALANCING_MEMORY_TIERING)) + reset_memory_tiering(); sysctl_numa_balancing_mode = state; __set_numabalancing_state(state); } @@ -5159,6 +5174,7 @@ context_switch(struct rq *rq, struct task_struct *prev, * finish_task_switch()'s mmdrop(). */ switch_mm_irqs_off(prev->active_mm, next->mm, next); + lru_gen_use_mm(next->mm); if (!prev->mm) { // from kernel /* will mmdrop() in finish_task_switch(). */ diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c index 667876da8382..1637b65ba07a 100644 --- a/kernel/sched/debug.c +++ b/kernel/sched/debug.c @@ -333,6 +333,7 @@ static __init int sched_init_debug(void) debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min); debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max); debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size); + debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold); #endif debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops); diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 5ffec4370602..e4a0b8bd941c 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -40,6 +40,7 @@ #include <linux/cpuidle.h> #include <linux/interrupt.h> +#include <linux/memory-tiers.h> #include <linux/mempolicy.h> #include <linux/mutex_api.h> #include <linux/profile.h> @@ -1090,6 +1091,12 @@ unsigned int sysctl_numa_balancing_scan_size = 256; /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ unsigned int sysctl_numa_balancing_scan_delay = 1000; +/* The page with hint page fault latency < threshold in ms is considered hot */ +unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; + +/* Restrict the NUMA promotion throughput (MB/s) for each target node. */ +unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; + struct numa_group { refcount_t refcount; @@ -1432,6 +1439,120 @@ static inline unsigned long group_weight(struct task_struct *p, int nid, return 1000 * faults / total_faults; } +/* + * If memory tiering mode is enabled, cpupid of slow memory page is + * used to record scan time instead of CPU and PID. When tiering mode + * is disabled at run time, the scan time (in cpupid) will be + * interpreted as CPU and PID. So CPU needs to be checked to avoid to + * access out of array bound. + */ +static inline bool cpupid_valid(int cpupid) +{ + return cpupid_to_cpu(cpupid) < nr_cpu_ids; +} + +/* + * For memory tiering mode, if there are enough free pages (more than + * enough watermark defined here) in fast memory node, to take full + * advantage of fast memory capacity, all recently accessed slow + * memory pages will be migrated to fast memory node without + * considering hot threshold. + */ +static bool pgdat_free_space_enough(struct pglist_data *pgdat) +{ + int z; + unsigned long enough_wmark; + + enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, + pgdat->node_present_pages >> 4); + for (z = pgdat->nr_zones - 1; z >= 0; z--) { + struct zone *zone = pgdat->node_zones + z; + + if (!populated_zone(zone)) + continue; + + if (zone_watermark_ok(zone, 0, + wmark_pages(zone, WMARK_PROMO) + enough_wmark, + ZONE_MOVABLE, 0)) + return true; + } + return false; +} + +/* + * For memory tiering mode, when page tables are scanned, the scan + * time will be recorded in struct page in addition to make page + * PROT_NONE for slow memory page. So when the page is accessed, in + * hint page fault handler, the hint page fault latency is calculated + * via, + * + * hint page fault latency = hint page fault time - scan time + * + * The smaller the hint page fault latency, the higher the possibility + * for the page to be hot. + */ +static int numa_hint_fault_latency(struct page *page) +{ + int last_time, time; + + time = jiffies_to_msecs(jiffies); + last_time = xchg_page_access_time(page, time); + + return (time - last_time) & PAGE_ACCESS_TIME_MASK; +} + +/* + * For memory tiering mode, too high promotion/demotion throughput may + * hurt application latency. So we provide a mechanism to rate limit + * the number of pages that are tried to be promoted. + */ +static bool numa_promotion_rate_limit(struct pglist_data *pgdat, + unsigned long rate_limit, int nr) +{ + unsigned long nr_cand; + unsigned int now, start; + + now = jiffies_to_msecs(jiffies); + mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); + nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); + start = pgdat->nbp_rl_start; + if (now - start > MSEC_PER_SEC && + cmpxchg(&pgdat->nbp_rl_start, start, now) == start) + pgdat->nbp_rl_nr_cand = nr_cand; + if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) + return true; + return false; +} + +#define NUMA_MIGRATION_ADJUST_STEPS 16 + +static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, + unsigned long rate_limit, + unsigned int ref_th) +{ + unsigned int now, start, th_period, unit_th, th; + unsigned long nr_cand, ref_cand, diff_cand; + + now = jiffies_to_msecs(jiffies); + th_period = sysctl_numa_balancing_scan_period_max; + start = pgdat->nbp_th_start; + if (now - start > th_period && + cmpxchg(&pgdat->nbp_th_start, start, now) == start) { + ref_cand = rate_limit * + sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; + nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); + diff_cand = nr_cand - pgdat->nbp_th_nr_cand; + unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; + th = pgdat->nbp_threshold ? : ref_th; + if (diff_cand > ref_cand * 11 / 10) + th = max(th - unit_th, unit_th); + else if (diff_cand < ref_cand * 9 / 10) + th = min(th + unit_th, ref_th * 2); + pgdat->nbp_th_nr_cand = nr_cand; + pgdat->nbp_threshold = th; + } +} + bool should_numa_migrate_memory(struct task_struct *p, struct page * page, int src_nid, int dst_cpu) { @@ -1439,9 +1560,44 @@ bool should_numa_migrate_memory(struct task_struct *p, struct page * page, int dst_nid = cpu_to_node(dst_cpu); int last_cpupid, this_cpupid; + /* + * The pages in slow memory node should be migrated according + * to hot/cold instead of private/shared. + */ + if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && + !node_is_toptier(src_nid)) { + struct pglist_data *pgdat; + unsigned long rate_limit; + unsigned int latency, th, def_th; + + pgdat = NODE_DATA(dst_nid); + if (pgdat_free_space_enough(pgdat)) { + /* workload changed, reset hot threshold */ + pgdat->nbp_threshold = 0; + return true; + } + + def_th = sysctl_numa_balancing_hot_threshold; + rate_limit = sysctl_numa_balancing_promote_rate_limit << \ + (20 - PAGE_SHIFT); + numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); + + th = pgdat->nbp_threshold ? : def_th; + latency = numa_hint_fault_latency(page); + if (latency >= th) + return false; + + return !numa_promotion_rate_limit(pgdat, rate_limit, + thp_nr_pages(page)); + } + this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); last_cpupid = page_cpupid_xchg_last(page, this_cpupid); + if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && + !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) + return false; + /* * Allow first faults or private faults to migrate immediately early in * the lifetime of a task. The magic number 4 is based on waiting for @@ -2681,6 +2837,15 @@ void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) if (!p->mm) return; + /* + * NUMA faults statistics are unnecessary for the slow memory + * node for memory tiering mode. + */ + if (!node_is_toptier(mem_node) && + (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || + !cpupid_valid(last_cpupid))) + return; + /* Allocate buffer to track faults on a per-node basis */ if (unlikely(!p->numa_faults)) { int size = sizeof(*p->numa_faults) * @@ -2761,6 +2926,7 @@ static void task_numa_work(struct callback_head *work) struct task_struct *p = current; struct mm_struct *mm = p->mm; u64 runtime = p->se.sum_exec_runtime; + MA_STATE(mas, &mm->mm_mt, 0, 0); struct vm_area_struct *vma; unsigned long start, end; unsigned long nr_pte_updates = 0; @@ -2817,13 +2983,16 @@ static void task_numa_work(struct callback_head *work) if (!mmap_read_trylock(mm)) return; - vma = find_vma(mm, start); + mas_set(&mas, start); + vma = mas_find(&mas, ULONG_MAX); if (!vma) { reset_ptenuma_scan(p); start = 0; - vma = mm->mmap; + mas_set(&mas, start); + vma = mas_find(&mas, ULONG_MAX); } - for (; vma; vma = vma->vm_next) { + + for (; vma; vma = mas_find(&mas, ULONG_MAX)) { if (!vma_migratable(vma) || !vma_policy_mof(vma) || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { continue; diff --git a/kernel/sched/psi.c b/kernel/sched/psi.c index 7f6030091aee..ee2ecc081422 100644 --- a/kernel/sched/psi.c +++ b/kernel/sched/psi.c @@ -181,6 +181,7 @@ static void group_init(struct psi_group *group) { int cpu; + group->enabled = true; for_each_possible_cpu(cpu) seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); group->avg_last_update = sched_clock(); @@ -201,6 +202,7 @@ void __init psi_init(void) { if (!psi_enable) { static_branch_enable(&psi_disabled); + static_branch_disable(&psi_cgroups_enabled); return; } @@ -211,7 +213,7 @@ void __init psi_init(void) group_init(&psi_system); } -static bool test_state(unsigned int *tasks, enum psi_states state) +static bool test_state(unsigned int *tasks, enum psi_states state, bool oncpu) { switch (state) { case PSI_IO_SOME: @@ -224,9 +226,9 @@ static bool test_state(unsigned int *tasks, enum psi_states state) return unlikely(tasks[NR_MEMSTALL] && tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]); case PSI_CPU_SOME: - return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]); + return unlikely(tasks[NR_RUNNING] > oncpu); case PSI_CPU_FULL: - return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]); + return unlikely(tasks[NR_RUNNING] && !oncpu); case PSI_NONIDLE: return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || tasks[NR_RUNNING]; @@ -688,35 +690,53 @@ static void psi_group_change(struct psi_group *group, int cpu, bool wake_clock) { struct psi_group_cpu *groupc; - u32 state_mask = 0; unsigned int t, m; enum psi_states s; + u32 state_mask; groupc = per_cpu_ptr(group->pcpu, cpu); /* - * First we assess the aggregate resource states this CPU's - * tasks have been in since the last change, and account any - * SOME and FULL time these may have resulted in. - * - * Then we update the task counts according to the state + * First we update the task counts according to the state * change requested through the @clear and @set bits. + * + * Then if the cgroup PSI stats accounting enabled, we + * assess the aggregate resource states this CPU's tasks + * have been in since the last change, and account any + * SOME and FULL time these may have resulted in. */ write_seqcount_begin(&groupc->seq); - record_times(groupc, now); + /* + * Start with TSK_ONCPU, which doesn't have a corresponding + * task count - it's just a boolean flag directly encoded in + * the state mask. Clear, set, or carry the current state if + * no changes are requested. + */ + if (unlikely(clear & TSK_ONCPU)) { + state_mask = 0; + clear &= ~TSK_ONCPU; + } else if (unlikely(set & TSK_ONCPU)) { + state_mask = PSI_ONCPU; + set &= ~TSK_ONCPU; + } else { + state_mask = groupc->state_mask & PSI_ONCPU; + } + /* + * The rest of the state mask is calculated based on the task + * counts. Update those first, then construct the mask. + */ for (t = 0, m = clear; m; m &= ~(1 << t), t++) { if (!(m & (1 << t))) continue; if (groupc->tasks[t]) { groupc->tasks[t]--; } else if (!psi_bug) { - printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u %u] clear=%x set=%x\n", + printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n", cpu, t, groupc->tasks[0], groupc->tasks[1], groupc->tasks[2], - groupc->tasks[3], groupc->tasks[4], - clear, set); + groupc->tasks[3], clear, set); psi_bug = 1; } } @@ -725,9 +745,25 @@ static void psi_group_change(struct psi_group *group, int cpu, if (set & (1 << t)) groupc->tasks[t]++; - /* Calculate state mask representing active states */ + if (!group->enabled) { + /* + * On the first group change after disabling PSI, conclude + * the current state and flush its time. This is unlikely + * to matter to the user, but aggregation (get_recent_times) + * may have already incorporated the live state into times_prev; + * avoid a delta sample underflow when PSI is later re-enabled. + */ + if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE))) + record_times(groupc, now); + + groupc->state_mask = state_mask; + + write_seqcount_end(&groupc->seq); + return; + } + for (s = 0; s < NR_PSI_STATES; s++) { - if (test_state(groupc->tasks, s)) + if (test_state(groupc->tasks, s, state_mask & PSI_ONCPU)) state_mask |= (1 << s); } @@ -739,9 +775,11 @@ static void psi_group_change(struct psi_group *group, int cpu, * task in a cgroup is in_memstall, the corresponding groupc * on that cpu is in PSI_MEM_FULL state. */ - if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall)) + if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall)) state_mask |= (1 << PSI_MEM_FULL); + record_times(groupc, now); + groupc->state_mask = state_mask; write_seqcount_end(&groupc->seq); @@ -753,27 +791,12 @@ static void psi_group_change(struct psi_group *group, int cpu, schedule_delayed_work(&group->avgs_work, PSI_FREQ); } -static struct psi_group *iterate_groups(struct task_struct *task, void **iter) +static inline struct psi_group *task_psi_group(struct task_struct *task) { - if (*iter == &psi_system) - return NULL; - #ifdef CONFIG_CGROUPS - if (static_branch_likely(&psi_cgroups_enabled)) { - struct cgroup *cgroup = NULL; - - if (!*iter) - cgroup = task->cgroups->dfl_cgrp; - else - cgroup = cgroup_parent(*iter); - - if (cgroup && cgroup_parent(cgroup)) { - *iter = cgroup; - return cgroup_psi(cgroup); - } - } + if (static_branch_likely(&psi_cgroups_enabled)) + return cgroup_psi(task_dfl_cgroup(task)); #endif - *iter = &psi_system; return &psi_system; } @@ -796,8 +819,6 @@ void psi_task_change(struct task_struct *task, int clear, int set) { int cpu = task_cpu(task); struct psi_group *group; - bool wake_clock = true; - void *iter = NULL; u64 now; if (!task->pid) @@ -806,19 +827,11 @@ void psi_task_change(struct task_struct *task, int clear, int set) psi_flags_change(task, clear, set); now = cpu_clock(cpu); - /* - * Periodic aggregation shuts off if there is a period of no - * task changes, so we wake it back up if necessary. However, - * don't do this if the task change is the aggregation worker - * itself going to sleep, or we'll ping-pong forever. - */ - if (unlikely((clear & TSK_RUNNING) && - (task->flags & PF_WQ_WORKER) && - wq_worker_last_func(task) == psi_avgs_work)) - wake_clock = false; - while ((group = iterate_groups(task, &iter))) - psi_group_change(group, cpu, clear, set, now, wake_clock); + group = task_psi_group(task); + do { + psi_group_change(group, cpu, clear, set, now, true); + } while ((group = group->parent)); } void psi_task_switch(struct task_struct *prev, struct task_struct *next, @@ -826,34 +839,30 @@ void psi_task_switch(struct task_struct *prev, struct task_struct *next, { struct psi_group *group, *common = NULL; int cpu = task_cpu(prev); - void *iter; u64 now = cpu_clock(cpu); if (next->pid) { - bool identical_state; - psi_flags_change(next, 0, TSK_ONCPU); /* - * When switching between tasks that have an identical - * runtime state, the cgroup that contains both tasks - * we reach the first common ancestor. Iterate @next's - * ancestors only until we encounter @prev's ONCPU. + * Set TSK_ONCPU on @next's cgroups. If @next shares any + * ancestors with @prev, those will already have @prev's + * TSK_ONCPU bit set, and we can stop the iteration there. */ - identical_state = prev->psi_flags == next->psi_flags; - iter = NULL; - while ((group = iterate_groups(next, &iter))) { - if (identical_state && - per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) { + group = task_psi_group(next); + do { + if (per_cpu_ptr(group->pcpu, cpu)->state_mask & + PSI_ONCPU) { common = group; break; } psi_group_change(group, cpu, 0, TSK_ONCPU, now, true); - } + } while ((group = group->parent)); } if (prev->pid) { int clear = TSK_ONCPU, set = 0; + bool wake_clock = true; /* * When we're going to sleep, psi_dequeue() lets us @@ -867,26 +876,74 @@ void psi_task_switch(struct task_struct *prev, struct task_struct *next, clear |= TSK_MEMSTALL_RUNNING; if (prev->in_iowait) set |= TSK_IOWAIT; + + /* + * Periodic aggregation shuts off if there is a period of no + * task changes, so we wake it back up if necessary. However, + * don't do this if the task change is the aggregation worker + * itself going to sleep, or we'll ping-pong forever. + */ + if (unlikely((prev->flags & PF_WQ_WORKER) && + wq_worker_last_func(prev) == psi_avgs_work)) + wake_clock = false; } psi_flags_change(prev, clear, set); - iter = NULL; - while ((group = iterate_groups(prev, &iter)) && group != common) - psi_group_change(group, cpu, clear, set, now, true); + group = task_psi_group(prev); + do { + if (group == common) + break; + psi_group_change(group, cpu, clear, set, now, wake_clock); + } while ((group = group->parent)); /* - * TSK_ONCPU is handled up to the common ancestor. If we're tasked - * with dequeuing too, finish that for the rest of the hierarchy. + * TSK_ONCPU is handled up to the common ancestor. If there are + * any other differences between the two tasks (e.g. prev goes + * to sleep, or only one task is memstall), finish propagating + * those differences all the way up to the root. */ - if (sleep) { + if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) { clear &= ~TSK_ONCPU; - for (; group; group = iterate_groups(prev, &iter)) - psi_group_change(group, cpu, clear, set, now, true); + for (; group; group = group->parent) + psi_group_change(group, cpu, clear, set, now, wake_clock); } } } +#ifdef CONFIG_IRQ_TIME_ACCOUNTING +void psi_account_irqtime(struct task_struct *task, u32 delta) +{ + int cpu = task_cpu(task); + struct psi_group *group; + struct psi_group_cpu *groupc; + u64 now; + + if (!task->pid) + return; + + now = cpu_clock(cpu); + + group = task_psi_group(task); + do { + if (!group->enabled) + continue; + + groupc = per_cpu_ptr(group->pcpu, cpu); + + write_seqcount_begin(&groupc->seq); + + record_times(groupc, now); + groupc->times[PSI_IRQ_FULL] += delta; + + write_seqcount_end(&groupc->seq); + + if (group->poll_states & (1 << PSI_IRQ_FULL)) + psi_schedule_poll_work(group, 1); + } while ((group = group->parent)); +} +#endif + /** * psi_memstall_enter - mark the beginning of a memory stall section * @flags: flags to handle nested sections @@ -952,7 +1009,7 @@ EXPORT_SYMBOL_GPL(psi_memstall_leave); #ifdef CONFIG_CGROUPS int psi_cgroup_alloc(struct cgroup *cgroup) { - if (static_branch_likely(&psi_disabled)) + if (!static_branch_likely(&psi_cgroups_enabled)) return 0; cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL); @@ -965,12 +1022,13 @@ int psi_cgroup_alloc(struct cgroup *cgroup) return -ENOMEM; } group_init(cgroup->psi); + cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup)); return 0; } void psi_cgroup_free(struct cgroup *cgroup) { - if (static_branch_likely(&psi_disabled)) + if (!static_branch_likely(&psi_cgroups_enabled)) return; cancel_delayed_work_sync(&cgroup->psi->avgs_work); @@ -998,7 +1056,7 @@ void cgroup_move_task(struct task_struct *task, struct css_set *to) struct rq_flags rf; struct rq *rq; - if (static_branch_likely(&psi_disabled)) { + if (!static_branch_likely(&psi_cgroups_enabled)) { /* * Lame to do this here, but the scheduler cannot be locked * from the outside, so we move cgroups from inside sched/. @@ -1046,10 +1104,45 @@ void cgroup_move_task(struct task_struct *task, struct css_set *to) task_rq_unlock(rq, task, &rf); } + +void psi_cgroup_restart(struct psi_group *group) +{ + int cpu; + + /* + * After we disable psi_group->enabled, we don't actually + * stop percpu tasks accounting in each psi_group_cpu, + * instead only stop test_state() loop, record_times() + * and averaging worker, see psi_group_change() for details. + * + * When disable cgroup PSI, this function has nothing to sync + * since cgroup pressure files are hidden and percpu psi_group_cpu + * would see !psi_group->enabled and only do task accounting. + * + * When re-enable cgroup PSI, this function use psi_group_change() + * to get correct state mask from test_state() loop on tasks[], + * and restart groupc->state_start from now, use .clear = .set = 0 + * here since no task status really changed. + */ + if (!group->enabled) + return; + + for_each_possible_cpu(cpu) { + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; + u64 now; + + rq_lock_irq(rq, &rf); + now = cpu_clock(cpu); + psi_group_change(group, cpu, 0, 0, now, true); + rq_unlock_irq(rq, &rf); + } +} #endif /* CONFIG_CGROUPS */ int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) { + bool only_full = false; int full; u64 now; @@ -1064,7 +1157,11 @@ int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) group->avg_next_update = update_averages(group, now); mutex_unlock(&group->avgs_lock); - for (full = 0; full < 2; full++) { +#ifdef CONFIG_IRQ_TIME_ACCOUNTING + only_full = res == PSI_IRQ; +#endif + + for (full = 0; full < 2 - only_full; full++) { unsigned long avg[3] = { 0, }; u64 total = 0; int w; @@ -1078,7 +1175,7 @@ int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) } seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", - full ? "full" : "some", + full || only_full ? "full" : "some", LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), @@ -1106,6 +1203,11 @@ struct psi_trigger *psi_trigger_create(struct psi_group *group, else return ERR_PTR(-EINVAL); +#ifdef CONFIG_IRQ_TIME_ACCOUNTING + if (res == PSI_IRQ && --state != PSI_IRQ_FULL) + return ERR_PTR(-EINVAL); +#endif + if (state >= PSI_NONIDLE) return ERR_PTR(-EINVAL); @@ -1390,6 +1492,33 @@ static const struct proc_ops psi_cpu_proc_ops = { .proc_release = psi_fop_release, }; +#ifdef CONFIG_IRQ_TIME_ACCOUNTING +static int psi_irq_show(struct seq_file *m, void *v) +{ + return psi_show(m, &psi_system, PSI_IRQ); +} + +static int psi_irq_open(struct inode *inode, struct file *file) +{ + return psi_open(file, psi_irq_show); +} + +static ssize_t psi_irq_write(struct file *file, const char __user *user_buf, + size_t nbytes, loff_t *ppos) +{ + return psi_write(file, user_buf, nbytes, PSI_IRQ); +} + +static const struct proc_ops psi_irq_proc_ops = { + .proc_open = psi_irq_open, + .proc_read = seq_read, + .proc_lseek = seq_lseek, + .proc_write = psi_irq_write, + .proc_poll = psi_fop_poll, + .proc_release = psi_fop_release, +}; +#endif + static int __init psi_proc_init(void) { if (psi_enable) { @@ -1397,6 +1526,9 @@ static int __init psi_proc_init(void) proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops); proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops); proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops); +#ifdef CONFIG_IRQ_TIME_ACCOUNTING + proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops); +#endif } return 0; } diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index 1fc198be1ffd..1644242ecd11 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -2446,6 +2446,7 @@ extern unsigned int sysctl_numa_balancing_scan_delay; extern unsigned int sysctl_numa_balancing_scan_period_min; extern unsigned int sysctl_numa_balancing_scan_period_max; extern unsigned int sysctl_numa_balancing_scan_size; +extern unsigned int sysctl_numa_balancing_hot_threshold; #endif #ifdef CONFIG_SCHED_HRTICK diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h index baa839c1ba96..84a188913cc9 100644 --- a/kernel/sched/stats.h +++ b/kernel/sched/stats.h @@ -107,6 +107,11 @@ __schedstats_from_se(struct sched_entity *se) } #ifdef CONFIG_PSI +void psi_task_change(struct task_struct *task, int clear, int set); +void psi_task_switch(struct task_struct *prev, struct task_struct *next, + bool sleep); +void psi_account_irqtime(struct task_struct *task, u32 delta); + /* * PSI tracks state that persists across sleeps, such as iowaits and * memory stalls. As a result, it has to distinguish between sleeps, @@ -201,6 +206,7 @@ static inline void psi_ttwu_dequeue(struct task_struct *p) {} static inline void psi_sched_switch(struct task_struct *prev, struct task_struct *next, bool sleep) {} +static inline void psi_account_irqtime(struct task_struct *task, u32 delta) {} #endif /* CONFIG_PSI */ #ifdef CONFIG_SCHED_INFO |