diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Kconfig | 5 | ||||
-rw-r--r-- | lib/Kconfig.debug | 20 | ||||
-rw-r--r-- | lib/Kconfig.kasan | 9 | ||||
-rw-r--r-- | lib/Makefile | 8 | ||||
-rw-r--r-- | lib/bitmap.c | 22 | ||||
-rw-r--r-- | lib/chacha20.c | 6 | ||||
-rw-r--r-- | lib/cpumask.c | 4 | ||||
-rw-r--r-- | lib/crc-t10dif.c | 57 | ||||
-rw-r--r-- | lib/crc32.c | 11 | ||||
-rw-r--r-- | lib/debug_locks.c | 6 | ||||
-rw-r--r-- | lib/idr.c | 401 | ||||
-rw-r--r-- | lib/kstrtox.c | 16 | ||||
-rw-r--r-- | lib/lz4/lz4_decompress.c | 481 | ||||
-rw-r--r-- | lib/lz4/lz4defs.h | 9 | ||||
-rw-r--r-- | lib/memcat_p.c | 34 | ||||
-rw-r--r-- | lib/nlattr.c | 269 | ||||
-rw-r--r-- | lib/parser.c | 16 | ||||
-rw-r--r-- | lib/percpu-refcount.c | 28 | ||||
-rw-r--r-- | lib/radix-tree.c | 834 | ||||
-rw-r--r-- | lib/sg_pool.c | 7 | ||||
-rw-r--r-- | lib/string.c | 1 | ||||
-rw-r--r-- | lib/test_bpf.c | 1 | ||||
-rw-r--r-- | lib/test_kasan.c | 70 | ||||
-rw-r--r-- | lib/test_memcat_p.c | 115 | ||||
-rw-r--r-- | lib/test_xarray.c | 1238 | ||||
-rw-r--r-- | lib/vsprintf.c | 243 | ||||
-rw-r--r-- | lib/xarray.c | 2036 | ||||
-rw-r--r-- | lib/zlib_inflate/inflate.c | 12 |
28 files changed, 4648 insertions, 1311 deletions
diff --git a/lib/Kconfig b/lib/Kconfig index a3928d4438b5..a9965f4af4dd 100644 --- a/lib/Kconfig +++ b/lib/Kconfig @@ -399,8 +399,11 @@ config INTERVAL_TREE for more information. -config RADIX_TREE_MULTIORDER +config XARRAY_MULTI bool + help + Support entries which occupy multiple consecutive indices in the + XArray. config ASSOCIATIVE_ARRAY bool diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug index 4966c4fbe7f7..1af29b8224fd 100644 --- a/lib/Kconfig.debug +++ b/lib/Kconfig.debug @@ -1179,7 +1179,7 @@ config LOCKDEP bool depends on DEBUG_KERNEL && LOCK_DEBUGGING_SUPPORT select STACKTRACE - select FRAME_POINTER if !MIPS && !PPC && !ARM_UNWIND && !S390 && !MICROBLAZE && !ARC && !X86 + select FRAME_POINTER if !MIPS && !PPC && !ARM && !S390 && !MICROBLAZE && !ARC && !X86 select KALLSYMS select KALLSYMS_ALL @@ -1292,7 +1292,7 @@ config DEBUG_KOBJECT depends on DEBUG_KERNEL help If you say Y here, some extra kobject debugging messages will be sent - to the syslog. + to the syslog. config DEBUG_KOBJECT_RELEASE bool "kobject release debugging" @@ -1590,7 +1590,7 @@ config FAULT_INJECTION_STACKTRACE_FILTER depends on FAULT_INJECTION_DEBUG_FS && STACKTRACE_SUPPORT depends on !X86_64 select STACKTRACE - select FRAME_POINTER if !MIPS && !PPC && !S390 && !MICROBLAZE && !ARM_UNWIND && !ARC && !X86 + select FRAME_POINTER if !MIPS && !PPC && !S390 && !MICROBLAZE && !ARM && !ARC && !X86 help Provide stacktrace filter for fault-injection capabilities @@ -1599,7 +1599,7 @@ config LATENCYTOP depends on DEBUG_KERNEL depends on STACKTRACE_SUPPORT depends on PROC_FS - select FRAME_POINTER if !MIPS && !PPC && !S390 && !MICROBLAZE && !ARM_UNWIND && !ARC && !X86 + select FRAME_POINTER if !MIPS && !PPC && !S390 && !MICROBLAZE && !ARM && !ARC && !X86 select KALLSYMS select KALLSYMS_ALL select STACKTRACE @@ -1813,6 +1813,9 @@ config TEST_BITFIELD config TEST_UUID tristate "Test functions located in the uuid module at runtime" +config TEST_XARRAY + tristate "Test the XArray code at runtime" + config TEST_OVERFLOW tristate "Test check_*_overflow() functions at runtime" @@ -1965,11 +1968,18 @@ config TEST_DEBUG_VIRTUAL If unsure, say N. +config TEST_MEMCAT_P + tristate "Test memcat_p() helper function" + help + Test the memcat_p() helper for correctly merging two + pointer arrays together. + + If unsure, say N. + endif # RUNTIME_TESTING_MENU config MEMTEST bool "Memtest" - depends on HAVE_MEMBLOCK ---help--- This option adds a kernel parameter 'memtest', which allows memtest to be set. diff --git a/lib/Kconfig.kasan b/lib/Kconfig.kasan index befb127507c0..d0bad1bd9a2b 100644 --- a/lib/Kconfig.kasan +++ b/lib/Kconfig.kasan @@ -57,6 +57,15 @@ config KASAN_INLINE endchoice +config KASAN_S390_4_LEVEL_PAGING + bool "KASan: use 4-level paging" + depends on KASAN && S390 + help + Compiling the kernel with KASan disables automatic 3-level vs + 4-level paging selection. 3-level paging is used by default (up + to 3TB of RAM with KASan enabled). This options allows to force + 4-level paging instead. + config TEST_KASAN tristate "Module for testing kasan for bug detection" depends on m && KASAN diff --git a/lib/Makefile b/lib/Makefile index 423876446810..db06d1237898 100644 --- a/lib/Makefile +++ b/lib/Makefile @@ -18,13 +18,13 @@ KCOV_INSTRUMENT_debugobjects.o := n KCOV_INSTRUMENT_dynamic_debug.o := n lib-y := ctype.o string.o vsprintf.o cmdline.o \ - rbtree.o radix-tree.o timerqueue.o\ + rbtree.o radix-tree.o timerqueue.o xarray.o \ idr.o int_sqrt.o extable.o \ sha1.o chacha20.o irq_regs.o argv_split.o \ flex_proportions.o ratelimit.o show_mem.o \ is_single_threaded.o plist.o decompress.o kobject_uevent.o \ earlycpio.o seq_buf.o siphash.o dec_and_lock.o \ - nmi_backtrace.o nodemask.o win_minmax.o + nmi_backtrace.o nodemask.o win_minmax.o memcat_p.o lib-$(CONFIG_PRINTK) += dump_stack.o lib-$(CONFIG_MMU) += ioremap.o @@ -53,7 +53,9 @@ obj-$(CONFIG_TEST_HASH) += test_hash.o test_siphash.o obj-$(CONFIG_TEST_IDA) += test_ida.o obj-$(CONFIG_TEST_KASAN) += test_kasan.o CFLAGS_test_kasan.o += -fno-builtin +CFLAGS_test_kasan.o += $(call cc-disable-warning, vla) obj-$(CONFIG_TEST_UBSAN) += test_ubsan.o +CFLAGS_test_ubsan.o += $(call cc-disable-warning, vla) UBSAN_SANITIZE_test_ubsan.o := y obj-$(CONFIG_TEST_KSTRTOX) += test-kstrtox.o obj-$(CONFIG_TEST_LIST_SORT) += test_list_sort.o @@ -68,9 +70,11 @@ obj-$(CONFIG_TEST_PRINTF) += test_printf.o obj-$(CONFIG_TEST_BITMAP) += test_bitmap.o obj-$(CONFIG_TEST_BITFIELD) += test_bitfield.o obj-$(CONFIG_TEST_UUID) += test_uuid.o +obj-$(CONFIG_TEST_XARRAY) += test_xarray.o obj-$(CONFIG_TEST_PARMAN) += test_parman.o obj-$(CONFIG_TEST_KMOD) += test_kmod.o obj-$(CONFIG_TEST_DEBUG_VIRTUAL) += test_debug_virtual.o +obj-$(CONFIG_TEST_MEMCAT_P) += test_memcat_p.o ifeq ($(CONFIG_DEBUG_KOBJECT),y) CFLAGS_kobject.o += -DDEBUG diff --git a/lib/bitmap.c b/lib/bitmap.c index 2fd07f6df0b8..eead55aa7170 100644 --- a/lib/bitmap.c +++ b/lib/bitmap.c @@ -13,6 +13,7 @@ #include <linux/bitops.h> #include <linux/bug.h> #include <linux/kernel.h> +#include <linux/mm.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/uaccess.h> @@ -36,11 +37,6 @@ * carefully filter out these unused bits from impacting their * results. * - * These operations actually hold to a slightly stronger rule: - * if you don't input any bitmaps to these ops that have some - * unused bits set, then they won't output any set unused bits - * in output bitmaps. - * * The byte ordering of bitmaps is more natural on little * endian architectures. See the big-endian headers * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h @@ -466,20 +462,18 @@ EXPORT_SYMBOL(bitmap_parse_user); * ranges if list is specified or hex digits grouped into comma-separated * sets of 8 digits/set. Returns the number of characters written to buf. * - * It is assumed that @buf is a pointer into a PAGE_SIZE area and that - * sufficient storage remains at @buf to accommodate the - * bitmap_print_to_pagebuf() output. + * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned + * area and that sufficient storage remains at @buf to accommodate the + * bitmap_print_to_pagebuf() output. Returns the number of characters + * actually printed to @buf, excluding terminating '\0'. */ int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, int nmaskbits) { - ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf; - int n = 0; + ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); - if (len > 1) - n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : - scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); - return n; + return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : + scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); } EXPORT_SYMBOL(bitmap_print_to_pagebuf); diff --git a/lib/chacha20.c b/lib/chacha20.c index c1cc50fb68c9..d907fec6a9ed 100644 --- a/lib/chacha20.c +++ b/lib/chacha20.c @@ -16,9 +16,9 @@ #include <asm/unaligned.h> #include <crypto/chacha20.h> -void chacha20_block(u32 *state, u32 *stream) +void chacha20_block(u32 *state, u8 *stream) { - u32 x[16], *out = stream; + u32 x[16]; int i; for (i = 0; i < ARRAY_SIZE(x); i++) @@ -67,7 +67,7 @@ void chacha20_block(u32 *state, u32 *stream) } for (i = 0; i < ARRAY_SIZE(x); i++) - out[i] = cpu_to_le32(x[i] + state[i]); + put_unaligned_le32(x[i] + state[i], &stream[i * sizeof(u32)]); state[12]++; } diff --git a/lib/cpumask.c b/lib/cpumask.c index beca6244671a..8d666ab84b5c 100644 --- a/lib/cpumask.c +++ b/lib/cpumask.c @@ -4,7 +4,7 @@ #include <linux/bitops.h> #include <linux/cpumask.h> #include <linux/export.h> -#include <linux/bootmem.h> +#include <linux/memblock.h> /** * cpumask_next - get the next cpu in a cpumask @@ -163,7 +163,7 @@ EXPORT_SYMBOL(zalloc_cpumask_var); */ void __init alloc_bootmem_cpumask_var(cpumask_var_t *mask) { - *mask = memblock_virt_alloc(cpumask_size(), 0); + *mask = memblock_alloc(cpumask_size(), SMP_CACHE_BYTES); } /** diff --git a/lib/crc-t10dif.c b/lib/crc-t10dif.c index 1ad33e555805..4d0d47c1ffbd 100644 --- a/lib/crc-t10dif.c +++ b/lib/crc-t10dif.c @@ -14,10 +14,47 @@ #include <linux/err.h> #include <linux/init.h> #include <crypto/hash.h> +#include <crypto/algapi.h> #include <linux/static_key.h> +#include <linux/notifier.h> -static struct crypto_shash *crct10dif_tfm; +static struct crypto_shash __rcu *crct10dif_tfm; static struct static_key crct10dif_fallback __read_mostly; +static DEFINE_MUTEX(crc_t10dif_mutex); + +static int crc_t10dif_rehash(struct notifier_block *self, unsigned long val, void *data) +{ + struct crypto_alg *alg = data; + struct crypto_shash *new, *old; + + if (val != CRYPTO_MSG_ALG_LOADED || + static_key_false(&crct10dif_fallback) || + strncmp(alg->cra_name, CRC_T10DIF_STRING, strlen(CRC_T10DIF_STRING))) + return 0; + + mutex_lock(&crc_t10dif_mutex); + old = rcu_dereference_protected(crct10dif_tfm, + lockdep_is_held(&crc_t10dif_mutex)); + if (!old) { + mutex_unlock(&crc_t10dif_mutex); + return 0; + } + new = crypto_alloc_shash("crct10dif", 0, 0); + if (IS_ERR(new)) { + mutex_unlock(&crc_t10dif_mutex); + return 0; + } + rcu_assign_pointer(crct10dif_tfm, new); + mutex_unlock(&crc_t10dif_mutex); + + synchronize_rcu(); + crypto_free_shash(old); + return 0; +} + +static struct notifier_block crc_t10dif_nb = { + .notifier_call = crc_t10dif_rehash, +}; __u16 crc_t10dif_update(__u16 crc, const unsigned char *buffer, size_t len) { @@ -30,11 +67,14 @@ __u16 crc_t10dif_update(__u16 crc, const unsigned char *buffer, size_t len) if (static_key_false(&crct10dif_fallback)) return crc_t10dif_generic(crc, buffer, len); - desc.shash.tfm = crct10dif_tfm; + rcu_read_lock(); + desc.shash.tfm = rcu_dereference(crct10dif_tfm); desc.shash.flags = 0; *(__u16 *)desc.ctx = crc; err = crypto_shash_update(&desc.shash, buffer, len); + rcu_read_unlock(); + BUG_ON(err); return *(__u16 *)desc.ctx; @@ -49,6 +89,7 @@ EXPORT_SYMBOL(crc_t10dif); static int __init crc_t10dif_mod_init(void) { + crypto_register_notifier(&crc_t10dif_nb); crct10dif_tfm = crypto_alloc_shash("crct10dif", 0, 0); if (IS_ERR(crct10dif_tfm)) { static_key_slow_inc(&crct10dif_fallback); @@ -59,12 +100,24 @@ static int __init crc_t10dif_mod_init(void) static void __exit crc_t10dif_mod_fini(void) { + crypto_unregister_notifier(&crc_t10dif_nb); crypto_free_shash(crct10dif_tfm); } module_init(crc_t10dif_mod_init); module_exit(crc_t10dif_mod_fini); +static int crc_t10dif_transform_show(char *buffer, const struct kernel_param *kp) +{ + if (static_key_false(&crct10dif_fallback)) + return sprintf(buffer, "fallback\n"); + + return sprintf(buffer, "%s\n", + crypto_tfm_alg_driver_name(crypto_shash_tfm(crct10dif_tfm))); +} + +module_param_call(transform, NULL, crc_t10dif_transform_show, NULL, 0644); + MODULE_DESCRIPTION("T10 DIF CRC calculation"); MODULE_LICENSE("GPL"); MODULE_SOFTDEP("pre: crct10dif"); diff --git a/lib/crc32.c b/lib/crc32.c index a6c9afafc8c8..45b1d67a1767 100644 --- a/lib/crc32.c +++ b/lib/crc32.c @@ -183,21 +183,21 @@ static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p, } #if CRC_LE_BITS == 1 -u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) +u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len) { return crc32_le_generic(crc, p, len, NULL, CRC32_POLY_LE); } -u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len) +u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len) { return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE); } #else -u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) +u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len) { return crc32_le_generic(crc, p, len, (const u32 (*)[256])crc32table_le, CRC32_POLY_LE); } -u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len) +u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len) { return crc32_le_generic(crc, p, len, (const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE); @@ -206,6 +206,9 @@ u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len) EXPORT_SYMBOL(crc32_le); EXPORT_SYMBOL(__crc32c_le); +u32 crc32_le_base(u32, unsigned char const *, size_t) __alias(crc32_le); +u32 __crc32c_le_base(u32, unsigned char const *, size_t) __alias(__crc32c_le); + /* * This multiplies the polynomials x and y modulo the given modulus. * This follows the "little-endian" CRC convention that the lsbit diff --git a/lib/debug_locks.c b/lib/debug_locks.c index 96c4c633d95e..ce51749cc145 100644 --- a/lib/debug_locks.c +++ b/lib/debug_locks.c @@ -21,7 +21,7 @@ * that would just muddy the log. So we report the first one and * shut up after that. */ -int debug_locks = 1; +int debug_locks __read_mostly = 1; EXPORT_SYMBOL_GPL(debug_locks); /* @@ -29,7 +29,7 @@ EXPORT_SYMBOL_GPL(debug_locks); * 'silent failure': nothing is printed to the console when * a locking bug is detected. */ -int debug_locks_silent; +int debug_locks_silent __read_mostly; EXPORT_SYMBOL_GPL(debug_locks_silent); /* @@ -37,7 +37,7 @@ EXPORT_SYMBOL_GPL(debug_locks_silent); */ int debug_locks_off(void) { - if (__debug_locks_off()) { + if (debug_locks && __debug_locks_off()) { if (!debug_locks_silent) { console_verbose(); return 1; diff --git a/lib/idr.c b/lib/idr.c index fab2fd5bc326..cb1db9b8d3f6 100644 --- a/lib/idr.c +++ b/lib/idr.c @@ -6,8 +6,6 @@ #include <linux/spinlock.h> #include <linux/xarray.h> -DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap); - /** * idr_alloc_u32() - Allocate an ID. * @idr: IDR handle. @@ -39,10 +37,8 @@ int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid, unsigned int base = idr->idr_base; unsigned int id = *nextid; - if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr))) - return -EINVAL; - if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR))) - idr->idr_rt.gfp_mask |= IDR_RT_MARKER; + if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR))) + idr->idr_rt.xa_flags |= IDR_RT_MARKER; id = (id < base) ? 0 : id - base; radix_tree_iter_init(&iter, id); @@ -295,15 +291,13 @@ void *idr_replace(struct idr *idr, void *ptr, unsigned long id) void __rcu **slot = NULL; void *entry; - if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr))) - return ERR_PTR(-EINVAL); id -= idr->idr_base; entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot); if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE)) return ERR_PTR(-ENOENT); - __radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL); + __radix_tree_replace(&idr->idr_rt, node, slot, ptr); return entry; } @@ -324,6 +318,9 @@ EXPORT_SYMBOL(idr_replace); * free the individual IDs in it. You can use ida_is_empty() to find * out whether the IDA has any IDs currently allocated. * + * The IDA handles its own locking. It is safe to call any of the IDA + * functions without synchronisation in your code. + * * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward * limitation, it should be quite straightforward to raise the maximum. */ @@ -331,161 +328,197 @@ EXPORT_SYMBOL(idr_replace); /* * Developer's notes: * - * The IDA uses the functionality provided by the IDR & radix tree to store - * bitmaps in each entry. The IDR_FREE tag means there is at least one bit - * free, unlike the IDR where it means at least one entry is free. + * The IDA uses the functionality provided by the XArray to store bitmaps in + * each entry. The XA_FREE_MARK is only cleared when all bits in the bitmap + * have been set. * - * I considered telling the radix tree that each slot is an order-10 node - * and storing the bit numbers in the radix tree, but the radix tree can't - * allow a single multiorder entry at index 0, which would significantly - * increase memory consumption for the IDA. So instead we divide the index - * by the number of bits in the leaf bitmap before doing a radix tree lookup. + * I considered telling the XArray that each slot is an order-10 node + * and indexing by bit number, but the XArray can't allow a single multi-index + * entry in the head, which would significantly increase memory consumption + * for the IDA. So instead we divide the index by the number of bits in the + * leaf bitmap before doing a radix tree lookup. * * As an optimisation, if there are only a few low bits set in any given - * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional - * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits - * directly in the entry. By being really tricksy, we could store - * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising - * for 0-3 allocated IDs. - * - * We allow the radix tree 'exceptional' count to get out of date. Nothing - * in the IDA nor the radix tree code checks it. If it becomes important - * to maintain an accurate exceptional count, switch the rcu_assign_pointer() - * calls to radix_tree_iter_replace() which will correct the exceptional - * count. - * - * The IDA always requires a lock to alloc/free. If we add a 'test_bit' + * leaf, instead of allocating a 128-byte bitmap, we store the bits + * as a value entry. Value entries never have the XA_FREE_MARK cleared + * because we can always convert them into a bitmap entry. + * + * It would be possible to optimise further; once we've run out of a + * single 128-byte bitmap, we currently switch to a 576-byte node, put + * the 128-byte bitmap in the first entry and then start allocating extra + * 128-byte entries. We could instead use the 512 bytes of the node's + * data as a bitmap before moving to that scheme. I do not believe this + * is a worthwhile optimisation; Rasmus Villemoes surveyed the current + * users of the IDA and almost none of them use more than 1024 entries. + * Those that do use more than the 8192 IDs that the 512 bytes would + * provide. + * + * The IDA always uses a lock to alloc/free. If we add a 'test_bit' * equivalent, it will still need locking. Going to RCU lookup would require * using RCU to free bitmaps, and that's not trivial without embedding an * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte * bitmap, which is excessive. */ -#define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1) - -static int ida_get_new_above(struct ida *ida, int start) +/** + * ida_alloc_range() - Allocate an unused ID. + * @ida: IDA handle. + * @min: Lowest ID to allocate. + * @max: Highest ID to allocate. + * @gfp: Memory allocation flags. + * + * Allocate an ID between @min and @max, inclusive. The allocated ID will + * not exceed %INT_MAX, even if @max is larger. + * + * Context: Any context. + * Return: The allocated ID, or %-ENOMEM if memory could not be allocated, + * or %-ENOSPC if there are no free IDs. + */ +int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max, + gfp_t gfp) { - struct radix_tree_root *root = &ida->ida_rt; - void __rcu **slot; - struct radix_tree_iter iter; - struct ida_bitmap *bitmap; - unsigned long index; - unsigned bit, ebit; - int new; - - index = start / IDA_BITMAP_BITS; - bit = start % IDA_BITMAP_BITS; - ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT; - - slot = radix_tree_iter_init(&iter, index); - for (;;) { - if (slot) - slot = radix_tree_next_slot(slot, &iter, - RADIX_TREE_ITER_TAGGED); - if (!slot) { - slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX); - if (IS_ERR(slot)) { - if (slot == ERR_PTR(-ENOMEM)) - return -EAGAIN; - return PTR_ERR(slot); + XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS); + unsigned bit = min % IDA_BITMAP_BITS; + unsigned long flags; + struct ida_bitmap *bitmap, *alloc = NULL; + + if ((int)min < 0) + return -ENOSPC; + + if ((int)max < 0) + max = INT_MAX; + +retry: + xas_lock_irqsave(&xas, flags); +next: + bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK); + if (xas.xa_index > min / IDA_BITMAP_BITS) + bit = 0; + if (xas.xa_index * IDA_BITMAP_BITS + bit > max) + goto nospc; + + if (xa_is_value(bitmap)) { + unsigned long tmp = xa_to_value(bitmap); + + if (bit < BITS_PER_XA_VALUE) { + bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit); + if (xas.xa_index * IDA_BITMAP_BITS + bit > max) + goto nospc; + if (bit < BITS_PER_XA_VALUE) { + tmp |= 1UL << bit; + xas_store(&xas, xa_mk_value(tmp)); + goto out; } } - if (iter.index > index) { - bit = 0; - ebit = RADIX_TREE_EXCEPTIONAL_SHIFT; - } - new = iter.index * IDA_BITMAP_BITS; - bitmap = rcu_dereference_raw(*slot); - if (radix_tree_exception(bitmap)) { - unsigned long tmp = (unsigned long)bitmap; - ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit); - if (ebit < BITS_PER_LONG) { - tmp |= 1UL << ebit; - rcu_assign_pointer(*slot, (void *)tmp); - return new + ebit - - RADIX_TREE_EXCEPTIONAL_SHIFT; - } - bitmap = this_cpu_xchg(ida_bitmap, NULL); - if (!bitmap) - return -EAGAIN; - bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT; - rcu_assign_pointer(*slot, bitmap); + bitmap = alloc; + if (!bitmap) + bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT); + if (!bitmap) + goto alloc; + bitmap->bitmap[0] = tmp; + xas_store(&xas, bitmap); + if (xas_error(&xas)) { + bitmap->bitmap[0] = 0; + goto out; } + } - if (bitmap) { - bit = find_next_zero_bit(bitmap->bitmap, - IDA_BITMAP_BITS, bit); - new += bit; - if (new < 0) - return -ENOSPC; - if (bit == IDA_BITMAP_BITS) - continue; + if (bitmap) { + bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit); + if (xas.xa_index * IDA_BITMAP_BITS + bit > max) + goto nospc; + if (bit == IDA_BITMAP_BITS) + goto next; - __set_bit(bit, bitmap->bitmap); - if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS)) - radix_tree_iter_tag_clear(root, &iter, - IDR_FREE); + __set_bit(bit, bitmap->bitmap); + if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS)) + xas_clear_mark(&xas, XA_FREE_MARK); + } else { + if (bit < BITS_PER_XA_VALUE) { + bitmap = xa_mk_value(1UL << bit); } else { - new += bit; - if (new < 0) - return -ENOSPC; - if (ebit < BITS_PER_LONG) { - bitmap = (void *)((1UL << ebit) | - RADIX_TREE_EXCEPTIONAL_ENTRY); - radix_tree_iter_replace(root, &iter, slot, - bitmap); - return new; - } - bitmap = this_cpu_xchg(ida_bitmap, NULL); + bitmap = alloc; if (!bitmap) - return -EAGAIN; + bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT); + if (!bitmap) + goto alloc; __set_bit(bit, bitmap->bitmap); - radix_tree_iter_replace(root, &iter, slot, bitmap); } - - return new; + xas_store(&xas, bitmap); + } +out: + xas_unlock_irqrestore(&xas, flags); + if (xas_nomem(&xas, gfp)) { + xas.xa_index = min / IDA_BITMAP_BITS; + bit = min % IDA_BITMAP_BITS; + goto retry; } + if (bitmap != alloc) + kfree(alloc); + if (xas_error(&xas)) + return xas_error(&xas); + return xas.xa_index * IDA_BITMAP_BITS + bit; +alloc: + xas_unlock_irqrestore(&xas, flags); + alloc = kzalloc(sizeof(*bitmap), gfp); + if (!alloc) + return -ENOMEM; + xas_set(&xas, min / IDA_BITMAP_BITS); + bit = min % IDA_BITMAP_BITS; + goto retry; +nospc: + xas_unlock_irqrestore(&xas, flags); + return -ENOSPC; } +EXPORT_SYMBOL(ida_alloc_range); -static void ida_remove(struct ida *ida, int id) +/** + * ida_free() - Release an allocated ID. + * @ida: IDA handle. + * @id: Previously allocated ID. + * + * Context: Any context. + */ +void ida_free(struct ida *ida, unsigned int id) { - unsigned long index = id / IDA_BITMAP_BITS; - unsigned offset = id % IDA_BITMAP_BITS; + XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS); + unsigned bit = id % IDA_BITMAP_BITS; struct ida_bitmap *bitmap; - unsigned long *btmp; - struct radix_tree_iter iter; - void __rcu **slot; + unsigned long flags; - slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index); - if (!slot) - goto err; + BUG_ON((int)id < 0); + + xas_lock_irqsave(&xas, flags); + bitmap = xas_load(&xas); - bitmap = rcu_dereference_raw(*slot); - if (radix_tree_exception(bitmap)) { - btmp = (unsigned long *)slot; - offset += RADIX_TREE_EXCEPTIONAL_SHIFT; - if (offset >= BITS_PER_LONG) + if (xa_is_value(bitmap)) { + unsigned long v = xa_to_value(bitmap); + if (bit >= BITS_PER_XA_VALUE) goto err; + if (!(v & (1UL << bit))) + goto err; + v &= ~(1UL << bit); + if (!v) + goto delete; + xas_store(&xas, xa_mk_value(v)); } else { - btmp = bitmap->bitmap; - } - if (!test_bit(offset, btmp)) - goto err; - - __clear_bit(offset, btmp); - radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE); - if (radix_tree_exception(bitmap)) { - if (rcu_dereference_raw(*slot) == - (void *)RADIX_TREE_EXCEPTIONAL_ENTRY) - radix_tree_iter_delete(&ida->ida_rt, &iter, slot); - } else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) { - kfree(bitmap); - radix_tree_iter_delete(&ida->ida_rt, &iter, slot); + if (!test_bit(bit, bitmap->bitmap)) + goto err; + __clear_bit(bit, bitmap->bitmap); + xas_set_mark(&xas, XA_FREE_MARK); + if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) { + kfree(bitmap); +delete: + xas_store(&xas, NULL); + } } + xas_unlock_irqrestore(&xas, flags); return; err: + xas_unlock_irqrestore(&xas, flags); WARN(1, "ida_free called for id=%d which is not allocated.\n", id); } +EXPORT_SYMBOL(ida_free); /** * ida_destroy() - Free all IDs. @@ -500,80 +533,60 @@ static void ida_remove(struct ida *ida, int id) */ void ida_destroy(struct ida *ida) { + XA_STATE(xas, &ida->xa, 0); + struct ida_bitmap *bitmap; unsigned long flags; - struct radix_tree_iter iter; - void __rcu **slot; - xa_lock_irqsave(&ida->ida_rt, flags); - radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) { - struct ida_bitmap *bitmap = rcu_dereference_raw(*slot); - if (!radix_tree_exception(bitmap)) + xas_lock_irqsave(&xas, flags); + xas_for_each(&xas, bitmap, ULONG_MAX) { + if (!xa_is_value(bitmap)) kfree(bitmap); - radix_tree_iter_delete(&ida->ida_rt, &iter, slot); + xas_store(&xas, NULL); } - xa_unlock_irqrestore(&ida->ida_rt, flags); + xas_unlock_irqrestore(&xas, flags); } EXPORT_SYMBOL(ida_destroy); -/** - * ida_alloc_range() - Allocate an unused ID. - * @ida: IDA handle. - * @min: Lowest ID to allocate. - * @max: Highest ID to allocate. - * @gfp: Memory allocation flags. - * - * Allocate an ID between @min and @max, inclusive. The allocated ID will - * not exceed %INT_MAX, even if @max is larger. - * - * Context: Any context. - * Return: The allocated ID, or %-ENOMEM if memory could not be allocated, - * or %-ENOSPC if there are no free IDs. - */ -int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max, - gfp_t gfp) -{ - int id = 0; - unsigned long flags; +#ifndef __KERNEL__ +extern void xa_dump_index(unsigned long index, unsigned int shift); +#define IDA_CHUNK_SHIFT ilog2(IDA_BITMAP_BITS) - if ((int)min < 0) - return -ENOSPC; - - if ((int)max < 0) - max = INT_MAX; - -again: - xa_lock_irqsave(&ida->ida_rt, flags); - id = ida_get_new_above(ida, min); - if (id > (int)max) { - ida_remove(ida, id); - id = -ENOSPC; - } - xa_unlock_irqrestore(&ida->ida_rt, flags); +static void ida_dump_entry(void *entry, unsigned long index) +{ + unsigned long i; + + if (!entry) + return; + + if (xa_is_node(entry)) { + struct xa_node *node = xa_to_node(entry); + unsigned int shift = node->shift + IDA_CHUNK_SHIFT + + XA_CHUNK_SHIFT; + + xa_dump_index(index * IDA_BITMAP_BITS, shift); + xa_dump_node(node); + for (i = 0; i < XA_CHUNK_SIZE; i++) + ida_dump_entry(node->slots[i], + index | (i << node->shift)); + } else if (xa_is_value(entry)) { + xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG)); + pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry); + } else { + struct ida_bitmap *bitmap = entry; - if (unlikely(id == -EAGAIN)) { - if (!ida_pre_get(ida, gfp)) - return -ENOMEM; - goto again; + xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT); + pr_cont("bitmap: %p data", bitmap); + for (i = 0; i < IDA_BITMAP_LONGS; i++) + pr_cont(" %lx", bitmap->bitmap[i]); + pr_cont("\n"); } - - return id; } -EXPORT_SYMBOL(ida_alloc_range); -/** - * ida_free() - Release an allocated ID. - * @ida: IDA handle. - * @id: Previously allocated ID. - * - * Context: Any context. - */ -void ida_free(struct ida *ida, unsigned int id) +static void ida_dump(struct ida *ida) { - unsigned long flags; - - BUG_ON((int)id < 0); - xa_lock_irqsave(&ida->ida_rt, flags); - ida_remove(ida, id); - xa_unlock_irqrestore(&ida->ida_rt, flags); + struct xarray *xa = &ida->xa; + pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head, + xa->xa_flags >> ROOT_TAG_SHIFT); + ida_dump_entry(xa->xa_head, 0); } -EXPORT_SYMBOL(ida_free); +#endif diff --git a/lib/kstrtox.c b/lib/kstrtox.c index 661a1e807bd1..1006bf70bf74 100644 --- a/lib/kstrtox.c +++ b/lib/kstrtox.c @@ -175,7 +175,7 @@ int _kstrtoul(const char *s, unsigned int base, unsigned long *res) rv = kstrtoull(s, base, &tmp); if (rv < 0) return rv; - if (tmp != (unsigned long long)(unsigned long)tmp) + if (tmp != (unsigned long)tmp) return -ERANGE; *res = tmp; return 0; @@ -191,7 +191,7 @@ int _kstrtol(const char *s, unsigned int base, long *res) rv = kstrtoll(s, base, &tmp); if (rv < 0) return rv; - if (tmp != (long long)(long)tmp) + if (tmp != (long)tmp) return -ERANGE; *res = tmp; return 0; @@ -222,7 +222,7 @@ int kstrtouint(const char *s, unsigned int base, unsigned int *res) rv = kstrtoull(s, base, &tmp); if (rv < 0) return rv; - if (tmp != (unsigned long long)(unsigned int)tmp) + if (tmp != (unsigned int)tmp) return -ERANGE; *res = tmp; return 0; @@ -253,7 +253,7 @@ int kstrtoint(const char *s, unsigned int base, int *res) rv = kstrtoll(s, base, &tmp); if (rv < 0) return rv; - if (tmp != (long long)(int)tmp) + if (tmp != (int)tmp) return -ERANGE; *res = tmp; return 0; @@ -268,7 +268,7 @@ int kstrtou16(const char *s, unsigned int base, u16 *res) rv = kstrtoull(s, base, &tmp); if (rv < 0) return rv; - if (tmp != (unsigned long long)(u16)tmp) + if (tmp != (u16)tmp) return -ERANGE; *res = tmp; return 0; @@ -283,7 +283,7 @@ int kstrtos16(const char *s, unsigned int base, s16 *res) rv = kstrtoll(s, base, &tmp); if (rv < 0) return rv; - if (tmp != (long long)(s16)tmp) + if (tmp != (s16)tmp) return -ERANGE; *res = tmp; return 0; @@ -298,7 +298,7 @@ int kstrtou8(const char *s, unsigned int base, u8 *res) rv = kstrtoull(s, base, &tmp); if (rv < 0) return rv; - if (tmp != (unsigned long long)(u8)tmp) + if (tmp != (u8)tmp) return -ERANGE; *res = tmp; return 0; @@ -313,7 +313,7 @@ int kstrtos8(const char *s, unsigned int base, s8 *res) rv = kstrtoll(s, base, &tmp); if (rv < 0) return rv; - if (tmp != (long long)(s8)tmp) + if (tmp != (s8)tmp) return -ERANGE; *res = tmp; return 0; diff --git a/lib/lz4/lz4_decompress.c b/lib/lz4/lz4_decompress.c index 141734d255e4..0c9d3ad17e0f 100644 --- a/lib/lz4/lz4_decompress.c +++ b/lib/lz4/lz4_decompress.c @@ -43,30 +43,36 @@ /*-***************************** * Decompression functions *******************************/ -/* LZ4_decompress_generic() : - * This generic decompression function cover all use cases. - * It shall be instantiated several times, using different sets of directives - * Note that it is important this generic function is really inlined, + +#define DEBUGLOG(l, ...) {} /* disabled */ + +#ifndef assert +#define assert(condition) ((void)0) +#endif + +/* + * LZ4_decompress_generic() : + * This generic decompression function covers all use cases. + * It shall be instantiated several times, using different sets of directives. + * Note that it is important for performance that this function really get inlined, * in order to remove useless branches during compilation optimization. */ static FORCE_INLINE int LZ4_decompress_generic( - const char * const source, - char * const dest, - int inputSize, + const char * const src, + char * const dst, + int srcSize, /* * If endOnInput == endOnInputSize, - * this value is the max size of Output Buffer. + * this value is `dstCapacity` */ int outputSize, /* endOnOutputSize, endOnInputSize */ - int endOnInput, + endCondition_directive endOnInput, /* full, partial */ - int partialDecoding, - /* only used if partialDecoding == partial */ - int targetOutputSize, + earlyEnd_directive partialDecoding, /* noDict, withPrefix64k, usingExtDict */ - int dict, - /* == dest when no prefix */ + dict_directive dict, + /* always <= dst, == dst when no prefix */ const BYTE * const lowPrefix, /* only if dict == usingExtDict */ const BYTE * const dictStart, @@ -74,35 +80,43 @@ static FORCE_INLINE int LZ4_decompress_generic( const size_t dictSize ) { - /* Local Variables */ - const BYTE *ip = (const BYTE *) source; - const BYTE * const iend = ip + inputSize; + const BYTE *ip = (const BYTE *) src; + const BYTE * const iend = ip + srcSize; - BYTE *op = (BYTE *) dest; + BYTE *op = (BYTE *) dst; BYTE * const oend = op + outputSize; BYTE *cpy; - BYTE *oexit = op + targetOutputSize; - const BYTE * const lowLimit = lowPrefix - dictSize; const BYTE * const dictEnd = (const BYTE *)dictStart + dictSize; - static const unsigned int dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; - static const int dec64table[] = { 0, 0, 0, -1, 0, 1, 2, 3 }; + static const unsigned int inc32table[8] = {0, 1, 2, 1, 0, 4, 4, 4}; + static const int dec64table[8] = {0, 0, 0, -1, -4, 1, 2, 3}; const int safeDecode = (endOnInput == endOnInputSize); const int checkOffset = ((safeDecode) && (dictSize < (int)(64 * KB))); + /* Set up the "end" pointers for the shortcut. */ + const BYTE *const shortiend = iend - + (endOnInput ? 14 : 8) /*maxLL*/ - 2 /*offset*/; + const BYTE *const shortoend = oend - + (endOnInput ? 14 : 8) /*maxLL*/ - 18 /*maxML*/; + + DEBUGLOG(5, "%s (srcSize:%i, dstSize:%i)", __func__, + srcSize, outputSize); + /* Special cases */ - /* targetOutputSize too high => decode everything */ - if ((partialDecoding) && (oexit > oend - MFLIMIT)) - oexit = oend - MFLIMIT; + assert(lowPrefix <= op); + assert(src != NULL); /* Empty output buffer */ if ((endOnInput) && (unlikely(outputSize == 0))) - return ((inputSize == 1) && (*ip == 0)) ? 0 : -1; + return ((srcSize == 1) && (*ip == 0)) ? 0 : -1; if ((!endOnInput) && (unlikely(outputSize == 0))) return (*ip == 0 ? 1 : -1); + if ((endOnInput) && unlikely(srcSize == 0)) + return -1; + /* Main Loop : decode sequences */ while (1) { size_t length; @@ -111,12 +125,74 @@ static FORCE_INLINE int LZ4_decompress_generic( /* get literal length */ unsigned int const token = *ip++; - length = token>>ML_BITS; + /* ip < iend before the increment */ + assert(!endOnInput || ip <= iend); + + /* + * A two-stage shortcut for the most common case: + * 1) If the literal length is 0..14, and there is enough + * space, enter the shortcut and copy 16 bytes on behalf + * of the literals (in the fast mode, only 8 bytes can be + * safely copied this way). + * 2) Further if the match length is 4..18, copy 18 bytes + * in a similar manner; but we ensure that there's enough + * space in the output for those 18 bytes earlier, upon + * entering the shortcut (in other words, there is a + * combined check for both stages). + */ + if ((endOnInput ? length != RUN_MASK : length <= 8) + /* + * strictly "less than" on input, to re-enter + * the loop with at least one byte + */ + && likely((endOnInput ? ip < shortiend : 1) & + (op <= shortoend))) { + /* Copy the literals */ + memcpy(op, ip, endOnInput ? 16 : 8); + op += length; ip += length; + + /* + * The second stage: + * prepare for match copying, decode full info. + * If it doesn't work out, the info won't be wasted. + */ + length = token & ML_MASK; /* match length */ + offset = LZ4_readLE16(ip); + ip += 2; + match = op - offset; + assert(match <= op); /* check overflow */ + + /* Do not deal with overlapping matches. */ + if ((length != ML_MASK) && + (offset >= 8) && + (dict == withPrefix64k || match >= lowPrefix)) { + /* Copy the match. */ + memcpy(op + 0, match + 0, 8); + memcpy(op + 8, match + 8, 8); + memcpy(op + 16, match + 16, 2); + op += length + MINMATCH; + /* Both stages worked, load the next token. */ + continue; + } + + /* + * The second stage didn't work out, but the info + * is ready. Propel it right to the point of match + * copying. + */ + goto _copy_match; + } + + /* decode literal length */ if (length == RUN_MASK) { unsigned int s; + if (unlikely(endOnInput ? ip >= iend - RUN_MASK : 0)) { + /* overflow detection */ + goto _output_error; + } do { s = *ip++; length += s; @@ -125,14 +201,14 @@ static FORCE_INLINE int LZ4_decompress_generic( : 1) & (s == 255)); if ((safeDecode) - && unlikely( - (size_t)(op + length) < (size_t)(op))) { + && unlikely((uptrval)(op) + + length < (uptrval)(op))) { /* overflow detection */ goto _output_error; } if ((safeDecode) - && unlikely( - (size_t)(ip + length) < (size_t)(ip))) { + && unlikely((uptrval)(ip) + + length < (uptrval)(ip))) { /* overflow detection */ goto _output_error; } @@ -140,16 +216,19 @@ static FORCE_INLINE int LZ4_decompress_generic( /* copy literals */ cpy = op + length; - if (((endOnInput) && ((cpy > (partialDecoding ? oexit : oend - MFLIMIT)) + LZ4_STATIC_ASSERT(MFLIMIT >= WILDCOPYLENGTH); + + if (((endOnInput) && ((cpy > oend - MFLIMIT) || (ip + length > iend - (2 + 1 + LASTLITERALS)))) || ((!endOnInput) && (cpy > oend - WILDCOPYLENGTH))) { if (partialDecoding) { if (cpy > oend) { /* - * Error : - * write attempt beyond end of output buffer + * Partial decoding : + * stop in the middle of literal segment */ - goto _output_error; + cpy = oend; + length = oend - op; } if ((endOnInput) && (ip + length > iend)) { @@ -184,29 +263,43 @@ static FORCE_INLINE int LZ4_decompress_generic( memcpy(op, ip, length); ip += length; op += length; + /* Necessarily EOF, due to parsing restrictions */ - break; + if (!partialDecoding || (cpy == oend)) + break; + } else { + /* may overwrite up to WILDCOPYLENGTH beyond cpy */ + LZ4_wildCopy(op, ip, cpy); + ip += length; + op = cpy; } - LZ4_wildCopy(op, ip, cpy); - ip += length; - op = cpy; - /* get offset */ offset = LZ4_readLE16(ip); ip += 2; match = op - offset; - if ((checkOffset) && (unlikely(match < lowLimit))) { + /* get matchlength */ + length = token & ML_MASK; + +_copy_match: + if ((checkOffset) && (unlikely(match + dictSize < lowPrefix))) { /* Error : offset outside buffers */ goto _output_error; } /* costs ~1%; silence an msan warning when offset == 0 */ - LZ4_write32(op, (U32)offset); + /* + * note : when partialDecoding, there is no guarantee that + * at least 4 bytes remain available in output buffer + */ + if (!partialDecoding) { + assert(oend > op); + assert(oend - op >= 4); + + LZ4_write32(op, (U32)offset); + } - /* get matchlength */ - length = token & ML_MASK; if (length == ML_MASK) { unsigned int s; @@ -221,7 +314,7 @@ static FORCE_INLINE int LZ4_decompress_generic( if ((safeDecode) && unlikely( - (size_t)(op + length) < (size_t)op)) { + (uptrval)(op) + length < (uptrval)op)) { /* overflow detection */ goto _output_error; } @@ -229,24 +322,26 @@ static FORCE_INLINE int LZ4_decompress_generic( length += MINMATCH; - /* check external dictionary */ + /* match starting within external dictionary */ if ((dict == usingExtDict) && (match < lowPrefix)) { if (unlikely(op + length > oend - LASTLITERALS)) { /* doesn't respect parsing restriction */ - goto _output_error; + if (!partialDecoding) + goto _output_error; + length = min(length, (size_t)(oend - op)); } if (length <= (size_t)(lowPrefix - match)) { /* - * match can be copied as a single segment - * from external dictionary + * match fits entirely within external + * dictionary : just copy */ memmove(op, dictEnd - (lowPrefix - match), length); op += length; } else { /* - * match encompass external + * match stretches into both external * dictionary and current block */ size_t const copySize = (size_t)(lowPrefix - match); @@ -254,7 +349,6 @@ static FORCE_INLINE int LZ4_decompress_generic( memcpy(op, dictEnd - copySize, copySize); op += copySize; - if (restSize > (size_t)(op - lowPrefix)) { /* overlap copy */ BYTE * const endOfMatch = op + restSize; @@ -267,23 +361,44 @@ static FORCE_INLINE int LZ4_decompress_generic( op += restSize; } } - continue; } /* copy match within block */ cpy = op + length; - if (unlikely(offset < 8)) { - const int dec64 = dec64table[offset]; + /* + * partialDecoding : + * may not respect endBlock parsing restrictions + */ + assert(op <= oend); + if (partialDecoding && + (cpy > oend - MATCH_SAFEGUARD_DISTANCE)) { + size_t const mlen = min(length, (size_t)(oend - op)); + const BYTE * const matchEnd = match + mlen; + BYTE * const copyEnd = op + mlen; + + if (matchEnd > op) { + /* overlap copy */ + while (op < copyEnd) + *op++ = *match++; + } else { + memcpy(op, match, mlen); + } + op = copyEnd; + if (op == oend) + break; + continue; + } + if (unlikely(offset < 8)) { op[0] = match[0]; op[1] = match[1]; op[2] = match[2]; op[3] = match[3]; - match += dec32table[offset]; + match += inc32table[offset]; memcpy(op + 4, match, 4); - match -= dec64; + match -= dec64table[offset]; } else { LZ4_copy8(op, match); match += 8; @@ -291,7 +406,7 @@ static FORCE_INLINE int LZ4_decompress_generic( op += 8; - if (unlikely(cpy > oend - 12)) { + if (unlikely(cpy > oend - MATCH_SAFEGUARD_DISTANCE)) { BYTE * const oCopyLimit = oend - (WILDCOPYLENGTH - 1); if (cpy > oend - LASTLITERALS) { @@ -307,60 +422,139 @@ static FORCE_INLINE int LZ4_decompress_generic( match += oCopyLimit - op; op = oCopyLimit; } - while (op < cpy) *op++ = *match++; } else { LZ4_copy8(op, match); - if (length > 16) LZ4_wildCopy(op + 8, match + 8, cpy); } - - op = cpy; /* correction */ + op = cpy; /* wildcopy correction */ } /* end of decoding */ if (endOnInput) { /* Nb of output bytes decoded */ - return (int) (((char *)op) - dest); + return (int) (((char *)op) - dst); } else { /* Nb of input bytes read */ - return (int) (((const char *)ip) - source); + return (int) (((const char *)ip) - src); } /* Overflow error detected */ _output_error: - return -1; + return (int) (-(((const char *)ip) - src)) - 1; } int LZ4_decompress_safe(const char *source, char *dest, int compressedSize, int maxDecompressedSize) { - return LZ4_decompress_generic(source, dest, compressedSize, - maxDecompressedSize, endOnInputSize, full, 0, - noDict, (BYTE *)dest, NULL, 0); + return LZ4_decompress_generic(source, dest, + compressedSize, maxDecompressedSize, + endOnInputSize, decode_full_block, + noDict, (BYTE *)dest, NULL, 0); } -int LZ4_decompress_safe_partial(const char *source, char *dest, - int compressedSize, int targetOutputSize, int maxDecompressedSize) +int LZ4_decompress_safe_partial(const char *src, char *dst, + int compressedSize, int targetOutputSize, int dstCapacity) { - return LZ4_decompress_generic(source, dest, compressedSize, - maxDecompressedSize, endOnInputSize, partial, - targetOutputSize, noDict, (BYTE *)dest, NULL, 0); + dstCapacity = min(targetOutputSize, dstCapacity); + return LZ4_decompress_generic(src, dst, compressedSize, dstCapacity, + endOnInputSize, partial_decode, + noDict, (BYTE *)dst, NULL, 0); } int LZ4_decompress_fast(const char *source, char *dest, int originalSize) { return LZ4_decompress_generic(source, dest, 0, originalSize, - endOnOutputSize, full, 0, withPrefix64k, - (BYTE *)(dest - 64 * KB), NULL, 64 * KB); + endOnOutputSize, decode_full_block, + withPrefix64k, + (BYTE *)dest - 64 * KB, NULL, 0); +} + +/* ===== Instantiate a few more decoding cases, used more than once. ===== */ + +int LZ4_decompress_safe_withPrefix64k(const char *source, char *dest, + int compressedSize, int maxOutputSize) +{ + return LZ4_decompress_generic(source, dest, + compressedSize, maxOutputSize, + endOnInputSize, decode_full_block, + withPrefix64k, + (BYTE *)dest - 64 * KB, NULL, 0); +} + +static int LZ4_decompress_safe_withSmallPrefix(const char *source, char *dest, + int compressedSize, + int maxOutputSize, + size_t prefixSize) +{ + return LZ4_decompress_generic(source, dest, + compressedSize, maxOutputSize, + endOnInputSize, decode_full_block, + noDict, + (BYTE *)dest - prefixSize, NULL, 0); +} + +int LZ4_decompress_safe_forceExtDict(const char *source, char *dest, + int compressedSize, int maxOutputSize, + const void *dictStart, size_t dictSize) +{ + return LZ4_decompress_generic(source, dest, + compressedSize, maxOutputSize, + endOnInputSize, decode_full_block, + usingExtDict, (BYTE *)dest, + (const BYTE *)dictStart, dictSize); } +static int LZ4_decompress_fast_extDict(const char *source, char *dest, + int originalSize, + const void *dictStart, size_t dictSize) +{ + return LZ4_decompress_generic(source, dest, + 0, originalSize, + endOnOutputSize, decode_full_block, + usingExtDict, (BYTE *)dest, + (const BYTE *)dictStart, dictSize); +} + +/* + * The "double dictionary" mode, for use with e.g. ring buffers: the first part + * of the dictionary is passed as prefix, and the second via dictStart + dictSize. + * These routines are used only once, in LZ4_decompress_*_continue(). + */ +static FORCE_INLINE +int LZ4_decompress_safe_doubleDict(const char *source, char *dest, + int compressedSize, int maxOutputSize, + size_t prefixSize, + const void *dictStart, size_t dictSize) +{ + return LZ4_decompress_generic(source, dest, + compressedSize, maxOutputSize, + endOnInputSize, decode_full_block, + usingExtDict, (BYTE *)dest - prefixSize, + (const BYTE *)dictStart, dictSize); +} + +static FORCE_INLINE +int LZ4_decompress_fast_doubleDict(const char *source, char *dest, + int originalSize, size_t prefixSize, + const void *dictStart, size_t dictSize) +{ + return LZ4_decompress_generic(source, dest, + 0, originalSize, + endOnOutputSize, decode_full_block, + usingExtDict, (BYTE *)dest - prefixSize, + (const BYTE *)dictStart, dictSize); +} + +/* ===== streaming decompression functions ===== */ + int LZ4_setStreamDecode(LZ4_streamDecode_t *LZ4_streamDecode, const char *dictionary, int dictSize) { - LZ4_streamDecode_t_internal *lz4sd = (LZ4_streamDecode_t_internal *) LZ4_streamDecode; + LZ4_streamDecode_t_internal *lz4sd = + &LZ4_streamDecode->internal_donotuse; lz4sd->prefixSize = (size_t) dictSize; lz4sd->prefixEnd = (const BYTE *) dictionary + dictSize; @@ -382,35 +576,51 @@ int LZ4_setStreamDecode(LZ4_streamDecode_t *LZ4_streamDecode, int LZ4_decompress_safe_continue(LZ4_streamDecode_t *LZ4_streamDecode, const char *source, char *dest, int compressedSize, int maxOutputSize) { - LZ4_streamDecode_t_internal *lz4sd = &LZ4_streamDecode->internal_donotuse; + LZ4_streamDecode_t_internal *lz4sd = + &LZ4_streamDecode->internal_donotuse; int result; - if (lz4sd->prefixEnd == (BYTE *)dest) { - result = LZ4_decompress_generic(source, dest, - compressedSize, - maxOutputSize, - endOnInputSize, full, 0, - usingExtDict, lz4sd->prefixEnd - lz4sd->prefixSize, - lz4sd->externalDict, - lz4sd->extDictSize); - + if (lz4sd->prefixSize == 0) { + /* The first call, no dictionary yet. */ + assert(lz4sd->extDictSize == 0); + result = LZ4_decompress_safe(source, dest, + compressedSize, maxOutputSize); + if (result <= 0) + return result; + lz4sd->prefixSize = result; + lz4sd->prefixEnd = (BYTE *)dest + result; + } else if (lz4sd->prefixEnd == (BYTE *)dest) { + /* They're rolling the current segment. */ + if (lz4sd->prefixSize >= 64 * KB - 1) + result = LZ4_decompress_safe_withPrefix64k(source, dest, + compressedSize, maxOutputSize); + else if (lz4sd->extDictSize == 0) + result = LZ4_decompress_safe_withSmallPrefix(source, + dest, compressedSize, maxOutputSize, + lz4sd->prefixSize); + else + result = LZ4_decompress_safe_doubleDict(source, dest, + compressedSize, maxOutputSize, + lz4sd->prefixSize, + lz4sd->externalDict, lz4sd->extDictSize); if (result <= 0) return result; - lz4sd->prefixSize += result; - lz4sd->prefixEnd += result; + lz4sd->prefixEnd += result; } else { + /* + * The buffer wraps around, or they're + * switching to another buffer. + */ lz4sd->extDictSize = lz4sd->prefixSize; lz4sd->externalDict = lz4sd->prefixEnd - lz4sd->extDictSize; - result = LZ4_decompress_generic(source, dest, + result = LZ4_decompress_safe_forceExtDict(source, dest, compressedSize, maxOutputSize, - endOnInputSize, full, 0, - usingExtDict, (BYTE *)dest, lz4sd->externalDict, lz4sd->extDictSize); if (result <= 0) return result; lz4sd->prefixSize = result; - lz4sd->prefixEnd = (BYTE *)dest + result; + lz4sd->prefixEnd = (BYTE *)dest + result; } return result; @@ -422,75 +632,66 @@ int LZ4_decompress_fast_continue(LZ4_streamDecode_t *LZ4_streamDecode, LZ4_streamDecode_t_internal *lz4sd = &LZ4_streamDecode->internal_donotuse; int result; - if (lz4sd->prefixEnd == (BYTE *)dest) { - result = LZ4_decompress_generic(source, dest, 0, originalSize, - endOnOutputSize, full, 0, - usingExtDict, - lz4sd->prefixEnd - lz4sd->prefixSize, - lz4sd->externalDict, lz4sd->extDictSize); - + if (lz4sd->prefixSize == 0) { + assert(lz4sd->extDictSize == 0); + result = LZ4_decompress_fast(source, dest, originalSize); + if (result <= 0) + return result; + lz4sd->prefixSize = originalSize; + lz4sd->prefixEnd = (BYTE *)dest + originalSize; + } else if (lz4sd->prefixEnd == (BYTE *)dest) { + if (lz4sd->prefixSize >= 64 * KB - 1 || + lz4sd->extDictSize == 0) + result = LZ4_decompress_fast(source, dest, + originalSize); + else + result = LZ4_decompress_fast_doubleDict(source, dest, + originalSize, lz4sd->prefixSize, + lz4sd->externalDict, lz4sd->extDictSize); if (result <= 0) return result; - lz4sd->prefixSize += originalSize; - lz4sd->prefixEnd += originalSize; + lz4sd->prefixEnd += originalSize; } else { lz4sd->extDictSize = lz4sd->prefixSize; lz4sd->externalDict = lz4sd->prefixEnd - lz4sd->extDictSize; - result = LZ4_decompress_generic(source, dest, 0, originalSize, - endOnOutputSize, full, 0, - usingExtDict, (BYTE *)dest, - lz4sd->externalDict, lz4sd->extDictSize); + result = LZ4_decompress_fast_extDict(source, dest, + originalSize, lz4sd->externalDict, lz4sd->extDictSize); if (result <= 0) return result; lz4sd->prefixSize = originalSize; - lz4sd->prefixEnd = (BYTE *)dest + originalSize; + lz4sd->prefixEnd = (BYTE *)dest + originalSize; } - return result; } -/* - * Advanced decoding functions : - * *_usingDict() : - * These decoding functions work the same as "_continue" ones, - * the dictionary must be explicitly provided within parameters - */ -static FORCE_INLINE int LZ4_decompress_usingDict_generic(const char *source, - char *dest, int compressedSize, int maxOutputSize, int safe, - const char *dictStart, int dictSize) +int LZ4_decompress_safe_usingDict(const char *source, char *dest, + int compressedSize, int maxOutputSize, + const char *dictStart, int dictSize) { if (dictSize == 0) - return LZ4_decompress_generic(source, dest, - compressedSize, maxOutputSize, safe, full, 0, - noDict, (BYTE *)dest, NULL, 0); - if (dictStart + dictSize == dest) { - if (dictSize >= (int)(64 * KB - 1)) - return LZ4_decompress_generic(source, dest, - compressedSize, maxOutputSize, safe, full, 0, - withPrefix64k, (BYTE *)dest - 64 * KB, NULL, 0); - return LZ4_decompress_generic(source, dest, compressedSize, - maxOutputSize, safe, full, 0, noDict, - (BYTE *)dest - dictSize, NULL, 0); + return LZ4_decompress_safe(source, dest, + compressedSize, maxOutputSize); + if (dictStart+dictSize == dest) { + if (dictSize >= 64 * KB - 1) + return LZ4_decompress_safe_withPrefix64k(source, dest, + compressedSize, maxOutputSize); + return LZ4_decompress_safe_withSmallPrefix(source, dest, + compressedSize, maxOutputSize, dictSize); } - return LZ4_decompress_generic(source, dest, compressedSize, - maxOutputSize, safe, full, 0, usingExtDict, - (BYTE *)dest, (const BYTE *)dictStart, dictSize); -} - -int LZ4_decompress_safe_usingDict(const char *source, char *dest, - int compressedSize, int maxOutputSize, - const char *dictStart, int dictSize) -{ - return LZ4_decompress_usingDict_generic(source, dest, - compressedSize, maxOutputSize, 1, dictStart, dictSize); + return LZ4_decompress_safe_forceExtDict(source, dest, + compressedSize, maxOutputSize, dictStart, dictSize); } int LZ4_decompress_fast_usingDict(const char *source, char *dest, - int originalSize, const char *dictStart, int dictSize) + int originalSize, + const char *dictStart, int dictSize) { - return LZ4_decompress_usingDict_generic(source, dest, 0, - originalSize, 0, dictStart, dictSize); + if (dictSize == 0 || dictStart + dictSize == dest) + return LZ4_decompress_fast(source, dest, originalSize); + + return LZ4_decompress_fast_extDict(source, dest, originalSize, + dictStart, dictSize); } #ifndef STATIC diff --git a/lib/lz4/lz4defs.h b/lib/lz4/lz4defs.h index 00a0b58a0871..1a7fa9d9170f 100644 --- a/lib/lz4/lz4defs.h +++ b/lib/lz4/lz4defs.h @@ -75,6 +75,11 @@ typedef uintptr_t uptrval; #define WILDCOPYLENGTH 8 #define LASTLITERALS 5 #define MFLIMIT (WILDCOPYLENGTH + MINMATCH) +/* + * ensure it's possible to write 2 x wildcopyLength + * without overflowing output buffer + */ +#define MATCH_SAFEGUARD_DISTANCE ((2 * WILDCOPYLENGTH) - MINMATCH) /* Increase this value ==> compression run slower on incompressible data */ #define LZ4_SKIPTRIGGER 6 @@ -222,6 +227,8 @@ typedef enum { noDict = 0, withPrefix64k, usingExtDict } dict_directive; typedef enum { noDictIssue = 0, dictSmall } dictIssue_directive; typedef enum { endOnOutputSize = 0, endOnInputSize = 1 } endCondition_directive; -typedef enum { full = 0, partial = 1 } earlyEnd_directive; +typedef enum { decode_full_block = 0, partial_decode = 1 } earlyEnd_directive; + +#define LZ4_STATIC_ASSERT(c) BUILD_BUG_ON(!(c)) #endif diff --git a/lib/memcat_p.c b/lib/memcat_p.c new file mode 100644 index 000000000000..b810fbc66962 --- /dev/null +++ b/lib/memcat_p.c @@ -0,0 +1,34 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include <linux/slab.h> + +/* + * Merge two NULL-terminated pointer arrays into a newly allocated + * array, which is also NULL-terminated. Nomenclature is inspired by + * memset_p() and memcat() found elsewhere in the kernel source tree. + */ +void **__memcat_p(void **a, void **b) +{ + void **p = a, **new; + int nr; + + /* count the elements in both arrays */ + for (nr = 0, p = a; *p; nr++, p++) + ; + for (p = b; *p; nr++, p++) + ; + /* one for the NULL-terminator */ + nr++; + + new = kmalloc_array(nr, sizeof(void *), GFP_KERNEL); + if (!new) + return NULL; + + /* nr -> last index; p points to NULL in b[] */ + for (nr--; nr >= 0; nr--, p = p == b ? &a[nr] : p - 1) + new[nr] = *p; + + return new; +} +EXPORT_SYMBOL_GPL(__memcat_p); + diff --git a/lib/nlattr.c b/lib/nlattr.c index e335bcafa9e4..d26de6156b97 100644 --- a/lib/nlattr.c +++ b/lib/nlattr.c @@ -45,12 +45,11 @@ static const u8 nla_attr_minlen[NLA_TYPE_MAX+1] = { }; static int validate_nla_bitfield32(const struct nlattr *nla, - u32 *valid_flags_allowed) + const u32 *valid_flags_mask) { const struct nla_bitfield32 *bf = nla_data(nla); - u32 *valid_flags_mask = valid_flags_allowed; - if (!valid_flags_allowed) + if (!valid_flags_mask) return -EINVAL; /*disallow invalid bit selector */ @@ -68,11 +67,99 @@ static int validate_nla_bitfield32(const struct nlattr *nla, return 0; } +static int nla_validate_array(const struct nlattr *head, int len, int maxtype, + const struct nla_policy *policy, + struct netlink_ext_ack *extack) +{ + const struct nlattr *entry; + int rem; + + nla_for_each_attr(entry, head, len, rem) { + int ret; + + if (nla_len(entry) == 0) + continue; + + if (nla_len(entry) < NLA_HDRLEN) { + NL_SET_ERR_MSG_ATTR(extack, entry, + "Array element too short"); + return -ERANGE; + } + + ret = nla_validate(nla_data(entry), nla_len(entry), + maxtype, policy, extack); + if (ret < 0) + return ret; + } + + return 0; +} + +static int nla_validate_int_range(const struct nla_policy *pt, + const struct nlattr *nla, + struct netlink_ext_ack *extack) +{ + bool validate_min, validate_max; + s64 value; + + validate_min = pt->validation_type == NLA_VALIDATE_RANGE || + pt->validation_type == NLA_VALIDATE_MIN; + validate_max = pt->validation_type == NLA_VALIDATE_RANGE || + pt->validation_type == NLA_VALIDATE_MAX; + + switch (pt->type) { + case NLA_U8: + value = nla_get_u8(nla); + break; + case NLA_U16: + value = nla_get_u16(nla); + break; + case NLA_U32: + value = nla_get_u32(nla); + break; + case NLA_S8: + value = nla_get_s8(nla); + break; + case NLA_S16: + value = nla_get_s16(nla); + break; + case NLA_S32: + value = nla_get_s32(nla); + break; + case NLA_S64: + value = nla_get_s64(nla); + break; + case NLA_U64: + /* treat this one specially, since it may not fit into s64 */ + if ((validate_min && nla_get_u64(nla) < pt->min) || + (validate_max && nla_get_u64(nla) > pt->max)) { + NL_SET_ERR_MSG_ATTR(extack, nla, + "integer out of range"); + return -ERANGE; + } + return 0; + default: + WARN_ON(1); + return -EINVAL; + } + + if ((validate_min && value < pt->min) || + (validate_max && value > pt->max)) { + NL_SET_ERR_MSG_ATTR(extack, nla, + "integer out of range"); + return -ERANGE; + } + + return 0; +} + static int validate_nla(const struct nlattr *nla, int maxtype, - const struct nla_policy *policy) + const struct nla_policy *policy, + struct netlink_ext_ack *extack) { const struct nla_policy *pt; int minlen = 0, attrlen = nla_len(nla), type = nla_type(nla); + int err = -ERANGE; if (type <= 0 || type > maxtype) return 0; @@ -81,22 +168,40 @@ static int validate_nla(const struct nlattr *nla, int maxtype, BUG_ON(pt->type > NLA_TYPE_MAX); - if (nla_attr_len[pt->type] && attrlen != nla_attr_len[pt->type]) { + if ((nla_attr_len[pt->type] && attrlen != nla_attr_len[pt->type]) || + (pt->type == NLA_EXACT_LEN_WARN && attrlen != pt->len)) { pr_warn_ratelimited("netlink: '%s': attribute type %d has an invalid length.\n", current->comm, type); } switch (pt->type) { + case NLA_EXACT_LEN: + if (attrlen != pt->len) + goto out_err; + break; + + case NLA_REJECT: + if (extack && pt->validation_data) { + NL_SET_BAD_ATTR(extack, nla); + extack->_msg = pt->validation_data; + return -EINVAL; + } + err = -EINVAL; + goto out_err; + case NLA_FLAG: if (attrlen > 0) - return -ERANGE; + goto out_err; break; case NLA_BITFIELD32: if (attrlen != sizeof(struct nla_bitfield32)) - return -ERANGE; + goto out_err; - return validate_nla_bitfield32(nla, pt->validation_data); + err = validate_nla_bitfield32(nla, pt->validation_data); + if (err) + goto out_err; + break; case NLA_NUL_STRING: if (pt->len) @@ -104,13 +209,15 @@ static int validate_nla(const struct nlattr *nla, int maxtype, else minlen = attrlen; - if (!minlen || memchr(nla_data(nla), '\0', minlen) == NULL) - return -EINVAL; + if (!minlen || memchr(nla_data(nla), '\0', minlen) == NULL) { + err = -EINVAL; + goto out_err; + } /* fall through */ case NLA_STRING: if (attrlen < 1) - return -ERANGE; + goto out_err; if (pt->len) { char *buf = nla_data(nla); @@ -119,32 +226,58 @@ static int validate_nla(const struct nlattr *nla, int maxtype, attrlen--; if (attrlen > pt->len) - return -ERANGE; + goto out_err; } break; case NLA_BINARY: if (pt->len && attrlen > pt->len) - return -ERANGE; + goto out_err; break; - case NLA_NESTED_COMPAT: - if (attrlen < pt->len) - return -ERANGE; - if (attrlen < NLA_ALIGN(pt->len)) - break; - if (attrlen < NLA_ALIGN(pt->len) + NLA_HDRLEN) - return -ERANGE; - nla = nla_data(nla) + NLA_ALIGN(pt->len); - if (attrlen < NLA_ALIGN(pt->len) + NLA_HDRLEN + nla_len(nla)) - return -ERANGE; - break; case NLA_NESTED: /* a nested attributes is allowed to be empty; if its not, * it must have a size of at least NLA_HDRLEN. */ if (attrlen == 0) break; + if (attrlen < NLA_HDRLEN) + goto out_err; + if (pt->validation_data) { + err = nla_validate(nla_data(nla), nla_len(nla), pt->len, + pt->validation_data, extack); + if (err < 0) { + /* + * return directly to preserve the inner + * error message/attribute pointer + */ + return err; + } + } + break; + case NLA_NESTED_ARRAY: + /* a nested array attribute is allowed to be empty; if its not, + * it must have a size of at least NLA_HDRLEN. + */ + if (attrlen == 0) + break; + if (attrlen < NLA_HDRLEN) + goto out_err; + if (pt->validation_data) { + int err; + + err = nla_validate_array(nla_data(nla), nla_len(nla), + pt->len, pt->validation_data, + extack); + if (err < 0) { + /* + * return directly to preserve the inner + * error message/attribute pointer + */ + return err; + } + } + break; default: if (pt->len) minlen = pt->len; @@ -152,10 +285,34 @@ static int validate_nla(const struct nlattr *nla, int maxtype, minlen = nla_attr_minlen[pt->type]; if (attrlen < minlen) - return -ERANGE; + goto out_err; + } + + /* further validation */ + switch (pt->validation_type) { + case NLA_VALIDATE_NONE: + /* nothing to do */ + break; + case NLA_VALIDATE_RANGE: + case NLA_VALIDATE_MIN: + case NLA_VALIDATE_MAX: + err = nla_validate_int_range(pt, nla, extack); + if (err) + return err; + break; + case NLA_VALIDATE_FUNCTION: + if (pt->validate) { + err = pt->validate(nla, extack); + if (err) + return err; + } + break; } return 0; +out_err: + NL_SET_ERR_MSG_ATTR(extack, nla, "Attribute failed policy validation"); + return err; } /** @@ -180,13 +337,10 @@ int nla_validate(const struct nlattr *head, int len, int maxtype, int rem; nla_for_each_attr(nla, head, len, rem) { - int err = validate_nla(nla, maxtype, policy); + int err = validate_nla(nla, maxtype, policy, extack); - if (err < 0) { - if (extack) - extack->bad_attr = nla; + if (err < 0) return err; - } } return 0; @@ -237,42 +391,63 @@ EXPORT_SYMBOL(nla_policy_len); * * Returns 0 on success or a negative error code. */ -int nla_parse(struct nlattr **tb, int maxtype, const struct nlattr *head, - int len, const struct nla_policy *policy, - struct netlink_ext_ack *extack) +static int __nla_parse(struct nlattr **tb, int maxtype, + const struct nlattr *head, int len, + bool strict, const struct nla_policy *policy, + struct netlink_ext_ack *extack) { const struct nlattr *nla; - int rem, err; + int rem; memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); nla_for_each_attr(nla, head, len, rem) { u16 type = nla_type(nla); - if (type > 0 && type <= maxtype) { - if (policy) { - err = validate_nla(nla, maxtype, policy); - if (err < 0) { - NL_SET_ERR_MSG_ATTR(extack, nla, - "Attribute failed policy validation"); - goto errout; - } + if (type == 0 || type > maxtype) { + if (strict) { + NL_SET_ERR_MSG(extack, "Unknown attribute type"); + return -EINVAL; } + continue; + } + if (policy) { + int err = validate_nla(nla, maxtype, policy, extack); - tb[type] = (struct nlattr *)nla; + if (err < 0) + return err; } + + tb[type] = (struct nlattr *)nla; } - if (unlikely(rem > 0)) + if (unlikely(rem > 0)) { pr_warn_ratelimited("netlink: %d bytes leftover after parsing attributes in process `%s'.\n", rem, current->comm); + NL_SET_ERR_MSG(extack, "bytes leftover after parsing attributes"); + if (strict) + return -EINVAL; + } - err = 0; -errout: - return err; + return 0; +} + +int nla_parse(struct nlattr **tb, int maxtype, const struct nlattr *head, + int len, const struct nla_policy *policy, + struct netlink_ext_ack *extack) +{ + return __nla_parse(tb, maxtype, head, len, false, policy, extack); } EXPORT_SYMBOL(nla_parse); +int nla_parse_strict(struct nlattr **tb, int maxtype, const struct nlattr *head, + int len, const struct nla_policy *policy, + struct netlink_ext_ack *extack) +{ + return __nla_parse(tb, maxtype, head, len, true, policy, extack); +} +EXPORT_SYMBOL(nla_parse_strict); + /** * nla_find - Find a specific attribute in a stream of attributes * @head: head of attribute stream diff --git a/lib/parser.c b/lib/parser.c index 3278958b472a..dd70e5e6c9e2 100644 --- a/lib/parser.c +++ b/lib/parser.c @@ -131,13 +131,10 @@ static int match_number(substring_t *s, int *result, int base) char *buf; int ret; long val; - size_t len = s->to - s->from; - buf = kmalloc(len + 1, GFP_KERNEL); + buf = match_strdup(s); if (!buf) return -ENOMEM; - memcpy(buf, s->from, len); - buf[len] = '\0'; ret = 0; val = simple_strtol(buf, &endp, base); @@ -166,13 +163,10 @@ static int match_u64int(substring_t *s, u64 *result, int base) char *buf; int ret; u64 val; - size_t len = s->to - s->from; - buf = kmalloc(len + 1, GFP_KERNEL); + buf = match_strdup(s); if (!buf) return -ENOMEM; - memcpy(buf, s->from, len); - buf[len] = '\0'; ret = kstrtoull(buf, base, &val); if (!ret) @@ -327,10 +321,6 @@ EXPORT_SYMBOL(match_strlcpy); */ char *match_strdup(const substring_t *s) { - size_t sz = s->to - s->from + 1; - char *p = kmalloc(sz, GFP_KERNEL); - if (p) - match_strlcpy(p, s, sz); - return p; + return kmemdup_nul(s->from, s->to - s->from, GFP_KERNEL); } EXPORT_SYMBOL(match_strdup); diff --git a/lib/percpu-refcount.c b/lib/percpu-refcount.c index 9f96fa7bc000..de10b8c0bff6 100644 --- a/lib/percpu-refcount.c +++ b/lib/percpu-refcount.c @@ -356,11 +356,35 @@ EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm); */ void percpu_ref_reinit(struct percpu_ref *ref) { + WARN_ON_ONCE(!percpu_ref_is_zero(ref)); + + percpu_ref_resurrect(ref); +} +EXPORT_SYMBOL_GPL(percpu_ref_reinit); + +/** + * percpu_ref_resurrect - modify a percpu refcount from dead to live + * @ref: perpcu_ref to resurrect + * + * Modify @ref so that it's in the same state as before percpu_ref_kill() was + * called. @ref must be dead but must not yet have exited. + * + * If @ref->release() frees @ref then the caller is responsible for + * guaranteeing that @ref->release() does not get called while this + * function is in progress. + * + * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while + * this function is in progress. + */ +void percpu_ref_resurrect(struct percpu_ref *ref) +{ + unsigned long __percpu *percpu_count; unsigned long flags; spin_lock_irqsave(&percpu_ref_switch_lock, flags); - WARN_ON_ONCE(!percpu_ref_is_zero(ref)); + WARN_ON_ONCE(!(ref->percpu_count_ptr & __PERCPU_REF_DEAD)); + WARN_ON_ONCE(__ref_is_percpu(ref, &percpu_count)); ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD; percpu_ref_get(ref); @@ -368,4 +392,4 @@ void percpu_ref_reinit(struct percpu_ref *ref) spin_unlock_irqrestore(&percpu_ref_switch_lock, flags); } -EXPORT_SYMBOL_GPL(percpu_ref_reinit); +EXPORT_SYMBOL_GPL(percpu_ref_resurrect); diff --git a/lib/radix-tree.c b/lib/radix-tree.c index bc03ecc4dfd2..1106bb6aa01e 100644 --- a/lib/radix-tree.c +++ b/lib/radix-tree.c @@ -38,15 +38,13 @@ #include <linux/rcupdate.h> #include <linux/slab.h> #include <linux/string.h> +#include <linux/xarray.h> -/* Number of nodes in fully populated tree of given height */ -static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly; - /* * Radix tree node cache. */ -static struct kmem_cache *radix_tree_node_cachep; +struct kmem_cache *radix_tree_node_cachep; /* * The radix tree is variable-height, so an insert operation not only has @@ -98,24 +96,7 @@ static inline void *node_to_entry(void *ptr) return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); } -#define RADIX_TREE_RETRY node_to_entry(NULL) - -#ifdef CONFIG_RADIX_TREE_MULTIORDER -/* Sibling slots point directly to another slot in the same node */ -static inline -bool is_sibling_entry(const struct radix_tree_node *parent, void *node) -{ - void __rcu **ptr = node; - return (parent->slots <= ptr) && - (ptr < parent->slots + RADIX_TREE_MAP_SIZE); -} -#else -static inline -bool is_sibling_entry(const struct radix_tree_node *parent, void *node) -{ - return false; -} -#endif +#define RADIX_TREE_RETRY XA_RETRY_ENTRY static inline unsigned long get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot) @@ -129,24 +110,13 @@ static unsigned int radix_tree_descend(const struct radix_tree_node *parent, unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; void __rcu **entry = rcu_dereference_raw(parent->slots[offset]); -#ifdef CONFIG_RADIX_TREE_MULTIORDER - if (radix_tree_is_internal_node(entry)) { - if (is_sibling_entry(parent, entry)) { - void __rcu **sibentry; - sibentry = (void __rcu **) entry_to_node(entry); - offset = get_slot_offset(parent, sibentry); - entry = rcu_dereference_raw(*sibentry); - } - } -#endif - *nodep = (void *)entry; return offset; } static inline gfp_t root_gfp_mask(const struct radix_tree_root *root) { - return root->gfp_mask & (__GFP_BITS_MASK & ~GFP_ZONEMASK); + return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK); } static inline void tag_set(struct radix_tree_node *node, unsigned int tag, @@ -169,32 +139,32 @@ static inline int tag_get(const struct radix_tree_node *node, unsigned int tag, static inline void root_tag_set(struct radix_tree_root *root, unsigned tag) { - root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT)); + root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT)); } static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) { - root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT)); + root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT)); } static inline void root_tag_clear_all(struct radix_tree_root *root) { - root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1; + root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1); } static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag) { - return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT)); + return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT)); } static inline unsigned root_tags_get(const struct radix_tree_root *root) { - return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT; + return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT; } static inline bool is_idr(const struct radix_tree_root *root) { - return !!(root->gfp_mask & ROOT_IS_IDR); + return !!(root->xa_flags & ROOT_IS_IDR); } /* @@ -254,7 +224,7 @@ radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag, static unsigned int iter_offset(const struct radix_tree_iter *iter) { - return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK; + return iter->index & RADIX_TREE_MAP_MASK; } /* @@ -277,99 +247,6 @@ static unsigned long next_index(unsigned long index, return (index & ~node_maxindex(node)) + (offset << node->shift); } -#ifndef __KERNEL__ -static void dump_node(struct radix_tree_node *node, unsigned long index) -{ - unsigned long i; - - pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n", - node, node->offset, index, index | node_maxindex(node), - node->parent, - node->tags[0][0], node->tags[1][0], node->tags[2][0], - node->shift, node->count, node->exceptional); - - for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { - unsigned long first = index | (i << node->shift); - unsigned long last = first | ((1UL << node->shift) - 1); - void *entry = node->slots[i]; - if (!entry) - continue; - if (entry == RADIX_TREE_RETRY) { - pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n", - i, first, last, node); - } else if (!radix_tree_is_internal_node(entry)) { - pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n", - entry, i, first, last, node); - } else if (is_sibling_entry(node, entry)) { - pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n", - entry, i, first, last, node, - *(void **)entry_to_node(entry)); - } else { - dump_node(entry_to_node(entry), first); - } - } -} - -/* For debug */ -static void radix_tree_dump(struct radix_tree_root *root) -{ - pr_debug("radix root: %p rnode %p tags %x\n", - root, root->rnode, - root->gfp_mask >> ROOT_TAG_SHIFT); - if (!radix_tree_is_internal_node(root->rnode)) - return; - dump_node(entry_to_node(root->rnode), 0); -} - -static void dump_ida_node(void *entry, unsigned long index) -{ - unsigned long i; - - if (!entry) - return; - - if (radix_tree_is_internal_node(entry)) { - struct radix_tree_node *node = entry_to_node(entry); - - pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n", - node, node->offset, index * IDA_BITMAP_BITS, - ((index | node_maxindex(node)) + 1) * - IDA_BITMAP_BITS - 1, - node->parent, node->tags[0][0], node->shift, - node->count); - for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) - dump_ida_node(node->slots[i], - index | (i << node->shift)); - } else if (radix_tree_exceptional_entry(entry)) { - pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n", - entry, (int)(index & RADIX_TREE_MAP_MASK), - index * IDA_BITMAP_BITS, - index * IDA_BITMAP_BITS + BITS_PER_LONG - - RADIX_TREE_EXCEPTIONAL_SHIFT, - (unsigned long)entry >> - RADIX_TREE_EXCEPTIONAL_SHIFT); - } else { - struct ida_bitmap *bitmap = entry; - - pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap, - (int)(index & RADIX_TREE_MAP_MASK), - index * IDA_BITMAP_BITS, - (index + 1) * IDA_BITMAP_BITS - 1); - for (i = 0; i < IDA_BITMAP_LONGS; i++) - pr_cont(" %lx", bitmap->bitmap[i]); - pr_cont("\n"); - } -} - -static void ida_dump(struct ida *ida) -{ - struct radix_tree_root *root = &ida->ida_rt; - pr_debug("ida: %p node %p free %d\n", ida, root->rnode, - root->gfp_mask >> ROOT_TAG_SHIFT); - dump_ida_node(root->rnode, 0); -} -#endif - /* * This assumes that the caller has performed appropriate preallocation, and * that the caller has pinned this thread of control to the current CPU. @@ -378,7 +255,7 @@ static struct radix_tree_node * radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent, struct radix_tree_root *root, unsigned int shift, unsigned int offset, - unsigned int count, unsigned int exceptional) + unsigned int count, unsigned int nr_values) { struct radix_tree_node *ret = NULL; @@ -425,14 +302,14 @@ out: ret->shift = shift; ret->offset = offset; ret->count = count; - ret->exceptional = exceptional; + ret->nr_values = nr_values; ret->parent = parent; - ret->root = root; + ret->array = root; } return ret; } -static void radix_tree_node_rcu_free(struct rcu_head *head) +void radix_tree_node_rcu_free(struct rcu_head *head) { struct radix_tree_node *node = container_of(head, struct radix_tree_node, rcu_head); @@ -530,77 +407,10 @@ int radix_tree_maybe_preload(gfp_t gfp_mask) } EXPORT_SYMBOL(radix_tree_maybe_preload); -#ifdef CONFIG_RADIX_TREE_MULTIORDER -/* - * Preload with enough objects to ensure that we can split a single entry - * of order @old_order into many entries of size @new_order - */ -int radix_tree_split_preload(unsigned int old_order, unsigned int new_order, - gfp_t gfp_mask) -{ - unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT); - unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) - - (new_order / RADIX_TREE_MAP_SHIFT); - unsigned nr = 0; - - WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); - BUG_ON(new_order >= old_order); - - while (layers--) - nr = nr * RADIX_TREE_MAP_SIZE + 1; - return __radix_tree_preload(gfp_mask, top * nr); -} -#endif - -/* - * The same as function above, but preload number of nodes required to insert - * (1 << order) continuous naturally-aligned elements. - */ -int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order) -{ - unsigned long nr_subtrees; - int nr_nodes, subtree_height; - - /* Preloading doesn't help anything with this gfp mask, skip it */ - if (!gfpflags_allow_blocking(gfp_mask)) { - preempt_disable(); - return 0; - } - - /* - * Calculate number and height of fully populated subtrees it takes to - * store (1 << order) elements. - */ - nr_subtrees = 1 << order; - for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE; - subtree_height++) - nr_subtrees >>= RADIX_TREE_MAP_SHIFT; - - /* - * The worst case is zero height tree with a single item at index 0 and - * then inserting items starting at ULONG_MAX - (1 << order). - * - * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to - * 0-index item. - */ - nr_nodes = RADIX_TREE_MAX_PATH; - - /* Plus branch to fully populated subtrees. */ - nr_nodes += RADIX_TREE_MAX_PATH - subtree_height; - - /* Root node is shared. */ - nr_nodes--; - - /* Plus nodes required to build subtrees. */ - nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height]; - - return __radix_tree_preload(gfp_mask, nr_nodes); -} - static unsigned radix_tree_load_root(const struct radix_tree_root *root, struct radix_tree_node **nodep, unsigned long *maxindex) { - struct radix_tree_node *node = rcu_dereference_raw(root->rnode); + struct radix_tree_node *node = rcu_dereference_raw(root->xa_head); *nodep = node; @@ -629,7 +439,7 @@ static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp, while (index > shift_maxindex(maxshift)) maxshift += RADIX_TREE_MAP_SHIFT; - entry = rcu_dereference_raw(root->rnode); + entry = rcu_dereference_raw(root->xa_head); if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE))) goto out; @@ -656,9 +466,9 @@ static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp, BUG_ON(shift > BITS_PER_LONG); if (radix_tree_is_internal_node(entry)) { entry_to_node(entry)->parent = node; - } else if (radix_tree_exceptional_entry(entry)) { - /* Moving an exceptional root->rnode to a node */ - node->exceptional = 1; + } else if (xa_is_value(entry)) { + /* Moving a value entry root->xa_head to a node */ + node->nr_values = 1; } /* * entry was already in the radix tree, so we do not need @@ -666,7 +476,7 @@ static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp, */ node->slots[0] = (void __rcu *)entry; entry = node_to_entry(node); - rcu_assign_pointer(root->rnode, entry); + rcu_assign_pointer(root->xa_head, entry); shift += RADIX_TREE_MAP_SHIFT; } while (shift <= maxshift); out: @@ -677,13 +487,12 @@ out: * radix_tree_shrink - shrink radix tree to minimum height * @root radix tree root */ -static inline bool radix_tree_shrink(struct radix_tree_root *root, - radix_tree_update_node_t update_node) +static inline bool radix_tree_shrink(struct radix_tree_root *root) { bool shrunk = false; for (;;) { - struct radix_tree_node *node = rcu_dereference_raw(root->rnode); + struct radix_tree_node *node = rcu_dereference_raw(root->xa_head); struct radix_tree_node *child; if (!radix_tree_is_internal_node(node)) @@ -692,15 +501,20 @@ static inline bool radix_tree_shrink(struct radix_tree_root *root, /* * The candidate node has more than one child, or its child - * is not at the leftmost slot, or the child is a multiorder - * entry, we cannot shrink. + * is not at the leftmost slot, we cannot shrink. */ if (node->count != 1) break; child = rcu_dereference_raw(node->slots[0]); if (!child) break; - if (!radix_tree_is_internal_node(child) && node->shift) + + /* + * For an IDR, we must not shrink entry 0 into the root in + * case somebody calls idr_replace() with a pointer that + * appears to be an internal entry + */ + if (!node->shift && is_idr(root)) break; if (radix_tree_is_internal_node(child)) @@ -711,9 +525,9 @@ static inline bool radix_tree_shrink(struct radix_tree_root *root, * moving the node from one part of the tree to another: if it * was safe to dereference the old pointer to it * (node->slots[0]), it will be safe to dereference the new - * one (root->rnode) as far as dependent read barriers go. + * one (root->xa_head) as far as dependent read barriers go. */ - root->rnode = (void __rcu *)child; + root->xa_head = (void __rcu *)child; if (is_idr(root) && !tag_get(node, IDR_FREE, 0)) root_tag_clear(root, IDR_FREE); @@ -738,8 +552,6 @@ static inline bool radix_tree_shrink(struct radix_tree_root *root, node->count = 0; if (!radix_tree_is_internal_node(child)) { node->slots[0] = (void __rcu *)RADIX_TREE_RETRY; - if (update_node) - update_node(node); } WARN_ON_ONCE(!list_empty(&node->private_list)); @@ -751,8 +563,7 @@ static inline bool radix_tree_shrink(struct radix_tree_root *root, } static bool delete_node(struct radix_tree_root *root, - struct radix_tree_node *node, - radix_tree_update_node_t update_node) + struct radix_tree_node *node) { bool deleted = false; @@ -761,9 +572,8 @@ static bool delete_node(struct radix_tree_root *root, if (node->count) { if (node_to_entry(node) == - rcu_dereference_raw(root->rnode)) - deleted |= radix_tree_shrink(root, - update_node); + rcu_dereference_raw(root->xa_head)) + deleted |= radix_tree_shrink(root); return deleted; } @@ -778,7 +588,7 @@ static bool delete_node(struct radix_tree_root *root, */ if (!is_idr(root)) root_tag_clear_all(root); - root->rnode = NULL; + root->xa_head = NULL; } WARN_ON_ONCE(!list_empty(&node->private_list)); @@ -795,7 +605,6 @@ static bool delete_node(struct radix_tree_root *root, * __radix_tree_create - create a slot in a radix tree * @root: radix tree root * @index: index key - * @order: index occupies 2^order aligned slots * @nodep: returns node * @slotp: returns slot * @@ -803,36 +612,34 @@ static bool delete_node(struct radix_tree_root *root, * at position @index in the radix tree @root. * * Until there is more than one item in the tree, no nodes are - * allocated and @root->rnode is used as a direct slot instead of + * allocated and @root->xa_head is used as a direct slot instead of * pointing to a node, in which case *@nodep will be NULL. * * Returns -ENOMEM, or 0 for success. */ -int __radix_tree_create(struct radix_tree_root *root, unsigned long index, - unsigned order, struct radix_tree_node **nodep, - void __rcu ***slotp) +static int __radix_tree_create(struct radix_tree_root *root, + unsigned long index, struct radix_tree_node **nodep, + void __rcu ***slotp) { struct radix_tree_node *node = NULL, *child; - void __rcu **slot = (void __rcu **)&root->rnode; + void __rcu **slot = (void __rcu **)&root->xa_head; unsigned long maxindex; unsigned int shift, offset = 0; - unsigned long max = index | ((1UL << order) - 1); + unsigned long max = index; gfp_t gfp = root_gfp_mask(root); shift = radix_tree_load_root(root, &child, &maxindex); /* Make sure the tree is high enough. */ - if (order > 0 && max == ((1UL << order) - 1)) - max++; if (max > maxindex) { int error = radix_tree_extend(root, gfp, max, shift); if (error < 0) return error; shift = error; - child = rcu_dereference_raw(root->rnode); + child = rcu_dereference_raw(root->xa_head); } - while (shift > order) { + while (shift > 0) { shift -= RADIX_TREE_MAP_SHIFT; if (child == NULL) { /* Have to add a child node. */ @@ -875,8 +682,7 @@ static void radix_tree_free_nodes(struct radix_tree_node *node) for (;;) { void *entry = rcu_dereference_raw(child->slots[offset]); - if (radix_tree_is_internal_node(entry) && - !is_sibling_entry(child, entry)) { + if (xa_is_node(entry) && child->shift) { child = entry_to_node(entry); offset = 0; continue; @@ -894,96 +700,30 @@ static void radix_tree_free_nodes(struct radix_tree_node *node) } } -#ifdef CONFIG_RADIX_TREE_MULTIORDER static inline int insert_entries(struct radix_tree_node *node, - void __rcu **slot, void *item, unsigned order, bool replace) -{ - struct radix_tree_node *child; - unsigned i, n, tag, offset, tags = 0; - - if (node) { - if (order > node->shift) - n = 1 << (order - node->shift); - else - n = 1; - offset = get_slot_offset(node, slot); - } else { - n = 1; - offset = 0; - } - - if (n > 1) { - offset = offset & ~(n - 1); - slot = &node->slots[offset]; - } - child = node_to_entry(slot); - - for (i = 0; i < n; i++) { - if (slot[i]) { - if (replace) { - node->count--; - for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) - if (tag_get(node, tag, offset + i)) - tags |= 1 << tag; - } else - return -EEXIST; - } - } - - for (i = 0; i < n; i++) { - struct radix_tree_node *old = rcu_dereference_raw(slot[i]); - if (i) { - rcu_assign_pointer(slot[i], child); - for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) - if (tags & (1 << tag)) - tag_clear(node, tag, offset + i); - } else { - rcu_assign_pointer(slot[i], item); - for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) - if (tags & (1 << tag)) - tag_set(node, tag, offset); - } - if (radix_tree_is_internal_node(old) && - !is_sibling_entry(node, old) && - (old != RADIX_TREE_RETRY)) - radix_tree_free_nodes(old); - if (radix_tree_exceptional_entry(old)) - node->exceptional--; - } - if (node) { - node->count += n; - if (radix_tree_exceptional_entry(item)) - node->exceptional += n; - } - return n; -} -#else -static inline int insert_entries(struct radix_tree_node *node, - void __rcu **slot, void *item, unsigned order, bool replace) + void __rcu **slot, void *item, bool replace) { if (*slot) return -EEXIST; rcu_assign_pointer(*slot, item); if (node) { node->count++; - if (radix_tree_exceptional_entry(item)) - node->exceptional++; + if (xa_is_value(item)) + node->nr_values++; } return 1; } -#endif /** * __radix_tree_insert - insert into a radix tree * @root: radix tree root * @index: index key - * @order: key covers the 2^order indices around index * @item: item to insert * * Insert an item into the radix tree at position @index. */ -int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, - unsigned order, void *item) +int radix_tree_insert(struct radix_tree_root *root, unsigned long index, + void *item) { struct radix_tree_node *node; void __rcu **slot; @@ -991,11 +731,11 @@ int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, BUG_ON(radix_tree_is_internal_node(item)); - error = __radix_tree_create(root, index, order, &node, &slot); + error = __radix_tree_create(root, index, &node, &slot); if (error) return error; - error = insert_entries(node, slot, item, order, false); + error = insert_entries(node, slot, item, false); if (error < 0) return error; @@ -1010,7 +750,7 @@ int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, return 0; } -EXPORT_SYMBOL(__radix_tree_insert); +EXPORT_SYMBOL(radix_tree_insert); /** * __radix_tree_lookup - lookup an item in a radix tree @@ -1023,7 +763,7 @@ EXPORT_SYMBOL(__radix_tree_insert); * tree @root. * * Until there is more than one item in the tree, no nodes are - * allocated and @root->rnode is used as a direct slot instead of + * allocated and @root->xa_head is used as a direct slot instead of * pointing to a node, in which case *@nodep will be NULL. */ void *__radix_tree_lookup(const struct radix_tree_root *root, @@ -1036,7 +776,7 @@ void *__radix_tree_lookup(const struct radix_tree_root *root, restart: parent = NULL; - slot = (void __rcu **)&root->rnode; + slot = (void __rcu **)&root->xa_head; radix_tree_load_root(root, &node, &maxindex); if (index > maxindex) return NULL; @@ -1049,6 +789,8 @@ void *__radix_tree_lookup(const struct radix_tree_root *root, parent = entry_to_node(node); offset = radix_tree_descend(parent, &node, index); slot = parent->slots + offset; + if (parent->shift == 0) + break; } if (nodep) @@ -1100,36 +842,12 @@ void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index) } EXPORT_SYMBOL(radix_tree_lookup); -static inline void replace_sibling_entries(struct radix_tree_node *node, - void __rcu **slot, int count, int exceptional) -{ -#ifdef CONFIG_RADIX_TREE_MULTIORDER - void *ptr = node_to_entry(slot); - unsigned offset = get_slot_offset(node, slot) + 1; - - while (offset < RADIX_TREE_MAP_SIZE) { - if (rcu_dereference_raw(node->slots[offset]) != ptr) - break; - if (count < 0) { - node->slots[offset] = NULL; - node->count--; - } - node->exceptional += exceptional; - offset++; - } -#endif -} - static void replace_slot(void __rcu **slot, void *item, - struct radix_tree_node *node, int count, int exceptional) + struct radix_tree_node *node, int count, int values) { - if (WARN_ON_ONCE(radix_tree_is_internal_node(item))) - return; - - if (node && (count || exceptional)) { + if (node && (count || values)) { node->count += count; - node->exceptional += exceptional; - replace_sibling_entries(node, slot, count, exceptional); + node->nr_values += values; } rcu_assign_pointer(*slot, item); @@ -1172,37 +890,31 @@ static int calculate_count(struct radix_tree_root *root, * @node: pointer to tree node * @slot: pointer to slot in @node * @item: new item to store in the slot. - * @update_node: callback for changing leaf nodes * * For use with __radix_tree_lookup(). Caller must hold tree write locked * across slot lookup and replacement. */ void __radix_tree_replace(struct radix_tree_root *root, struct radix_tree_node *node, - void __rcu **slot, void *item, - radix_tree_update_node_t update_node) + void __rcu **slot, void *item) { void *old = rcu_dereference_raw(*slot); - int exceptional = !!radix_tree_exceptional_entry(item) - - !!radix_tree_exceptional_entry(old); + int values = !!xa_is_value(item) - !!xa_is_value(old); int count = calculate_count(root, node, slot, item, old); /* - * This function supports replacing exceptional entries and + * This function supports replacing value entries and * deleting entries, but that needs accounting against the - * node unless the slot is root->rnode. + * node unless the slot is root->xa_head. */ - WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) && - (count || exceptional)); - replace_slot(slot, item, node, count, exceptional); + WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) && + (count || values)); + replace_slot(slot, item, node, count, values); if (!node) return; - if (update_node) - update_node(node); - - delete_node(root, node, update_node); + delete_node(root, node); } /** @@ -1211,12 +923,12 @@ void __radix_tree_replace(struct radix_tree_root *root, * @slot: pointer to slot * @item: new item to store in the slot. * - * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(), + * For use with radix_tree_lookup_slot() and * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked * across slot lookup and replacement. * * NOTE: This cannot be used to switch between non-entries (empty slots), - * regular entries, and exceptional entries, as that requires accounting + * regular entries, and value entries, as that requires accounting * inside the radix tree node. When switching from one type of entry or * deleting, use __radix_tree_lookup() and __radix_tree_replace() or * radix_tree_iter_replace(). @@ -1224,7 +936,7 @@ void __radix_tree_replace(struct radix_tree_root *root, void radix_tree_replace_slot(struct radix_tree_root *root, void __rcu **slot, void *item) { - __radix_tree_replace(root, NULL, slot, item, NULL); + __radix_tree_replace(root, NULL, slot, item); } EXPORT_SYMBOL(radix_tree_replace_slot); @@ -1234,162 +946,16 @@ EXPORT_SYMBOL(radix_tree_replace_slot); * @slot: pointer to slot * @item: new item to store in the slot. * - * For use with radix_tree_split() and radix_tree_for_each_slot(). - * Caller must hold tree write locked across split and replacement. + * For use with radix_tree_for_each_slot(). + * Caller must hold tree write locked. */ void radix_tree_iter_replace(struct radix_tree_root *root, const struct radix_tree_iter *iter, void __rcu **slot, void *item) { - __radix_tree_replace(root, iter->node, slot, item, NULL); + __radix_tree_replace(root, iter->node, slot, item); } -#ifdef CONFIG_RADIX_TREE_MULTIORDER -/** - * radix_tree_join - replace multiple entries with one multiorder entry - * @root: radix tree root - * @index: an index inside the new entry - * @order: order of the new entry - * @item: new entry - * - * Call this function to replace several entries with one larger entry. - * The existing entries are presumed to not need freeing as a result of - * this call. - * - * The replacement entry will have all the tags set on it that were set - * on any of the entries it is replacing. - */ -int radix_tree_join(struct radix_tree_root *root, unsigned long index, - unsigned order, void *item) -{ - struct radix_tree_node *node; - void __rcu **slot; - int error; - - BUG_ON(radix_tree_is_internal_node(item)); - - error = __radix_tree_create(root, index, order, &node, &slot); - if (!error) - error = insert_entries(node, slot, item, order, true); - if (error > 0) - error = 0; - - return error; -} - -/** - * radix_tree_split - Split an entry into smaller entries - * @root: radix tree root - * @index: An index within the large entry - * @order: Order of new entries - * - * Call this function as the first step in replacing a multiorder entry - * with several entries of lower order. After this function returns, - * loop over the relevant portion of the tree using radix_tree_for_each_slot() - * and call radix_tree_iter_replace() to set up each new entry. - * - * The tags from this entry are replicated to all the new entries. - * - * The radix tree should be locked against modification during the entire - * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which - * should prompt RCU walkers to restart the lookup from the root. - */ -int radix_tree_split(struct radix_tree_root *root, unsigned long index, - unsigned order) -{ - struct radix_tree_node *parent, *node, *child; - void __rcu **slot; - unsigned int offset, end; - unsigned n, tag, tags = 0; - gfp_t gfp = root_gfp_mask(root); - - if (!__radix_tree_lookup(root, index, &parent, &slot)) - return -ENOENT; - if (!parent) - return -ENOENT; - - offset = get_slot_offset(parent, slot); - - for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) - if (tag_get(parent, tag, offset)) - tags |= 1 << tag; - - for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) { - if (!is_sibling_entry(parent, - rcu_dereference_raw(parent->slots[end]))) - break; - for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) - if (tags & (1 << tag)) - tag_set(parent, tag, end); - /* rcu_assign_pointer ensures tags are set before RETRY */ - rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY); - } - rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY); - parent->exceptional -= (end - offset); - - if (order == parent->shift) - return 0; - if (order > parent->shift) { - while (offset < end) - offset += insert_entries(parent, &parent->slots[offset], - RADIX_TREE_RETRY, order, true); - return 0; - } - - node = parent; - - for (;;) { - if (node->shift > order) { - child = radix_tree_node_alloc(gfp, node, root, - node->shift - RADIX_TREE_MAP_SHIFT, - offset, 0, 0); - if (!child) - goto nomem; - if (node != parent) { - node->count++; - rcu_assign_pointer(node->slots[offset], - node_to_entry(child)); - for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) - if (tags & (1 << tag)) - tag_set(node, tag, offset); - } - - node = child; - offset = 0; - continue; - } - - n = insert_entries(node, &node->slots[offset], - RADIX_TREE_RETRY, order, false); - BUG_ON(n > RADIX_TREE_MAP_SIZE); - - for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) - if (tags & (1 << tag)) - tag_set(node, tag, offset); - offset += n; - - while (offset == RADIX_TREE_MAP_SIZE) { - if (node == parent) - break; - offset = node->offset; - child = node; - node = node->parent; - rcu_assign_pointer(node->slots[offset], - node_to_entry(child)); - offset++; - } - if ((node == parent) && (offset == end)) - return 0; - } - - nomem: - /* Shouldn't happen; did user forget to preload? */ - /* TODO: free all the allocated nodes */ - WARN_ON(1); - return -ENOMEM; -} -#endif - static void node_tag_set(struct radix_tree_root *root, struct radix_tree_node *node, unsigned int tag, unsigned int offset) @@ -1447,18 +1013,6 @@ void *radix_tree_tag_set(struct radix_tree_root *root, } EXPORT_SYMBOL(radix_tree_tag_set); -/** - * radix_tree_iter_tag_set - set a tag on the current iterator entry - * @root: radix tree root - * @iter: iterator state - * @tag: tag to set - */ -void radix_tree_iter_tag_set(struct radix_tree_root *root, - const struct radix_tree_iter *iter, unsigned int tag) -{ - node_tag_set(root, iter->node, tag, iter_offset(iter)); -} - static void node_tag_clear(struct radix_tree_root *root, struct radix_tree_node *node, unsigned int tag, unsigned int offset) @@ -1574,14 +1128,6 @@ int radix_tree_tag_get(const struct radix_tree_root *root, } EXPORT_SYMBOL(radix_tree_tag_get); -static inline void __set_iter_shift(struct radix_tree_iter *iter, - unsigned int shift) -{ -#ifdef CONFIG_RADIX_TREE_MULTIORDER - iter->shift = shift; -#endif -} - /* Construct iter->tags bit-mask from node->tags[tag] array */ static void set_iter_tags(struct radix_tree_iter *iter, struct radix_tree_node *node, unsigned offset, @@ -1608,92 +1154,11 @@ static void set_iter_tags(struct radix_tree_iter *iter, } } -#ifdef CONFIG_RADIX_TREE_MULTIORDER -static void __rcu **skip_siblings(struct radix_tree_node **nodep, - void __rcu **slot, struct radix_tree_iter *iter) -{ - while (iter->index < iter->next_index) { - *nodep = rcu_dereference_raw(*slot); - if (*nodep && !is_sibling_entry(iter->node, *nodep)) - return slot; - slot++; - iter->index = __radix_tree_iter_add(iter, 1); - iter->tags >>= 1; - } - - *nodep = NULL; - return NULL; -} - -void __rcu **__radix_tree_next_slot(void __rcu **slot, - struct radix_tree_iter *iter, unsigned flags) -{ - unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; - struct radix_tree_node *node; - - slot = skip_siblings(&node, slot, iter); - - while (radix_tree_is_internal_node(node)) { - unsigned offset; - unsigned long next_index; - - if (node == RADIX_TREE_RETRY) - return slot; - node = entry_to_node(node); - iter->node = node; - iter->shift = node->shift; - - if (flags & RADIX_TREE_ITER_TAGGED) { - offset = radix_tree_find_next_bit(node, tag, 0); - if (offset == RADIX_TREE_MAP_SIZE) - return NULL; - slot = &node->slots[offset]; - iter->index = __radix_tree_iter_add(iter, offset); - set_iter_tags(iter, node, offset, tag); - node = rcu_dereference_raw(*slot); - } else { - offset = 0; - slot = &node->slots[0]; - for (;;) { - node = rcu_dereference_raw(*slot); - if (node) - break; - slot++; - offset++; - if (offset == RADIX_TREE_MAP_SIZE) - return NULL; - } - iter->index = __radix_tree_iter_add(iter, offset); - } - if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0)) - goto none; - next_index = (iter->index | shift_maxindex(iter->shift)) + 1; - if (next_index < iter->next_index) - iter->next_index = next_index; - } - - return slot; - none: - iter->next_index = 0; - return NULL; -} -EXPORT_SYMBOL(__radix_tree_next_slot); -#else -static void __rcu **skip_siblings(struct radix_tree_node **nodep, - void __rcu **slot, struct radix_tree_iter *iter) -{ - return slot; -} -#endif - void __rcu **radix_tree_iter_resume(void __rcu **slot, struct radix_tree_iter *iter) { - struct radix_tree_node *node; - slot++; iter->index = __radix_tree_iter_add(iter, 1); - skip_siblings(&node, slot, iter); iter->next_index = iter->index; iter->tags = 0; return NULL; @@ -1744,8 +1209,7 @@ void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root, iter->next_index = maxindex + 1; iter->tags = 1; iter->node = NULL; - __set_iter_shift(iter, 0); - return (void __rcu **)&root->rnode; + return (void __rcu **)&root->xa_head; } do { @@ -1765,8 +1229,6 @@ void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root, while (++offset < RADIX_TREE_MAP_SIZE) { void *slot = rcu_dereference_raw( node->slots[offset]); - if (is_sibling_entry(node, slot)) - continue; if (slot) break; } @@ -1784,13 +1246,12 @@ void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root, goto restart; if (child == RADIX_TREE_RETRY) break; - } while (radix_tree_is_internal_node(child)); + } while (node->shift && radix_tree_is_internal_node(child)); /* Update the iterator state */ - iter->index = (index &~ node_maxindex(node)) | (offset << node->shift); + iter->index = (index &~ node_maxindex(node)) | offset; iter->next_index = (index | node_maxindex(node)) + 1; iter->node = node; - __set_iter_shift(iter, node->shift); if (flags & RADIX_TREE_ITER_TAGGED) set_iter_tags(iter, node, offset, tag); @@ -1847,48 +1308,6 @@ radix_tree_gang_lookup(const struct radix_tree_root *root, void **results, EXPORT_SYMBOL(radix_tree_gang_lookup); /** - * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree - * @root: radix tree root - * @results: where the results of the lookup are placed - * @indices: where their indices should be placed (but usually NULL) - * @first_index: start the lookup from this key - * @max_items: place up to this many items at *results - * - * Performs an index-ascending scan of the tree for present items. Places - * their slots at *@results and returns the number of items which were - * placed at *@results. - * - * The implementation is naive. - * - * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must - * be dereferenced with radix_tree_deref_slot, and if using only RCU - * protection, radix_tree_deref_slot may fail requiring a retry. - */ -unsigned int -radix_tree_gang_lookup_slot(const struct radix_tree_root *root, - void __rcu ***results, unsigned long *indices, - unsigned long first_index, unsigned int max_items) -{ - struct radix_tree_iter iter; - void __rcu **slot; - unsigned int ret = 0; - - if (unlikely(!max_items)) - return 0; - - radix_tree_for_each_slot(slot, root, &iter, first_index) { - results[ret] = slot; - if (indices) - indices[ret] = iter.index; - if (++ret == max_items) - break; - } - - return ret; -} -EXPORT_SYMBOL(radix_tree_gang_lookup_slot); - -/** * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree * based on a tag * @root: radix tree root @@ -1964,28 +1383,11 @@ radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root, } EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); -/** - * __radix_tree_delete_node - try to free node after clearing a slot - * @root: radix tree root - * @node: node containing @index - * @update_node: callback for changing leaf nodes - * - * After clearing the slot at @index in @node from radix tree - * rooted at @root, call this function to attempt freeing the - * node and shrinking the tree. - */ -void __radix_tree_delete_node(struct radix_tree_root *root, - struct radix_tree_node *node, - radix_tree_update_node_t update_node) -{ - delete_node(root, node, update_node); -} - static bool __radix_tree_delete(struct radix_tree_root *root, struct radix_tree_node *node, void __rcu **slot) { void *old = rcu_dereference_raw(*slot); - int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0; + int values = xa_is_value(old) ? -1 : 0; unsigned offset = get_slot_offset(node, slot); int tag; @@ -1995,8 +1397,8 @@ static bool __radix_tree_delete(struct radix_tree_root *root, for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) node_tag_clear(root, node, tag, offset); - replace_slot(slot, NULL, node, -1, exceptional); - return node && delete_node(root, node, NULL); + replace_slot(slot, NULL, node, -1, values); + return node && delete_node(root, node); } /** @@ -2068,19 +1470,6 @@ void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) } EXPORT_SYMBOL(radix_tree_delete); -void radix_tree_clear_tags(struct radix_tree_root *root, - struct radix_tree_node *node, - void __rcu **slot) -{ - if (node) { - unsigned int tag, offset = get_slot_offset(node, slot); - for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) - node_tag_clear(root, node, tag, offset); - } else { - root_tag_clear_all(root); - } -} - /** * radix_tree_tagged - test whether any items in the tree are tagged * @root: radix tree root @@ -2106,33 +1495,12 @@ void idr_preload(gfp_t gfp_mask) } EXPORT_SYMBOL(idr_preload); -int ida_pre_get(struct ida *ida, gfp_t gfp) -{ - /* - * The IDA API has no preload_end() equivalent. Instead, - * ida_get_new() can return -EAGAIN, prompting the caller - * to return to the ida_pre_get() step. - */ - if (!__radix_tree_preload(gfp, IDA_PRELOAD_SIZE)) - preempt_enable(); - - if (!this_cpu_read(ida_bitmap)) { - struct ida_bitmap *bitmap = kzalloc(sizeof(*bitmap), gfp); - if (!bitmap) - return 0; - if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap)) - kfree(bitmap); - } - - return 1; -} - void __rcu **idr_get_free(struct radix_tree_root *root, struct radix_tree_iter *iter, gfp_t gfp, unsigned long max) { struct radix_tree_node *node = NULL, *child; - void __rcu **slot = (void __rcu **)&root->rnode; + void __rcu **slot = (void __rcu **)&root->xa_head; unsigned long maxindex, start = iter->next_index; unsigned int shift, offset = 0; @@ -2148,8 +1516,10 @@ void __rcu **idr_get_free(struct radix_tree_root *root, if (error < 0) return ERR_PTR(error); shift = error; - child = rcu_dereference_raw(root->rnode); + child = rcu_dereference_raw(root->xa_head); } + if (start == 0 && shift == 0) + shift = RADIX_TREE_MAP_SHIFT; while (shift) { shift -= RADIX_TREE_MAP_SHIFT; @@ -2192,7 +1562,6 @@ void __rcu **idr_get_free(struct radix_tree_root *root, else iter->next_index = 1; iter->node = node; - __set_iter_shift(iter, shift); set_iter_tags(iter, node, offset, IDR_FREE); return slot; @@ -2211,10 +1580,10 @@ void __rcu **idr_get_free(struct radix_tree_root *root, */ void idr_destroy(struct idr *idr) { - struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode); + struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head); if (radix_tree_is_internal_node(node)) radix_tree_free_nodes(node); - idr->idr_rt.rnode = NULL; + idr->idr_rt.xa_head = NULL; root_tag_set(&idr->idr_rt, IDR_FREE); } EXPORT_SYMBOL(idr_destroy); @@ -2228,31 +1597,6 @@ radix_tree_node_ctor(void *arg) INIT_LIST_HEAD(&node->private_list); } -static __init unsigned long __maxindex(unsigned int height) -{ - unsigned int width = height * RADIX_TREE_MAP_SHIFT; - int shift = RADIX_TREE_INDEX_BITS - width; - - if (shift < 0) - return ~0UL; - if (shift >= BITS_PER_LONG) - return 0UL; - return ~0UL >> shift; -} - -static __init void radix_tree_init_maxnodes(void) -{ - unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1]; - unsigned int i, j; - - for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) - height_to_maxindex[i] = __maxindex(i); - for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) { - for (j = i; j > 0; j--) - height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1; - } -} - static int radix_tree_cpu_dead(unsigned int cpu) { struct radix_tree_preload *rtp; @@ -2266,8 +1610,6 @@ static int radix_tree_cpu_dead(unsigned int cpu) kmem_cache_free(radix_tree_node_cachep, node); rtp->nr--; } - kfree(per_cpu(ida_bitmap, cpu)); - per_cpu(ida_bitmap, cpu) = NULL; return 0; } @@ -2277,11 +1619,11 @@ void __init radix_tree_init(void) BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32); BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK); + BUILD_BUG_ON(XA_CHUNK_SIZE > 255); radix_tree_node_cachep = kmem_cache_create("radix_tree_node", sizeof(struct radix_tree_node), 0, SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, radix_tree_node_ctor); - radix_tree_init_maxnodes(); ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead", NULL, radix_tree_cpu_dead); WARN_ON(ret < 0); diff --git a/lib/sg_pool.c b/lib/sg_pool.c index 6dd30615a201..d1c1e6388eaa 100644 --- a/lib/sg_pool.c +++ b/lib/sg_pool.c @@ -148,10 +148,9 @@ static __init int sg_pool_init(void) cleanup_sdb: for (i = 0; i < SG_MEMPOOL_NR; i++) { struct sg_pool *sgp = sg_pools + i; - if (sgp->pool) - mempool_destroy(sgp->pool); - if (sgp->slab) - kmem_cache_destroy(sgp->slab); + + mempool_destroy(sgp->pool); + kmem_cache_destroy(sgp->slab); } return -ENOMEM; diff --git a/lib/string.c b/lib/string.c index 2c0900a5d51a..38e4ca08e757 100644 --- a/lib/string.c +++ b/lib/string.c @@ -27,6 +27,7 @@ #include <linux/export.h> #include <linux/bug.h> #include <linux/errno.h> +#include <linux/slab.h> #include <asm/byteorder.h> #include <asm/word-at-a-time.h> diff --git a/lib/test_bpf.c b/lib/test_bpf.c index 08d3d59dca17..aa22bcaec1dc 100644 --- a/lib/test_bpf.c +++ b/lib/test_bpf.c @@ -6494,6 +6494,7 @@ static struct sk_buff *populate_skb(char *buf, int size) skb->queue_mapping = SKB_QUEUE_MAP; skb->vlan_tci = SKB_VLAN_TCI; skb->vlan_proto = htons(ETH_P_IP); + dev_net_set(&dev, &init_net); skb->dev = &dev; skb->dev->ifindex = SKB_DEV_IFINDEX; skb->dev->type = SKB_DEV_TYPE; diff --git a/lib/test_kasan.c b/lib/test_kasan.c index ec657105edbf..51b78405bf24 100644 --- a/lib/test_kasan.c +++ b/lib/test_kasan.c @@ -579,6 +579,73 @@ static noinline void __init kmem_cache_invalid_free(void) kmem_cache_destroy(cache); } +static noinline void __init kasan_memchr(void) +{ + char *ptr; + size_t size = 24; + + pr_info("out-of-bounds in memchr\n"); + ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); + if (!ptr) + return; + + memchr(ptr, '1', size + 1); + kfree(ptr); +} + +static noinline void __init kasan_memcmp(void) +{ + char *ptr; + size_t size = 24; + int arr[9]; + + pr_info("out-of-bounds in memcmp\n"); + ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); + if (!ptr) + return; + + memset(arr, 0, sizeof(arr)); + memcmp(ptr, arr, size+1); + kfree(ptr); +} + +static noinline void __init kasan_strings(void) +{ + char *ptr; + size_t size = 24; + + pr_info("use-after-free in strchr\n"); + ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); + if (!ptr) + return; + + kfree(ptr); + + /* + * Try to cause only 1 invalid access (less spam in dmesg). + * For that we need ptr to point to zeroed byte. + * Skip metadata that could be stored in freed object so ptr + * will likely point to zeroed byte. + */ + ptr += 16; + strchr(ptr, '1'); + + pr_info("use-after-free in strrchr\n"); + strrchr(ptr, '1'); + + pr_info("use-after-free in strcmp\n"); + strcmp(ptr, "2"); + + pr_info("use-after-free in strncmp\n"); + strncmp(ptr, "2", 1); + + pr_info("use-after-free in strlen\n"); + strlen(ptr); + + pr_info("use-after-free in strnlen\n"); + strnlen(ptr, 1); +} + static int __init kmalloc_tests_init(void) { /* @@ -618,6 +685,9 @@ static int __init kmalloc_tests_init(void) use_after_scope_test(); kmem_cache_double_free(); kmem_cache_invalid_free(); + kasan_memchr(); + kasan_memcmp(); + kasan_strings(); kasan_restore_multi_shot(multishot); diff --git a/lib/test_memcat_p.c b/lib/test_memcat_p.c new file mode 100644 index 000000000000..849c477d49d0 --- /dev/null +++ b/lib/test_memcat_p.c @@ -0,0 +1,115 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Test cases for memcat_p() in lib/memcat_p.c + */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/string.h> +#include <linux/slab.h> +#include <linux/module.h> + +struct test_struct { + int num; + unsigned int magic; +}; + +#define MAGIC 0xf00ff00f +/* Size of each of the NULL-terminated input arrays */ +#define INPUT_MAX 128 +/* Expected number of non-NULL elements in the output array */ +#define EXPECT (INPUT_MAX * 2 - 2) + +static int __init test_memcat_p_init(void) +{ + struct test_struct **in0, **in1, **out, **p; + int err = -ENOMEM, i, r, total = 0; + + in0 = kcalloc(INPUT_MAX, sizeof(*in0), GFP_KERNEL); + if (!in0) + return err; + + in1 = kcalloc(INPUT_MAX, sizeof(*in1), GFP_KERNEL); + if (!in1) + goto err_free_in0; + + for (i = 0, r = 1; i < INPUT_MAX - 1; i++) { + in0[i] = kmalloc(sizeof(**in0), GFP_KERNEL); + if (!in0[i]) + goto err_free_elements; + + in1[i] = kmalloc(sizeof(**in1), GFP_KERNEL); + if (!in1[i]) { + kfree(in0[i]); + goto err_free_elements; + } + + /* lifted from test_sort.c */ + r = (r * 725861) % 6599; + in0[i]->num = r; + in1[i]->num = -r; + in0[i]->magic = MAGIC; + in1[i]->magic = MAGIC; + } + + in0[i] = in1[i] = NULL; + + out = memcat_p(in0, in1); + if (!out) + goto err_free_all_elements; + + err = -EINVAL; + for (i = 0, p = out; *p && (i < INPUT_MAX * 2 - 1); p++, i++) { + total += (*p)->num; + + if ((*p)->magic != MAGIC) { + pr_err("test failed: wrong magic at %d: %u\n", i, + (*p)->magic); + goto err_free_out; + } + } + + if (total) { + pr_err("test failed: expected zero total, got %d\n", total); + goto err_free_out; + } + + if (i != EXPECT) { + pr_err("test failed: expected output size %d, got %d\n", + EXPECT, i); + goto err_free_out; + } + + for (i = 0; i < INPUT_MAX - 1; i++) + if (out[i] != in0[i] || out[i + INPUT_MAX - 1] != in1[i]) { + pr_err("test failed: wrong element order at %d\n", i); + goto err_free_out; + } + + err = 0; + pr_info("test passed\n"); + +err_free_out: + kfree(out); +err_free_all_elements: + i = INPUT_MAX; +err_free_elements: + for (i--; i >= 0; i--) { + kfree(in1[i]); + kfree(in0[i]); + } + + kfree(in1); +err_free_in0: + kfree(in0); + + return err; +} + +static void __exit test_memcat_p_exit(void) +{ +} + +module_init(test_memcat_p_init); +module_exit(test_memcat_p_exit); + +MODULE_LICENSE("GPL"); diff --git a/lib/test_xarray.c b/lib/test_xarray.c new file mode 100644 index 000000000000..aa47754150ce --- /dev/null +++ b/lib/test_xarray.c @@ -0,0 +1,1238 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * test_xarray.c: Test the XArray API + * Copyright (c) 2017-2018 Microsoft Corporation + * Author: Matthew Wilcox <willy@infradead.org> + */ + +#include <linux/xarray.h> +#include <linux/module.h> + +static unsigned int tests_run; +static unsigned int tests_passed; + +#ifndef XA_DEBUG +# ifdef __KERNEL__ +void xa_dump(const struct xarray *xa) { } +# endif +#undef XA_BUG_ON +#define XA_BUG_ON(xa, x) do { \ + tests_run++; \ + if (x) { \ + printk("BUG at %s:%d\n", __func__, __LINE__); \ + xa_dump(xa); \ + dump_stack(); \ + } else { \ + tests_passed++; \ + } \ +} while (0) +#endif + +static void *xa_store_index(struct xarray *xa, unsigned long index, gfp_t gfp) +{ + return xa_store(xa, index, xa_mk_value(index & LONG_MAX), gfp); +} + +static void xa_alloc_index(struct xarray *xa, unsigned long index, gfp_t gfp) +{ + u32 id = 0; + + XA_BUG_ON(xa, xa_alloc(xa, &id, UINT_MAX, xa_mk_value(index & LONG_MAX), + gfp) != 0); + XA_BUG_ON(xa, id != index); +} + +static void xa_erase_index(struct xarray *xa, unsigned long index) +{ + XA_BUG_ON(xa, xa_erase(xa, index) != xa_mk_value(index & LONG_MAX)); + XA_BUG_ON(xa, xa_load(xa, index) != NULL); +} + +/* + * If anyone needs this, please move it to xarray.c. We have no current + * users outside the test suite because all current multislot users want + * to use the advanced API. + */ +static void *xa_store_order(struct xarray *xa, unsigned long index, + unsigned order, void *entry, gfp_t gfp) +{ + XA_STATE_ORDER(xas, xa, index, order); + void *curr; + + do { + xas_lock(&xas); + curr = xas_store(&xas, entry); + xas_unlock(&xas); + } while (xas_nomem(&xas, gfp)); + + return curr; +} + +static noinline void check_xa_err(struct xarray *xa) +{ + XA_BUG_ON(xa, xa_err(xa_store_index(xa, 0, GFP_NOWAIT)) != 0); + XA_BUG_ON(xa, xa_err(xa_erase(xa, 0)) != 0); +#ifndef __KERNEL__ + /* The kernel does not fail GFP_NOWAIT allocations */ + XA_BUG_ON(xa, xa_err(xa_store_index(xa, 1, GFP_NOWAIT)) != -ENOMEM); + XA_BUG_ON(xa, xa_err(xa_store_index(xa, 1, GFP_NOWAIT)) != -ENOMEM); +#endif + XA_BUG_ON(xa, xa_err(xa_store_index(xa, 1, GFP_KERNEL)) != 0); + XA_BUG_ON(xa, xa_err(xa_store(xa, 1, xa_mk_value(0), GFP_KERNEL)) != 0); + XA_BUG_ON(xa, xa_err(xa_erase(xa, 1)) != 0); +// kills the test-suite :-( +// XA_BUG_ON(xa, xa_err(xa_store(xa, 0, xa_mk_internal(0), 0)) != -EINVAL); +} + +static noinline void check_xas_retry(struct xarray *xa) +{ + XA_STATE(xas, xa, 0); + void *entry; + + xa_store_index(xa, 0, GFP_KERNEL); + xa_store_index(xa, 1, GFP_KERNEL); + + rcu_read_lock(); + XA_BUG_ON(xa, xas_find(&xas, ULONG_MAX) != xa_mk_value(0)); + xa_erase_index(xa, 1); + XA_BUG_ON(xa, !xa_is_retry(xas_reload(&xas))); + XA_BUG_ON(xa, xas_retry(&xas, NULL)); + XA_BUG_ON(xa, xas_retry(&xas, xa_mk_value(0))); + xas_reset(&xas); + XA_BUG_ON(xa, xas.xa_node != XAS_RESTART); + XA_BUG_ON(xa, xas_next_entry(&xas, ULONG_MAX) != xa_mk_value(0)); + XA_BUG_ON(xa, xas.xa_node != NULL); + + XA_BUG_ON(xa, xa_store_index(xa, 1, GFP_KERNEL) != NULL); + XA_BUG_ON(xa, !xa_is_internal(xas_reload(&xas))); + xas.xa_node = XAS_RESTART; + XA_BUG_ON(xa, xas_next_entry(&xas, ULONG_MAX) != xa_mk_value(0)); + rcu_read_unlock(); + + /* Make sure we can iterate through retry entries */ + xas_lock(&xas); + xas_set(&xas, 0); + xas_store(&xas, XA_RETRY_ENTRY); + xas_set(&xas, 1); + xas_store(&xas, XA_RETRY_ENTRY); + + xas_set(&xas, 0); + xas_for_each(&xas, entry, ULONG_MAX) { + xas_store(&xas, xa_mk_value(xas.xa_index)); + } + xas_unlock(&xas); + + xa_erase_index(xa, 0); + xa_erase_index(xa, 1); +} + +static noinline void check_xa_load(struct xarray *xa) +{ + unsigned long i, j; + + for (i = 0; i < 1024; i++) { + for (j = 0; j < 1024; j++) { + void *entry = xa_load(xa, j); + if (j < i) + XA_BUG_ON(xa, xa_to_value(entry) != j); + else + XA_BUG_ON(xa, entry); + } + XA_BUG_ON(xa, xa_store_index(xa, i, GFP_KERNEL) != NULL); + } + + for (i = 0; i < 1024; i++) { + for (j = 0; j < 1024; j++) { + void *entry = xa_load(xa, j); + if (j >= i) + XA_BUG_ON(xa, xa_to_value(entry) != j); + else + XA_BUG_ON(xa, entry); + } + xa_erase_index(xa, i); + } + XA_BUG_ON(xa, !xa_empty(xa)); +} + +static noinline void check_xa_mark_1(struct xarray *xa, unsigned long index) +{ + unsigned int order; + unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 8 : 1; + + /* NULL elements have no marks set */ + XA_BUG_ON(xa, xa_get_mark(xa, index, XA_MARK_0)); + xa_set_mark(xa, index, XA_MARK_0); + XA_BUG_ON(xa, xa_get_mark(xa, index, XA_MARK_0)); + + /* Storing a pointer will not make a mark appear */ + XA_BUG_ON(xa, xa_store_index(xa, index, GFP_KERNEL) != NULL); + XA_BUG_ON(xa, xa_get_mark(xa, index, XA_MARK_0)); + xa_set_mark(xa, index, XA_MARK_0); + XA_BUG_ON(xa, !xa_get_mark(xa, index, XA_MARK_0)); + + /* Setting one mark will not set another mark */ + XA_BUG_ON(xa, xa_get_mark(xa, index + 1, XA_MARK_0)); + XA_BUG_ON(xa, xa_get_mark(xa, index, XA_MARK_1)); + + /* Storing NULL clears marks, and they can't be set again */ + xa_erase_index(xa, index); + XA_BUG_ON(xa, !xa_empty(xa)); + XA_BUG_ON(xa, xa_get_mark(xa, index, XA_MARK_0)); + xa_set_mark(xa, index, XA_MARK_0); + XA_BUG_ON(xa, xa_get_mark(xa, index, XA_MARK_0)); + + /* + * Storing a multi-index entry over entries with marks gives the + * entire entry the union of the marks + */ + BUG_ON((index % 4) != 0); + for (order = 2; order < max_order; order++) { + unsigned long base = round_down(index, 1UL << order); + unsigned long next = base + (1UL << order); + unsigned long i; + + XA_BUG_ON(xa, xa_store_index(xa, index + 1, GFP_KERNEL)); + xa_set_mark(xa, index + 1, XA_MARK_0); + XA_BUG_ON(xa, xa_store_index(xa, index + 2, GFP_KERNEL)); + xa_set_mark(xa, index + 2, XA_MARK_1); + XA_BUG_ON(xa, xa_store_index(xa, next, GFP_KERNEL)); + xa_store_order(xa, index, order, xa_mk_value(index), + GFP_KERNEL); + for (i = base; i < next; i++) { + XA_STATE(xas, xa, i); + unsigned int seen = 0; + void *entry; + + XA_BUG_ON(xa, !xa_get_mark(xa, i, XA_MARK_0)); + XA_BUG_ON(xa, !xa_get_mark(xa, i, XA_MARK_1)); + XA_BUG_ON(xa, xa_get_mark(xa, i, XA_MARK_2)); + + /* We should see two elements in the array */ + xas_for_each(&xas, entry, ULONG_MAX) + seen++; + XA_BUG_ON(xa, seen != 2); + + /* One of which is marked */ + xas_set(&xas, 0); + seen = 0; + xas_for_each_marked(&xas, entry, ULONG_MAX, XA_MARK_0) + seen++; + XA_BUG_ON(xa, seen != 1); + } + XA_BUG_ON(xa, xa_get_mark(xa, next, XA_MARK_0)); + XA_BUG_ON(xa, xa_get_mark(xa, next, XA_MARK_1)); + XA_BUG_ON(xa, xa_get_mark(xa, next, XA_MARK_2)); + xa_erase_index(xa, index); + xa_erase_index(xa, next); + XA_BUG_ON(xa, !xa_empty(xa)); + } + XA_BUG_ON(xa, !xa_empty(xa)); +} + +static noinline void check_xa_mark_2(struct xarray *xa) +{ + XA_STATE(xas, xa, 0); + unsigned long index; + unsigned int count = 0; + void *entry; + + xa_store_index(xa, 0, GFP_KERNEL); + xa_set_mark(xa, 0, XA_MARK_0); + xas_lock(&xas); + xas_load(&xas); + xas_init_marks(&xas); + xas_unlock(&xas); + XA_BUG_ON(xa, !xa_get_mark(xa, 0, XA_MARK_0) == 0); + + for (index = 3500; index < 4500; index++) { + xa_store_index(xa, index, GFP_KERNEL); + xa_set_mark(xa, index, XA_MARK_0); + } + + xas_reset(&xas); + rcu_read_lock(); + xas_for_each_marked(&xas, entry, ULONG_MAX, XA_MARK_0) + count++; + rcu_read_unlock(); + XA_BUG_ON(xa, count != 1000); + + xas_lock(&xas); + xas_for_each(&xas, entry, ULONG_MAX) { + xas_init_marks(&xas); + XA_BUG_ON(xa, !xa_get_mark(xa, xas.xa_index, XA_MARK_0)); + XA_BUG_ON(xa, !xas_get_mark(&xas, XA_MARK_0)); + } + xas_unlock(&xas); + + xa_destroy(xa); +} + +static noinline void check_xa_mark(struct xarray *xa) +{ + unsigned long index; + + for (index = 0; index < 16384; index += 4) + check_xa_mark_1(xa, index); + + check_xa_mark_2(xa); +} + +static noinline void check_xa_shrink(struct xarray *xa) +{ + XA_STATE(xas, xa, 1); + struct xa_node *node; + unsigned int order; + unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 15 : 1; + + XA_BUG_ON(xa, !xa_empty(xa)); + XA_BUG_ON(xa, xa_store_index(xa, 0, GFP_KERNEL) != NULL); + XA_BUG_ON(xa, xa_store_index(xa, 1, GFP_KERNEL) != NULL); + + /* + * Check that erasing the entry at 1 shrinks the tree and properly + * marks the node as being deleted. + */ + xas_lock(&xas); + XA_BUG_ON(xa, xas_load(&xas) != xa_mk_value(1)); + node = xas.xa_node; + XA_BUG_ON(xa, xa_entry_locked(xa, node, 0) != xa_mk_value(0)); + XA_BUG_ON(xa, xas_store(&xas, NULL) != xa_mk_value(1)); + XA_BUG_ON(xa, xa_load(xa, 1) != NULL); + XA_BUG_ON(xa, xas.xa_node != XAS_BOUNDS); + XA_BUG_ON(xa, xa_entry_locked(xa, node, 0) != XA_RETRY_ENTRY); + XA_BUG_ON(xa, xas_load(&xas) != NULL); + xas_unlock(&xas); + XA_BUG_ON(xa, xa_load(xa, 0) != xa_mk_value(0)); + xa_erase_index(xa, 0); + XA_BUG_ON(xa, !xa_empty(xa)); + + for (order = 0; order < max_order; order++) { + unsigned long max = (1UL << order) - 1; + xa_store_order(xa, 0, order, xa_mk_value(0), GFP_KERNEL); + XA_BUG_ON(xa, xa_load(xa, max) != xa_mk_value(0)); + XA_BUG_ON(xa, xa_load(xa, max + 1) != NULL); + rcu_read_lock(); + node = xa_head(xa); + rcu_read_unlock(); + XA_BUG_ON(xa, xa_store_index(xa, ULONG_MAX, GFP_KERNEL) != + NULL); + rcu_read_lock(); + XA_BUG_ON(xa, xa_head(xa) == node); + rcu_read_unlock(); + XA_BUG_ON(xa, xa_load(xa, max + 1) != NULL); + xa_erase_index(xa, ULONG_MAX); + XA_BUG_ON(xa, xa->xa_head != node); + xa_erase_index(xa, 0); + } +} + +static noinline void check_cmpxchg(struct xarray *xa) +{ + void *FIVE = xa_mk_value(5); + void *SIX = xa_mk_value(6); + void *LOTS = xa_mk_value(12345678); + + XA_BUG_ON(xa, !xa_empty(xa)); + XA_BUG_ON(xa, xa_store_index(xa, 12345678, GFP_KERNEL) != NULL); + XA_BUG_ON(xa, xa_insert(xa, 12345678, xa, GFP_KERNEL) != -EEXIST); + XA_BUG_ON(xa, xa_cmpxchg(xa, 12345678, SIX, FIVE, GFP_KERNEL) != LOTS); + XA_BUG_ON(xa, xa_cmpxchg(xa, 12345678, LOTS, FIVE, GFP_KERNEL) != LOTS); + XA_BUG_ON(xa, xa_cmpxchg(xa, 12345678, FIVE, LOTS, GFP_KERNEL) != FIVE); + XA_BUG_ON(xa, xa_cmpxchg(xa, 5, FIVE, NULL, GFP_KERNEL) != NULL); + XA_BUG_ON(xa, xa_cmpxchg(xa, 5, NULL, FIVE, GFP_KERNEL) != NULL); + xa_erase_index(xa, 12345678); + xa_erase_index(xa, 5); + XA_BUG_ON(xa, !xa_empty(xa)); +} + +static noinline void check_reserve(struct xarray *xa) +{ + void *entry; + unsigned long index = 0; + + /* An array with a reserved entry is not empty */ + XA_BUG_ON(xa, !xa_empty(xa)); + xa_reserve(xa, 12345678, GFP_KERNEL); + XA_BUG_ON(xa, xa_empty(xa)); + XA_BUG_ON(xa, xa_load(xa, 12345678)); + xa_release(xa, 12345678); + XA_BUG_ON(xa, !xa_empty(xa)); + + /* Releasing a used entry does nothing */ + xa_reserve(xa, 12345678, GFP_KERNEL); + XA_BUG_ON(xa, xa_store_index(xa, 12345678, GFP_NOWAIT) != NULL); + xa_release(xa, 12345678); + xa_erase_index(xa, 12345678); + XA_BUG_ON(xa, !xa_empty(xa)); + + /* cmpxchg sees a reserved entry as NULL */ + xa_reserve(xa, 12345678, GFP_KERNEL); + XA_BUG_ON(xa, xa_cmpxchg(xa, 12345678, NULL, xa_mk_value(12345678), + GFP_NOWAIT) != NULL); + xa_release(xa, 12345678); + xa_erase_index(xa, 12345678); + XA_BUG_ON(xa, !xa_empty(xa)); + + /* Can iterate through a reserved entry */ + xa_store_index(xa, 5, GFP_KERNEL); + xa_reserve(xa, 6, GFP_KERNEL); + xa_store_index(xa, 7, GFP_KERNEL); + + xa_for_each(xa, entry, index, ULONG_MAX, XA_PRESENT) { + XA_BUG_ON(xa, index != 5 && index != 7); + } + xa_destroy(xa); +} + +static noinline void check_xas_erase(struct xarray *xa) +{ + XA_STATE(xas, xa, 0); + void *entry; + unsigned long i, j; + + for (i = 0; i < 200; i++) { + for (j = i; j < 2 * i + 17; j++) { + xas_set(&xas, j); + do { + xas_lock(&xas); + xas_store(&xas, xa_mk_value(j)); + xas_unlock(&xas); + } while (xas_nomem(&xas, GFP_KERNEL)); + } + + xas_set(&xas, ULONG_MAX); + do { + xas_lock(&xas); + xas_store(&xas, xa_mk_value(0)); + xas_unlock(&xas); + } while (xas_nomem(&xas, GFP_KERNEL)); + + xas_lock(&xas); + xas_store(&xas, NULL); + + xas_set(&xas, 0); + j = i; + xas_for_each(&xas, entry, ULONG_MAX) { + XA_BUG_ON(xa, entry != xa_mk_value(j)); + xas_store(&xas, NULL); + j++; + } + xas_unlock(&xas); + XA_BUG_ON(xa, !xa_empty(xa)); + } +} + +#ifdef CONFIG_XARRAY_MULTI +static noinline void check_multi_store_1(struct xarray *xa, unsigned long index, + unsigned int order) +{ + XA_STATE(xas, xa, index); + unsigned long min = index & ~((1UL << order) - 1); + unsigned long max = min + (1UL << order); + + xa_store_order(xa, index, order, xa_mk_value(index), GFP_KERNEL); + XA_BUG_ON(xa, xa_load(xa, min) != xa_mk_value(index)); + XA_BUG_ON(xa, xa_load(xa, max - 1) != xa_mk_value(index)); + XA_BUG_ON(xa, xa_load(xa, max) != NULL); + XA_BUG_ON(xa, xa_load(xa, min - 1) != NULL); + + XA_BUG_ON(xa, xas_store(&xas, xa_mk_value(min)) != xa_mk_value(index)); + XA_BUG_ON(xa, xa_load(xa, min) != xa_mk_value(min)); + XA_BUG_ON(xa, xa_load(xa, max - 1) != xa_mk_value(min)); + XA_BUG_ON(xa, xa_load(xa, max) != NULL); + XA_BUG_ON(xa, xa_load(xa, min - 1) != NULL); + + xa_erase_index(xa, min); + XA_BUG_ON(xa, !xa_empty(xa)); +} + +static noinline void check_multi_store_2(struct xarray *xa, unsigned long index, + unsigned int order) +{ + XA_STATE(xas, xa, index); + xa_store_order(xa, index, order, xa_mk_value(0), GFP_KERNEL); + + XA_BUG_ON(xa, xas_store(&xas, xa_mk_value(1)) != xa_mk_value(0)); + XA_BUG_ON(xa, xas.xa_index != index); + XA_BUG_ON(xa, xas_store(&xas, NULL) != xa_mk_value(1)); + XA_BUG_ON(xa, !xa_empty(xa)); +} +#endif + +static noinline void check_multi_store(struct xarray *xa) +{ +#ifdef CONFIG_XARRAY_MULTI + unsigned long i, j, k; + unsigned int max_order = (sizeof(long) == 4) ? 30 : 60; + + /* Loading from any position returns the same value */ + xa_store_order(xa, 0, 1, xa_mk_value(0), GFP_KERNEL); + XA_BUG_ON(xa, xa_load(xa, 0) != xa_mk_value(0)); + XA_BUG_ON(xa, xa_load(xa, 1) != xa_mk_value(0)); + XA_BUG_ON(xa, xa_load(xa, 2) != NULL); + rcu_read_lock(); + XA_BUG_ON(xa, xa_to_node(xa_head(xa))->count != 2); + XA_BUG_ON(xa, xa_to_node(xa_head(xa))->nr_values != 2); + rcu_read_unlock(); + + /* Storing adjacent to the value does not alter the value */ + xa_store(xa, 3, xa, GFP_KERNEL); + XA_BUG_ON(xa, xa_load(xa, 0) != xa_mk_value(0)); + XA_BUG_ON(xa, xa_load(xa, 1) != xa_mk_value(0)); + XA_BUG_ON(xa, xa_load(xa, 2) != NULL); + rcu_read_lock(); + XA_BUG_ON(xa, xa_to_node(xa_head(xa))->count != 3); + XA_BUG_ON(xa, xa_to_node(xa_head(xa))->nr_values != 2); + rcu_read_unlock(); + + /* Overwriting multiple indexes works */ + xa_store_order(xa, 0, 2, xa_mk_value(1), GFP_KERNEL); + XA_BUG_ON(xa, xa_load(xa, 0) != xa_mk_value(1)); + XA_BUG_ON(xa, xa_load(xa, 1) != xa_mk_value(1)); + XA_BUG_ON(xa, xa_load(xa, 2) != xa_mk_value(1)); + XA_BUG_ON(xa, xa_load(xa, 3) != xa_mk_value(1)); + XA_BUG_ON(xa, xa_load(xa, 4) != NULL); + rcu_read_lock(); + XA_BUG_ON(xa, xa_to_node(xa_head(xa))->count != 4); + XA_BUG_ON(xa, xa_to_node(xa_head(xa))->nr_values != 4); + rcu_read_unlock(); + + /* We can erase multiple values with a single store */ + xa_store_order(xa, 0, 63, NULL, GFP_KERNEL); + XA_BUG_ON(xa, !xa_empty(xa)); + + /* Even when the first slot is empty but the others aren't */ + xa_store_index(xa, 1, GFP_KERNEL); + xa_store_index(xa, 2, GFP_KERNEL); + xa_store_order(xa, 0, 2, NULL, GFP_KERNEL); + XA_BUG_ON(xa, !xa_empty(xa)); + + for (i = 0; i < max_order; i++) { + for (j = 0; j < max_order; j++) { + xa_store_order(xa, 0, i, xa_mk_value(i), GFP_KERNEL); + xa_store_order(xa, 0, j, xa_mk_value(j), GFP_KERNEL); + + for (k = 0; k < max_order; k++) { + void *entry = xa_load(xa, (1UL << k) - 1); + if ((i < k) && (j < k)) + XA_BUG_ON(xa, entry != NULL); + else + XA_BUG_ON(xa, entry != xa_mk_value(j)); + } + + xa_erase(xa, 0); + XA_BUG_ON(xa, !xa_empty(xa)); + } + } + + for (i = 0; i < 20; i++) { + check_multi_store_1(xa, 200, i); + check_multi_store_1(xa, 0, i); + check_multi_store_1(xa, (1UL << i) + 1, i); + } + check_multi_store_2(xa, 4095, 9); +#endif +} + +static DEFINE_XARRAY_ALLOC(xa0); + +static noinline void check_xa_alloc(void) +{ + int i; + u32 id; + + /* An empty array should assign 0 to the first alloc */ + xa_alloc_index(&xa0, 0, GFP_KERNEL); + + /* Erasing it should make the array empty again */ + xa_erase_index(&xa0, 0); + XA_BUG_ON(&xa0, !xa_empty(&xa0)); + + /* And it should assign 0 again */ + xa_alloc_index(&xa0, 0, GFP_KERNEL); + + /* The next assigned ID should be 1 */ + xa_alloc_index(&xa0, 1, GFP_KERNEL); + xa_erase_index(&xa0, 1); + + /* Storing a value should mark it used */ + xa_store_index(&xa0, 1, GFP_KERNEL); + xa_alloc_index(&xa0, 2, GFP_KERNEL); + + /* If we then erase 0, it should be free */ + xa_erase_index(&xa0, 0); + xa_alloc_index(&xa0, 0, GFP_KERNEL); + + xa_erase_index(&xa0, 1); + xa_erase_index(&xa0, 2); + + for (i = 1; i < 5000; i++) { + xa_alloc_index(&xa0, i, GFP_KERNEL); + } + + xa_destroy(&xa0); + + id = 0xfffffffeU; + XA_BUG_ON(&xa0, xa_alloc(&xa0, &id, UINT_MAX, xa_mk_value(0), + GFP_KERNEL) != 0); + XA_BUG_ON(&xa0, id != 0xfffffffeU); + XA_BUG_ON(&xa0, xa_alloc(&xa0, &id, UINT_MAX, xa_mk_value(0), + GFP_KERNEL) != 0); + XA_BUG_ON(&xa0, id != 0xffffffffU); + XA_BUG_ON(&xa0, xa_alloc(&xa0, &id, UINT_MAX, xa_mk_value(0), + GFP_KERNEL) != -ENOSPC); + XA_BUG_ON(&xa0, id != 0xffffffffU); + xa_destroy(&xa0); +} + +static noinline void __check_store_iter(struct xarray *xa, unsigned long start, + unsigned int order, unsigned int present) +{ + XA_STATE_ORDER(xas, xa, start, order); + void *entry; + unsigned int count = 0; + +retry: + xas_lock(&xas); + xas_for_each_conflict(&xas, entry) { + XA_BUG_ON(xa, !xa_is_value(entry)); + XA_BUG_ON(xa, entry < xa_mk_value(start)); + XA_BUG_ON(xa, entry > xa_mk_value(start + (1UL << order) - 1)); + count++; + } + xas_store(&xas, xa_mk_value(start)); + xas_unlock(&xas); + if (xas_nomem(&xas, GFP_KERNEL)) { + count = 0; + goto retry; + } + XA_BUG_ON(xa, xas_error(&xas)); + XA_BUG_ON(xa, count != present); + XA_BUG_ON(xa, xa_load(xa, start) != xa_mk_value(start)); + XA_BUG_ON(xa, xa_load(xa, start + (1UL << order) - 1) != + xa_mk_value(start)); + xa_erase_index(xa, start); +} + +static noinline void check_store_iter(struct xarray *xa) +{ + unsigned int i, j; + unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 20 : 1; + + for (i = 0; i < max_order; i++) { + unsigned int min = 1 << i; + unsigned int max = (2 << i) - 1; + __check_store_iter(xa, 0, i, 0); + XA_BUG_ON(xa, !xa_empty(xa)); + __check_store_iter(xa, min, i, 0); + XA_BUG_ON(xa, !xa_empty(xa)); + + xa_store_index(xa, min, GFP_KERNEL); + __check_store_iter(xa, min, i, 1); + XA_BUG_ON(xa, !xa_empty(xa)); + xa_store_index(xa, max, GFP_KERNEL); + __check_store_iter(xa, min, i, 1); + XA_BUG_ON(xa, !xa_empty(xa)); + + for (j = 0; j < min; j++) + xa_store_index(xa, j, GFP_KERNEL); + __check_store_iter(xa, 0, i, min); + XA_BUG_ON(xa, !xa_empty(xa)); + for (j = 0; j < min; j++) + xa_store_index(xa, min + j, GFP_KERNEL); + __check_store_iter(xa, min, i, min); + XA_BUG_ON(xa, !xa_empty(xa)); + } +#ifdef CONFIG_XARRAY_MULTI + xa_store_index(xa, 63, GFP_KERNEL); + xa_store_index(xa, 65, GFP_KERNEL); + __check_store_iter(xa, 64, 2, 1); + xa_erase_index(xa, 63); +#endif + XA_BUG_ON(xa, !xa_empty(xa)); +} + +static noinline void check_multi_find(struct xarray *xa) +{ +#ifdef CONFIG_XARRAY_MULTI + unsigned long index; + + xa_store_order(xa, 12, 2, xa_mk_value(12), GFP_KERNEL); + XA_BUG_ON(xa, xa_store_index(xa, 16, GFP_KERNEL) != NULL); + + index = 0; + XA_BUG_ON(xa, xa_find(xa, &index, ULONG_MAX, XA_PRESENT) != + xa_mk_value(12)); + XA_BUG_ON(xa, index != 12); + index = 13; + XA_BUG_ON(xa, xa_find(xa, &index, ULONG_MAX, XA_PRESENT) != + xa_mk_value(12)); + XA_BUG_ON(xa, (index < 12) || (index >= 16)); + XA_BUG_ON(xa, xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT) != + xa_mk_value(16)); + XA_BUG_ON(xa, index != 16); + + xa_erase_index(xa, 12); + xa_erase_index(xa, 16); + XA_BUG_ON(xa, !xa_empty(xa)); +#endif +} + +static noinline void check_multi_find_2(struct xarray *xa) +{ + unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 10 : 1; + unsigned int i, j; + void *entry; + + for (i = 0; i < max_order; i++) { + unsigned long index = 1UL << i; + for (j = 0; j < index; j++) { + XA_STATE(xas, xa, j + index); + xa_store_index(xa, index - 1, GFP_KERNEL); + xa_store_order(xa, index, i, xa_mk_value(index), + GFP_KERNEL); + rcu_read_lock(); + xas_for_each(&xas, entry, ULONG_MAX) { + xa_erase_index(xa, index); + } + rcu_read_unlock(); + xa_erase_index(xa, index - 1); + XA_BUG_ON(xa, !xa_empty(xa)); + } + } +} + +static noinline void check_find(struct xarray *xa) +{ + unsigned long i, j, k; + + XA_BUG_ON(xa, !xa_empty(xa)); + + /* + * Check xa_find with all pairs between 0 and 99 inclusive, + * starting at every index between 0 and 99 + */ + for (i = 0; i < 100; i++) { + XA_BUG_ON(xa, xa_store_index(xa, i, GFP_KERNEL) != NULL); + xa_set_mark(xa, i, XA_MARK_0); + for (j = 0; j < i; j++) { + XA_BUG_ON(xa, xa_store_index(xa, j, GFP_KERNEL) != + NULL); + xa_set_mark(xa, j, XA_MARK_0); + for (k = 0; k < 100; k++) { + unsigned long index = k; + void *entry = xa_find(xa, &index, ULONG_MAX, + XA_PRESENT); + if (k <= j) + XA_BUG_ON(xa, index != j); + else if (k <= i) + XA_BUG_ON(xa, index != i); + else + XA_BUG_ON(xa, entry != NULL); + + index = k; + entry = xa_find(xa, &index, ULONG_MAX, + XA_MARK_0); + if (k <= j) + XA_BUG_ON(xa, index != j); + else if (k <= i) + XA_BUG_ON(xa, index != i); + else + XA_BUG_ON(xa, entry != NULL); + } + xa_erase_index(xa, j); + XA_BUG_ON(xa, xa_get_mark(xa, j, XA_MARK_0)); + XA_BUG_ON(xa, !xa_get_mark(xa, i, XA_MARK_0)); + } + xa_erase_index(xa, i); + XA_BUG_ON(xa, xa_get_mark(xa, i, XA_MARK_0)); + } + XA_BUG_ON(xa, !xa_empty(xa)); + check_multi_find(xa); + check_multi_find_2(xa); +} + +/* See find_swap_entry() in mm/shmem.c */ +static noinline unsigned long xa_find_entry(struct xarray *xa, void *item) +{ + XA_STATE(xas, xa, 0); + unsigned int checked = 0; + void *entry; + + rcu_read_lock(); + xas_for_each(&xas, entry, ULONG_MAX) { + if (xas_retry(&xas, entry)) + continue; + if (entry == item) + break; + checked++; + if ((checked % 4) != 0) + continue; + xas_pause(&xas); + } + rcu_read_unlock(); + + return entry ? xas.xa_index : -1; +} + +static noinline void check_find_entry(struct xarray *xa) +{ +#ifdef CONFIG_XARRAY_MULTI + unsigned int order; + unsigned long offset, index; + + for (order = 0; order < 20; order++) { + for (offset = 0; offset < (1UL << (order + 3)); + offset += (1UL << order)) { + for (index = 0; index < (1UL << (order + 5)); + index += (1UL << order)) { + xa_store_order(xa, index, order, + xa_mk_value(index), GFP_KERNEL); + XA_BUG_ON(xa, xa_load(xa, index) != + xa_mk_value(index)); + XA_BUG_ON(xa, xa_find_entry(xa, + xa_mk_value(index)) != index); + } + XA_BUG_ON(xa, xa_find_entry(xa, xa) != -1); + xa_destroy(xa); + } + } +#endif + + XA_BUG_ON(xa, xa_find_entry(xa, xa) != -1); + xa_store_index(xa, ULONG_MAX, GFP_KERNEL); + XA_BUG_ON(xa, xa_find_entry(xa, xa) != -1); + XA_BUG_ON(xa, xa_find_entry(xa, xa_mk_value(LONG_MAX)) != -1); + xa_erase_index(xa, ULONG_MAX); + XA_BUG_ON(xa, !xa_empty(xa)); +} + +static noinline void check_move_small(struct xarray *xa, unsigned long idx) +{ + XA_STATE(xas, xa, 0); + unsigned long i; + + xa_store_index(xa, 0, GFP_KERNEL); + xa_store_index(xa, idx, GFP_KERNEL); + + rcu_read_lock(); + for (i = 0; i < idx * 4; i++) { + void *entry = xas_next(&xas); + if (i <= idx) + XA_BUG_ON(xa, xas.xa_node == XAS_RESTART); + XA_BUG_ON(xa, xas.xa_index != i); + if (i == 0 || i == idx) + XA_BUG_ON(xa, entry != xa_mk_value(i)); + else + XA_BUG_ON(xa, entry != NULL); + } + xas_next(&xas); + XA_BUG_ON(xa, xas.xa_index != i); + + do { + void *entry = xas_prev(&xas); + i--; + if (i <= idx) + XA_BUG_ON(xa, xas.xa_node == XAS_RESTART); + XA_BUG_ON(xa, xas.xa_index != i); + if (i == 0 || i == idx) + XA_BUG_ON(xa, entry != xa_mk_value(i)); + else + XA_BUG_ON(xa, entry != NULL); + } while (i > 0); + + xas_set(&xas, ULONG_MAX); + XA_BUG_ON(xa, xas_next(&xas) != NULL); + XA_BUG_ON(xa, xas.xa_index != ULONG_MAX); + XA_BUG_ON(xa, xas_next(&xas) != xa_mk_value(0)); + XA_BUG_ON(xa, xas.xa_index != 0); + XA_BUG_ON(xa, xas_prev(&xas) != NULL); + XA_BUG_ON(xa, xas.xa_index != ULONG_MAX); + rcu_read_unlock(); + + xa_erase_index(xa, 0); + xa_erase_index(xa, idx); + XA_BUG_ON(xa, !xa_empty(xa)); +} + +static noinline void check_move(struct xarray *xa) +{ + XA_STATE(xas, xa, (1 << 16) - 1); + unsigned long i; + + for (i = 0; i < (1 << 16); i++) + XA_BUG_ON(xa, xa_store_index(xa, i, GFP_KERNEL) != NULL); + + rcu_read_lock(); + do { + void *entry = xas_prev(&xas); + i--; + XA_BUG_ON(xa, entry != xa_mk_value(i)); + XA_BUG_ON(xa, i != xas.xa_index); + } while (i != 0); + + XA_BUG_ON(xa, xas_prev(&xas) != NULL); + XA_BUG_ON(xa, xas.xa_index != ULONG_MAX); + + do { + void *entry = xas_next(&xas); + XA_BUG_ON(xa, entry != xa_mk_value(i)); + XA_BUG_ON(xa, i != xas.xa_index); + i++; + } while (i < (1 << 16)); + rcu_read_unlock(); + + for (i = (1 << 8); i < (1 << 15); i++) + xa_erase_index(xa, i); + + i = xas.xa_index; + + rcu_read_lock(); + do { + void *entry = xas_prev(&xas); + i--; + if ((i < (1 << 8)) || (i >= (1 << 15))) + XA_BUG_ON(xa, entry != xa_mk_value(i)); + else + XA_BUG_ON(xa, entry != NULL); + XA_BUG_ON(xa, i != xas.xa_index); + } while (i != 0); + + XA_BUG_ON(xa, xas_prev(&xas) != NULL); + XA_BUG_ON(xa, xas.xa_index != ULONG_MAX); + + do { + void *entry = xas_next(&xas); + if ((i < (1 << 8)) || (i >= (1 << 15))) + XA_BUG_ON(xa, entry != xa_mk_value(i)); + else + XA_BUG_ON(xa, entry != NULL); + XA_BUG_ON(xa, i != xas.xa_index); + i++; + } while (i < (1 << 16)); + rcu_read_unlock(); + + xa_destroy(xa); + + for (i = 0; i < 16; i++) + check_move_small(xa, 1UL << i); + + for (i = 2; i < 16; i++) + check_move_small(xa, (1UL << i) - 1); +} + +static noinline void xa_store_many_order(struct xarray *xa, + unsigned long index, unsigned order) +{ + XA_STATE_ORDER(xas, xa, index, order); + unsigned int i = 0; + + do { + xas_lock(&xas); + XA_BUG_ON(xa, xas_find_conflict(&xas)); + xas_create_range(&xas); + if (xas_error(&xas)) + goto unlock; + for (i = 0; i < (1U << order); i++) { + XA_BUG_ON(xa, xas_store(&xas, xa_mk_value(index + i))); + xas_next(&xas); + } +unlock: + xas_unlock(&xas); + } while (xas_nomem(&xas, GFP_KERNEL)); + + XA_BUG_ON(xa, xas_error(&xas)); +} + +static noinline void check_create_range_1(struct xarray *xa, + unsigned long index, unsigned order) +{ + unsigned long i; + + xa_store_many_order(xa, index, order); + for (i = index; i < index + (1UL << order); i++) + xa_erase_index(xa, i); + XA_BUG_ON(xa, !xa_empty(xa)); +} + +static noinline void check_create_range_2(struct xarray *xa, unsigned order) +{ + unsigned long i; + unsigned long nr = 1UL << order; + + for (i = 0; i < nr * nr; i += nr) + xa_store_many_order(xa, i, order); + for (i = 0; i < nr * nr; i++) + xa_erase_index(xa, i); + XA_BUG_ON(xa, !xa_empty(xa)); +} + +static noinline void check_create_range_3(void) +{ + XA_STATE(xas, NULL, 0); + xas_set_err(&xas, -EEXIST); + xas_create_range(&xas); + XA_BUG_ON(NULL, xas_error(&xas) != -EEXIST); +} + +static noinline void check_create_range_4(struct xarray *xa, + unsigned long index, unsigned order) +{ + XA_STATE_ORDER(xas, xa, index, order); + unsigned long base = xas.xa_index; + unsigned long i = 0; + + xa_store_index(xa, index, GFP_KERNEL); + do { + xas_lock(&xas); + xas_create_range(&xas); + if (xas_error(&xas)) + goto unlock; + for (i = 0; i < (1UL << order); i++) { + void *old = xas_store(&xas, xa_mk_value(base + i)); + if (xas.xa_index == index) + XA_BUG_ON(xa, old != xa_mk_value(base + i)); + else + XA_BUG_ON(xa, old != NULL); + xas_next(&xas); + } +unlock: + xas_unlock(&xas); + } while (xas_nomem(&xas, GFP_KERNEL)); + + XA_BUG_ON(xa, xas_error(&xas)); + + for (i = base; i < base + (1UL << order); i++) + xa_erase_index(xa, i); + XA_BUG_ON(xa, !xa_empty(xa)); +} + +static noinline void check_create_range(struct xarray *xa) +{ + unsigned int order; + unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 12 : 1; + + for (order = 0; order < max_order; order++) { + check_create_range_1(xa, 0, order); + check_create_range_1(xa, 1U << order, order); + check_create_range_1(xa, 2U << order, order); + check_create_range_1(xa, 3U << order, order); + check_create_range_1(xa, 1U << 24, order); + if (order < 10) + check_create_range_2(xa, order); + + check_create_range_4(xa, 0, order); + check_create_range_4(xa, 1U << order, order); + check_create_range_4(xa, 2U << order, order); + check_create_range_4(xa, 3U << order, order); + check_create_range_4(xa, 1U << 24, order); + + check_create_range_4(xa, 1, order); + check_create_range_4(xa, (1U << order) + 1, order); + check_create_range_4(xa, (2U << order) + 1, order); + check_create_range_4(xa, (2U << order) - 1, order); + check_create_range_4(xa, (3U << order) + 1, order); + check_create_range_4(xa, (3U << order) - 1, order); + check_create_range_4(xa, (1U << 24) + 1, order); + } + + check_create_range_3(); +} + +static noinline void __check_store_range(struct xarray *xa, unsigned long first, + unsigned long last) +{ +#ifdef CONFIG_XARRAY_MULTI + xa_store_range(xa, first, last, xa_mk_value(first), GFP_KERNEL); + + XA_BUG_ON(xa, xa_load(xa, first) != xa_mk_value(first)); + XA_BUG_ON(xa, xa_load(xa, last) != xa_mk_value(first)); + XA_BUG_ON(xa, xa_load(xa, first - 1) != NULL); + XA_BUG_ON(xa, xa_load(xa, last + 1) != NULL); + + xa_store_range(xa, first, last, NULL, GFP_KERNEL); +#endif + + XA_BUG_ON(xa, !xa_empty(xa)); +} + +static noinline void check_store_range(struct xarray *xa) +{ + unsigned long i, j; + + for (i = 0; i < 128; i++) { + for (j = i; j < 128; j++) { + __check_store_range(xa, i, j); + __check_store_range(xa, 128 + i, 128 + j); + __check_store_range(xa, 4095 + i, 4095 + j); + __check_store_range(xa, 4096 + i, 4096 + j); + __check_store_range(xa, 123456 + i, 123456 + j); + __check_store_range(xa, UINT_MAX + i, UINT_MAX + j); + } + } +} + +static LIST_HEAD(shadow_nodes); + +static void test_update_node(struct xa_node *node) +{ + if (node->count && node->count == node->nr_values) { + if (list_empty(&node->private_list)) + list_add(&shadow_nodes, &node->private_list); + } else { + if (!list_empty(&node->private_list)) + list_del_init(&node->private_list); + } +} + +static noinline void shadow_remove(struct xarray *xa) +{ + struct xa_node *node; + + xa_lock(xa); + while ((node = list_first_entry_or_null(&shadow_nodes, + struct xa_node, private_list))) { + XA_STATE(xas, node->array, 0); + XA_BUG_ON(xa, node->array != xa); + list_del_init(&node->private_list); + xas.xa_node = xa_parent_locked(node->array, node); + xas.xa_offset = node->offset; + xas.xa_shift = node->shift + XA_CHUNK_SHIFT; + xas_set_update(&xas, test_update_node); + xas_store(&xas, NULL); + } + xa_unlock(xa); +} + +static noinline void check_workingset(struct xarray *xa, unsigned long index) +{ + XA_STATE(xas, xa, index); + xas_set_update(&xas, test_update_node); + + do { + xas_lock(&xas); + xas_store(&xas, xa_mk_value(0)); + xas_next(&xas); + xas_store(&xas, xa_mk_value(1)); + xas_unlock(&xas); + } while (xas_nomem(&xas, GFP_KERNEL)); + + XA_BUG_ON(xa, list_empty(&shadow_nodes)); + + xas_lock(&xas); + xas_next(&xas); + xas_store(&xas, &xas); + XA_BUG_ON(xa, !list_empty(&shadow_nodes)); + + xas_store(&xas, xa_mk_value(2)); + xas_unlock(&xas); + XA_BUG_ON(xa, list_empty(&shadow_nodes)); + + shadow_remove(xa); + XA_BUG_ON(xa, !list_empty(&shadow_nodes)); + XA_BUG_ON(xa, !xa_empty(xa)); +} + +/* + * Check that the pointer / value / sibling entries are accounted the + * way we expect them to be. + */ +static noinline void check_account(struct xarray *xa) +{ +#ifdef CONFIG_XARRAY_MULTI + unsigned int order; + + for (order = 1; order < 12; order++) { + XA_STATE(xas, xa, 1 << order); + + xa_store_order(xa, 0, order, xa, GFP_KERNEL); + xas_load(&xas); + XA_BUG_ON(xa, xas.xa_node->count == 0); + XA_BUG_ON(xa, xas.xa_node->count > (1 << order)); + XA_BUG_ON(xa, xas.xa_node->nr_values != 0); + + xa_store_order(xa, 1 << order, order, xa_mk_value(1 << order), + GFP_KERNEL); + XA_BUG_ON(xa, xas.xa_node->count != xas.xa_node->nr_values * 2); + + xa_erase(xa, 1 << order); + XA_BUG_ON(xa, xas.xa_node->nr_values != 0); + + xa_erase(xa, 0); + XA_BUG_ON(xa, !xa_empty(xa)); + } +#endif +} + +static noinline void check_destroy(struct xarray *xa) +{ + unsigned long index; + + XA_BUG_ON(xa, !xa_empty(xa)); + + /* Destroying an empty array is a no-op */ + xa_destroy(xa); + XA_BUG_ON(xa, !xa_empty(xa)); + + /* Destroying an array with a single entry */ + for (index = 0; index < 1000; index++) { + xa_store_index(xa, index, GFP_KERNEL); + XA_BUG_ON(xa, xa_empty(xa)); + xa_destroy(xa); + XA_BUG_ON(xa, !xa_empty(xa)); + } + + /* Destroying an array with a single entry at ULONG_MAX */ + xa_store(xa, ULONG_MAX, xa, GFP_KERNEL); + XA_BUG_ON(xa, xa_empty(xa)); + xa_destroy(xa); + XA_BUG_ON(xa, !xa_empty(xa)); + +#ifdef CONFIG_XARRAY_MULTI + /* Destroying an array with a multi-index entry */ + xa_store_order(xa, 1 << 11, 11, xa, GFP_KERNEL); + XA_BUG_ON(xa, xa_empty(xa)); + xa_destroy(xa); + XA_BUG_ON(xa, !xa_empty(xa)); +#endif +} + +static DEFINE_XARRAY(array); + +static int xarray_checks(void) +{ + check_xa_err(&array); + check_xas_retry(&array); + check_xa_load(&array); + check_xa_mark(&array); + check_xa_shrink(&array); + check_xas_erase(&array); + check_cmpxchg(&array); + check_reserve(&array); + check_multi_store(&array); + check_xa_alloc(); + check_find(&array); + check_find_entry(&array); + check_account(&array); + check_destroy(&array); + check_move(&array); + check_create_range(&array); + check_store_range(&array); + check_store_iter(&array); + + check_workingset(&array, 0); + check_workingset(&array, 64); + check_workingset(&array, 4096); + + printk("XArray: %u of %u tests passed\n", tests_passed, tests_run); + return (tests_run == tests_passed) ? 0 : -EINVAL; +} + +static void xarray_exit(void) +{ +} + +module_init(xarray_checks); +module_exit(xarray_exit); +MODULE_AUTHOR("Matthew Wilcox <willy@infradead.org>"); +MODULE_LICENSE("GPL"); diff --git a/lib/vsprintf.c b/lib/vsprintf.c index 812e59e13fe6..37a54a6dd594 100644 --- a/lib/vsprintf.c +++ b/lib/vsprintf.c @@ -613,6 +613,109 @@ char *string(char *buf, char *end, const char *s, struct printf_spec spec) } static noinline_for_stack +char *pointer_string(char *buf, char *end, const void *ptr, + struct printf_spec spec) +{ + spec.base = 16; + spec.flags |= SMALL; + if (spec.field_width == -1) { + spec.field_width = 2 * sizeof(ptr); + spec.flags |= ZEROPAD; + } + + return number(buf, end, (unsigned long int)ptr, spec); +} + +/* Make pointers available for printing early in the boot sequence. */ +static int debug_boot_weak_hash __ro_after_init; + +static int __init debug_boot_weak_hash_enable(char *str) +{ + debug_boot_weak_hash = 1; + pr_info("debug_boot_weak_hash enabled\n"); + return 0; +} +early_param("debug_boot_weak_hash", debug_boot_weak_hash_enable); + +static DEFINE_STATIC_KEY_TRUE(not_filled_random_ptr_key); +static siphash_key_t ptr_key __read_mostly; + +static void enable_ptr_key_workfn(struct work_struct *work) +{ + get_random_bytes(&ptr_key, sizeof(ptr_key)); + /* Needs to run from preemptible context */ + static_branch_disable(¬_filled_random_ptr_key); +} + +static DECLARE_WORK(enable_ptr_key_work, enable_ptr_key_workfn); + +static void fill_random_ptr_key(struct random_ready_callback *unused) +{ + /* This may be in an interrupt handler. */ + queue_work(system_unbound_wq, &enable_ptr_key_work); +} + +static struct random_ready_callback random_ready = { + .func = fill_random_ptr_key +}; + +static int __init initialize_ptr_random(void) +{ + int key_size = sizeof(ptr_key); + int ret; + + /* Use hw RNG if available. */ + if (get_random_bytes_arch(&ptr_key, key_size) == key_size) { + static_branch_disable(¬_filled_random_ptr_key); + return 0; + } + + ret = add_random_ready_callback(&random_ready); + if (!ret) { + return 0; + } else if (ret == -EALREADY) { + /* This is in preemptible context */ + enable_ptr_key_workfn(&enable_ptr_key_work); + return 0; + } + + return ret; +} +early_initcall(initialize_ptr_random); + +/* Maps a pointer to a 32 bit unique identifier. */ +static char *ptr_to_id(char *buf, char *end, const void *ptr, + struct printf_spec spec) +{ + const char *str = sizeof(ptr) == 8 ? "(____ptrval____)" : "(ptrval)"; + unsigned long hashval; + + /* When debugging early boot use non-cryptographically secure hash. */ + if (unlikely(debug_boot_weak_hash)) { + hashval = hash_long((unsigned long)ptr, 32); + return pointer_string(buf, end, (const void *)hashval, spec); + } + + if (static_branch_unlikely(¬_filled_random_ptr_key)) { + spec.field_width = 2 * sizeof(ptr); + /* string length must be less than default_width */ + return string(buf, end, str, spec); + } + +#ifdef CONFIG_64BIT + hashval = (unsigned long)siphash_1u64((u64)ptr, &ptr_key); + /* + * Mask off the first 32 bits, this makes explicit that we have + * modified the address (and 32 bits is plenty for a unique ID). + */ + hashval = hashval & 0xffffffff; +#else + hashval = (unsigned long)siphash_1u32((u32)ptr, &ptr_key); +#endif + return pointer_string(buf, end, (const void *)hashval, spec); +} + +static noinline_for_stack char *dentry_name(char *buf, char *end, const struct dentry *d, struct printf_spec spec, const char *fmt) { @@ -1357,20 +1460,6 @@ char *uuid_string(char *buf, char *end, const u8 *addr, return string(buf, end, uuid, spec); } -static noinline_for_stack -char *pointer_string(char *buf, char *end, const void *ptr, - struct printf_spec spec) -{ - spec.base = 16; - spec.flags |= SMALL; - if (spec.field_width == -1) { - spec.field_width = 2 * sizeof(ptr); - spec.flags |= ZEROPAD; - } - - return number(buf, end, (unsigned long int)ptr, spec); -} - int kptr_restrict __read_mostly; static noinline_for_stack @@ -1421,7 +1510,8 @@ char *restricted_pointer(char *buf, char *end, const void *ptr, } static noinline_for_stack -char *netdev_bits(char *buf, char *end, const void *addr, const char *fmt) +char *netdev_bits(char *buf, char *end, const void *addr, + struct printf_spec spec, const char *fmt) { unsigned long long num; int size; @@ -1432,9 +1522,7 @@ char *netdev_bits(char *buf, char *end, const void *addr, const char *fmt) size = sizeof(netdev_features_t); break; default: - num = (unsigned long)addr; - size = sizeof(unsigned long); - break; + return ptr_to_id(buf, end, addr, spec); } return special_hex_number(buf, end, num, size); @@ -1474,7 +1562,7 @@ char *clock(char *buf, char *end, struct clk *clk, struct printf_spec spec, #ifdef CONFIG_COMMON_CLK return string(buf, end, __clk_get_name(clk), spec); #else - return special_hex_number(buf, end, (unsigned long)clk, sizeof(unsigned long)); + return ptr_to_id(buf, end, clk, spec); #endif } } @@ -1596,6 +1684,7 @@ char *device_node_string(char *buf, char *end, struct device_node *dn, fmt = "f"; for (pass = false; strspn(fmt,"fnpPFcC"); fmt++, pass = true) { + int precision; if (pass) { if (buf < end) *buf = ':'; @@ -1607,7 +1696,11 @@ char *device_node_string(char *buf, char *end, struct device_node *dn, buf = device_node_gen_full_name(dn, buf, end); break; case 'n': /* name */ - buf = string(buf, end, dn->name, str_spec); + p = kbasename(of_node_full_name(dn)); + precision = str_spec.precision; + str_spec.precision = strchrnul(p, '@') - p; + buf = string(buf, end, p, str_spec); + str_spec.precision = precision; break; case 'p': /* phandle */ buf = number(buf, end, (unsigned int)dn->phandle, num_spec); @@ -1651,94 +1744,6 @@ char *device_node_string(char *buf, char *end, struct device_node *dn, return widen_string(buf, buf - buf_start, end, spec); } -/* Make pointers available for printing early in the boot sequence. */ -static int debug_boot_weak_hash __ro_after_init; - -static int __init debug_boot_weak_hash_enable(char *str) -{ - debug_boot_weak_hash = 1; - pr_info("debug_boot_weak_hash enabled\n"); - return 0; -} -early_param("debug_boot_weak_hash", debug_boot_weak_hash_enable); - -static DEFINE_STATIC_KEY_TRUE(not_filled_random_ptr_key); -static siphash_key_t ptr_key __read_mostly; - -static void enable_ptr_key_workfn(struct work_struct *work) -{ - get_random_bytes(&ptr_key, sizeof(ptr_key)); - /* Needs to run from preemptible context */ - static_branch_disable(¬_filled_random_ptr_key); -} - -static DECLARE_WORK(enable_ptr_key_work, enable_ptr_key_workfn); - -static void fill_random_ptr_key(struct random_ready_callback *unused) -{ - /* This may be in an interrupt handler. */ - queue_work(system_unbound_wq, &enable_ptr_key_work); -} - -static struct random_ready_callback random_ready = { - .func = fill_random_ptr_key -}; - -static int __init initialize_ptr_random(void) -{ - int key_size = sizeof(ptr_key); - int ret; - - /* Use hw RNG if available. */ - if (get_random_bytes_arch(&ptr_key, key_size) == key_size) { - static_branch_disable(¬_filled_random_ptr_key); - return 0; - } - - ret = add_random_ready_callback(&random_ready); - if (!ret) { - return 0; - } else if (ret == -EALREADY) { - /* This is in preemptible context */ - enable_ptr_key_workfn(&enable_ptr_key_work); - return 0; - } - - return ret; -} -early_initcall(initialize_ptr_random); - -/* Maps a pointer to a 32 bit unique identifier. */ -static char *ptr_to_id(char *buf, char *end, void *ptr, struct printf_spec spec) -{ - const char *str = sizeof(ptr) == 8 ? "(____ptrval____)" : "(ptrval)"; - unsigned long hashval; - - /* When debugging early boot use non-cryptographically secure hash. */ - if (unlikely(debug_boot_weak_hash)) { - hashval = hash_long((unsigned long)ptr, 32); - return pointer_string(buf, end, (const void *)hashval, spec); - } - - if (static_branch_unlikely(¬_filled_random_ptr_key)) { - spec.field_width = 2 * sizeof(ptr); - /* string length must be less than default_width */ - return string(buf, end, str, spec); - } - -#ifdef CONFIG_64BIT - hashval = (unsigned long)siphash_1u64((u64)ptr, &ptr_key); - /* - * Mask off the first 32 bits, this makes explicit that we have - * modified the address (and 32 bits is plenty for a unique ID). - */ - hashval = hashval & 0xffffffff; -#else - hashval = (unsigned long)siphash_1u32((u32)ptr, &ptr_key); -#endif - return pointer_string(buf, end, (const void *)hashval, spec); -} - /* * Show a '%p' thing. A kernel extension is that the '%p' is followed * by an extra set of alphanumeric characters that are extended format @@ -1833,17 +1838,15 @@ static char *ptr_to_id(char *buf, char *end, void *ptr, struct printf_spec spec) * p page flags (see struct page) given as pointer to unsigned long * g gfp flags (GFP_* and __GFP_*) given as pointer to gfp_t * v vma flags (VM_*) given as pointer to unsigned long - * - 'O' For a kobject based struct. Must be one of the following: - * - 'OF[fnpPcCF]' For a device tree object - * Without any optional arguments prints the full_name - * f device node full_name - * n device node name - * p device node phandle - * P device node path spec (name + @unit) - * F device node flags - * c major compatible string - * C full compatible string - * + * - 'OF[fnpPcCF]' For a device tree object + * Without any optional arguments prints the full_name + * f device node full_name + * n device node name + * p device node phandle + * P device node path spec (name + @unit) + * F device node flags + * c major compatible string + * C full compatible string * - 'x' For printing the address. Equivalent to "%lx". * * ** When making changes please also update: @@ -1944,7 +1947,7 @@ char *pointer(const char *fmt, char *buf, char *end, void *ptr, break; return restricted_pointer(buf, end, ptr, spec); case 'N': - return netdev_bits(buf, end, ptr, fmt); + return netdev_bits(buf, end, ptr, spec, fmt); case 'a': return address_val(buf, end, ptr, fmt); case 'd': diff --git a/lib/xarray.c b/lib/xarray.c new file mode 100644 index 000000000000..8b176f009c08 --- /dev/null +++ b/lib/xarray.c @@ -0,0 +1,2036 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * XArray implementation + * Copyright (c) 2017 Microsoft Corporation + * Author: Matthew Wilcox <willy@infradead.org> + */ + +#include <linux/bitmap.h> +#include <linux/export.h> +#include <linux/list.h> +#include <linux/slab.h> +#include <linux/xarray.h> + +/* + * Coding conventions in this file: + * + * @xa is used to refer to the entire xarray. + * @xas is the 'xarray operation state'. It may be either a pointer to + * an xa_state, or an xa_state stored on the stack. This is an unfortunate + * ambiguity. + * @index is the index of the entry being operated on + * @mark is an xa_mark_t; a small number indicating one of the mark bits. + * @node refers to an xa_node; usually the primary one being operated on by + * this function. + * @offset is the index into the slots array inside an xa_node. + * @parent refers to the @xa_node closer to the head than @node. + * @entry refers to something stored in a slot in the xarray + */ + +static inline unsigned int xa_lock_type(const struct xarray *xa) +{ + return (__force unsigned int)xa->xa_flags & 3; +} + +static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) +{ + if (lock_type == XA_LOCK_IRQ) + xas_lock_irq(xas); + else if (lock_type == XA_LOCK_BH) + xas_lock_bh(xas); + else + xas_lock(xas); +} + +static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) +{ + if (lock_type == XA_LOCK_IRQ) + xas_unlock_irq(xas); + else if (lock_type == XA_LOCK_BH) + xas_unlock_bh(xas); + else + xas_unlock(xas); +} + +static inline bool xa_track_free(const struct xarray *xa) +{ + return xa->xa_flags & XA_FLAGS_TRACK_FREE; +} + +static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) +{ + if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) + xa->xa_flags |= XA_FLAGS_MARK(mark); +} + +static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) +{ + if (xa->xa_flags & XA_FLAGS_MARK(mark)) + xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); +} + +static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) +{ + return node->marks[(__force unsigned)mark]; +} + +static inline bool node_get_mark(struct xa_node *node, + unsigned int offset, xa_mark_t mark) +{ + return test_bit(offset, node_marks(node, mark)); +} + +/* returns true if the bit was set */ +static inline bool node_set_mark(struct xa_node *node, unsigned int offset, + xa_mark_t mark) +{ + return __test_and_set_bit(offset, node_marks(node, mark)); +} + +/* returns true if the bit was set */ +static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, + xa_mark_t mark) +{ + return __test_and_clear_bit(offset, node_marks(node, mark)); +} + +static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) +{ + return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); +} + +static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) +{ + bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); +} + +#define mark_inc(mark) do { \ + mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ +} while (0) + +/* + * xas_squash_marks() - Merge all marks to the first entry + * @xas: Array operation state. + * + * Set a mark on the first entry if any entry has it set. Clear marks on + * all sibling entries. + */ +static void xas_squash_marks(const struct xa_state *xas) +{ + unsigned int mark = 0; + unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; + + if (!xas->xa_sibs) + return; + + do { + unsigned long *marks = xas->xa_node->marks[mark]; + if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) + continue; + __set_bit(xas->xa_offset, marks); + bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); + } while (mark++ != (__force unsigned)XA_MARK_MAX); +} + +/* extracts the offset within this node from the index */ +static unsigned int get_offset(unsigned long index, struct xa_node *node) +{ + return (index >> node->shift) & XA_CHUNK_MASK; +} + +static void xas_set_offset(struct xa_state *xas) +{ + xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); +} + +/* move the index either forwards (find) or backwards (sibling slot) */ +static void xas_move_index(struct xa_state *xas, unsigned long offset) +{ + unsigned int shift = xas->xa_node->shift; + xas->xa_index &= ~XA_CHUNK_MASK << shift; + xas->xa_index += offset << shift; +} + +static void xas_advance(struct xa_state *xas) +{ + xas->xa_offset++; + xas_move_index(xas, xas->xa_offset); +} + +static void *set_bounds(struct xa_state *xas) +{ + xas->xa_node = XAS_BOUNDS; + return NULL; +} + +/* + * Starts a walk. If the @xas is already valid, we assume that it's on + * the right path and just return where we've got to. If we're in an + * error state, return NULL. If the index is outside the current scope + * of the xarray, return NULL without changing @xas->xa_node. Otherwise + * set @xas->xa_node to NULL and return the current head of the array. + */ +static void *xas_start(struct xa_state *xas) +{ + void *entry; + + if (xas_valid(xas)) + return xas_reload(xas); + if (xas_error(xas)) + return NULL; + + entry = xa_head(xas->xa); + if (!xa_is_node(entry)) { + if (xas->xa_index) + return set_bounds(xas); + } else { + if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) + return set_bounds(xas); + } + + xas->xa_node = NULL; + return entry; +} + +static void *xas_descend(struct xa_state *xas, struct xa_node *node) +{ + unsigned int offset = get_offset(xas->xa_index, node); + void *entry = xa_entry(xas->xa, node, offset); + + xas->xa_node = node; + if (xa_is_sibling(entry)) { + offset = xa_to_sibling(entry); + entry = xa_entry(xas->xa, node, offset); + } + + xas->xa_offset = offset; + return entry; +} + +/** + * xas_load() - Load an entry from the XArray (advanced). + * @xas: XArray operation state. + * + * Usually walks the @xas to the appropriate state to load the entry + * stored at xa_index. However, it will do nothing and return %NULL if + * @xas is in an error state. xas_load() will never expand the tree. + * + * If the xa_state is set up to operate on a multi-index entry, xas_load() + * may return %NULL or an internal entry, even if there are entries + * present within the range specified by @xas. + * + * Context: Any context. The caller should hold the xa_lock or the RCU lock. + * Return: Usually an entry in the XArray, but see description for exceptions. + */ +void *xas_load(struct xa_state *xas) +{ + void *entry = xas_start(xas); + + while (xa_is_node(entry)) { + struct xa_node *node = xa_to_node(entry); + + if (xas->xa_shift > node->shift) + break; + entry = xas_descend(xas, node); + } + return entry; +} +EXPORT_SYMBOL_GPL(xas_load); + +/* Move the radix tree node cache here */ +extern struct kmem_cache *radix_tree_node_cachep; +extern void radix_tree_node_rcu_free(struct rcu_head *head); + +#define XA_RCU_FREE ((struct xarray *)1) + +static void xa_node_free(struct xa_node *node) +{ + XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); + node->array = XA_RCU_FREE; + call_rcu(&node->rcu_head, radix_tree_node_rcu_free); +} + +/* + * xas_destroy() - Free any resources allocated during the XArray operation. + * @xas: XArray operation state. + * + * This function is now internal-only. + */ +static void xas_destroy(struct xa_state *xas) +{ + struct xa_node *node = xas->xa_alloc; + + if (!node) + return; + XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); + kmem_cache_free(radix_tree_node_cachep, node); + xas->xa_alloc = NULL; +} + +/** + * xas_nomem() - Allocate memory if needed. + * @xas: XArray operation state. + * @gfp: Memory allocation flags. + * + * If we need to add new nodes to the XArray, we try to allocate memory + * with GFP_NOWAIT while holding the lock, which will usually succeed. + * If it fails, @xas is flagged as needing memory to continue. The caller + * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, + * the caller should retry the operation. + * + * Forward progress is guaranteed as one node is allocated here and + * stored in the xa_state where it will be found by xas_alloc(). More + * nodes will likely be found in the slab allocator, but we do not tie + * them up here. + * + * Return: true if memory was needed, and was successfully allocated. + */ +bool xas_nomem(struct xa_state *xas, gfp_t gfp) +{ + if (xas->xa_node != XA_ERROR(-ENOMEM)) { + xas_destroy(xas); + return false; + } + xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); + if (!xas->xa_alloc) + return false; + XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); + xas->xa_node = XAS_RESTART; + return true; +} +EXPORT_SYMBOL_GPL(xas_nomem); + +/* + * __xas_nomem() - Drop locks and allocate memory if needed. + * @xas: XArray operation state. + * @gfp: Memory allocation flags. + * + * Internal variant of xas_nomem(). + * + * Return: true if memory was needed, and was successfully allocated. + */ +static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) + __must_hold(xas->xa->xa_lock) +{ + unsigned int lock_type = xa_lock_type(xas->xa); + + if (xas->xa_node != XA_ERROR(-ENOMEM)) { + xas_destroy(xas); + return false; + } + if (gfpflags_allow_blocking(gfp)) { + xas_unlock_type(xas, lock_type); + xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); + xas_lock_type(xas, lock_type); + } else { + xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); + } + if (!xas->xa_alloc) + return false; + XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); + xas->xa_node = XAS_RESTART; + return true; +} + +static void xas_update(struct xa_state *xas, struct xa_node *node) +{ + if (xas->xa_update) + xas->xa_update(node); + else + XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); +} + +static void *xas_alloc(struct xa_state *xas, unsigned int shift) +{ + struct xa_node *parent = xas->xa_node; + struct xa_node *node = xas->xa_alloc; + + if (xas_invalid(xas)) + return NULL; + + if (node) { + xas->xa_alloc = NULL; + } else { + node = kmem_cache_alloc(radix_tree_node_cachep, + GFP_NOWAIT | __GFP_NOWARN); + if (!node) { + xas_set_err(xas, -ENOMEM); + return NULL; + } + } + + if (parent) { + node->offset = xas->xa_offset; + parent->count++; + XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); + xas_update(xas, parent); + } + XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); + XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); + node->shift = shift; + node->count = 0; + node->nr_values = 0; + RCU_INIT_POINTER(node->parent, xas->xa_node); + node->array = xas->xa; + + return node; +} + +#ifdef CONFIG_XARRAY_MULTI +/* Returns the number of indices covered by a given xa_state */ +static unsigned long xas_size(const struct xa_state *xas) +{ + return (xas->xa_sibs + 1UL) << xas->xa_shift; +} +#endif + +/* + * Use this to calculate the maximum index that will need to be created + * in order to add the entry described by @xas. Because we cannot store a + * multiple-index entry at index 0, the calculation is a little more complex + * than you might expect. + */ +static unsigned long xas_max(struct xa_state *xas) +{ + unsigned long max = xas->xa_index; + +#ifdef CONFIG_XARRAY_MULTI + if (xas->xa_shift || xas->xa_sibs) { + unsigned long mask = xas_size(xas) - 1; + max |= mask; + if (mask == max) + max++; + } +#endif + + return max; +} + +/* The maximum index that can be contained in the array without expanding it */ +static unsigned long max_index(void *entry) +{ + if (!xa_is_node(entry)) + return 0; + return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; +} + +static void xas_shrink(struct xa_state *xas) +{ + struct xarray *xa = xas->xa; + struct xa_node *node = xas->xa_node; + + for (;;) { + void *entry; + + XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); + if (node->count != 1) + break; + entry = xa_entry_locked(xa, node, 0); + if (!entry) + break; + if (!xa_is_node(entry) && node->shift) + break; + xas->xa_node = XAS_BOUNDS; + + RCU_INIT_POINTER(xa->xa_head, entry); + if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) + xa_mark_clear(xa, XA_FREE_MARK); + + node->count = 0; + node->nr_values = 0; + if (!xa_is_node(entry)) + RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); + xas_update(xas, node); + xa_node_free(node); + if (!xa_is_node(entry)) + break; + node = xa_to_node(entry); + node->parent = NULL; + } +} + +/* + * xas_delete_node() - Attempt to delete an xa_node + * @xas: Array operation state. + * + * Attempts to delete the @xas->xa_node. This will fail if xa->node has + * a non-zero reference count. + */ +static void xas_delete_node(struct xa_state *xas) +{ + struct xa_node *node = xas->xa_node; + + for (;;) { + struct xa_node *parent; + + XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); + if (node->count) + break; + + parent = xa_parent_locked(xas->xa, node); + xas->xa_node = parent; + xas->xa_offset = node->offset; + xa_node_free(node); + + if (!parent) { + xas->xa->xa_head = NULL; + xas->xa_node = XAS_BOUNDS; + return; + } + + parent->slots[xas->xa_offset] = NULL; + parent->count--; + XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); + node = parent; + xas_update(xas, node); + } + + if (!node->parent) + xas_shrink(xas); +} + +/** + * xas_free_nodes() - Free this node and all nodes that it references + * @xas: Array operation state. + * @top: Node to free + * + * This node has been removed from the tree. We must now free it and all + * of its subnodes. There may be RCU walkers with references into the tree, + * so we must replace all entries with retry markers. + */ +static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) +{ + unsigned int offset = 0; + struct xa_node *node = top; + + for (;;) { + void *entry = xa_entry_locked(xas->xa, node, offset); + + if (xa_is_node(entry)) { + node = xa_to_node(entry); + offset = 0; + continue; + } + if (entry) + RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); + offset++; + while (offset == XA_CHUNK_SIZE) { + struct xa_node *parent; + + parent = xa_parent_locked(xas->xa, node); + offset = node->offset + 1; + node->count = 0; + node->nr_values = 0; + xas_update(xas, node); + xa_node_free(node); + if (node == top) + return; + node = parent; + } + } +} + +/* + * xas_expand adds nodes to the head of the tree until it has reached + * sufficient height to be able to contain @xas->xa_index + */ +static int xas_expand(struct xa_state *xas, void *head) +{ + struct xarray *xa = xas->xa; + struct xa_node *node = NULL; + unsigned int shift = 0; + unsigned long max = xas_max(xas); + + if (!head) { + if (max == 0) + return 0; + while ((max >> shift) >= XA_CHUNK_SIZE) + shift += XA_CHUNK_SHIFT; + return shift + XA_CHUNK_SHIFT; + } else if (xa_is_node(head)) { + node = xa_to_node(head); + shift = node->shift + XA_CHUNK_SHIFT; + } + xas->xa_node = NULL; + + while (max > max_index(head)) { + xa_mark_t mark = 0; + + XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); + node = xas_alloc(xas, shift); + if (!node) + return -ENOMEM; + + node->count = 1; + if (xa_is_value(head)) + node->nr_values = 1; + RCU_INIT_POINTER(node->slots[0], head); + + /* Propagate the aggregated mark info to the new child */ + for (;;) { + if (xa_track_free(xa) && mark == XA_FREE_MARK) { + node_mark_all(node, XA_FREE_MARK); + if (!xa_marked(xa, XA_FREE_MARK)) { + node_clear_mark(node, 0, XA_FREE_MARK); + xa_mark_set(xa, XA_FREE_MARK); + } + } else if (xa_marked(xa, mark)) { + node_set_mark(node, 0, mark); + } + if (mark == XA_MARK_MAX) + break; + mark_inc(mark); + } + + /* + * Now that the new node is fully initialised, we can add + * it to the tree + */ + if (xa_is_node(head)) { + xa_to_node(head)->offset = 0; + rcu_assign_pointer(xa_to_node(head)->parent, node); + } + head = xa_mk_node(node); + rcu_assign_pointer(xa->xa_head, head); + xas_update(xas, node); + + shift += XA_CHUNK_SHIFT; + } + + xas->xa_node = node; + return shift; +} + +/* + * xas_create() - Create a slot to store an entry in. + * @xas: XArray operation state. + * + * Most users will not need to call this function directly, as it is called + * by xas_store(). It is useful for doing conditional store operations + * (see the xa_cmpxchg() implementation for an example). + * + * Return: If the slot already existed, returns the contents of this slot. + * If the slot was newly created, returns NULL. If it failed to create the + * slot, returns NULL and indicates the error in @xas. + */ +static void *xas_create(struct xa_state *xas) +{ + struct xarray *xa = xas->xa; + void *entry; + void __rcu **slot; + struct xa_node *node = xas->xa_node; + int shift; + unsigned int order = xas->xa_shift; + + if (xas_top(node)) { + entry = xa_head_locked(xa); + xas->xa_node = NULL; + shift = xas_expand(xas, entry); + if (shift < 0) + return NULL; + entry = xa_head_locked(xa); + slot = &xa->xa_head; + } else if (xas_error(xas)) { + return NULL; + } else if (node) { + unsigned int offset = xas->xa_offset; + + shift = node->shift; + entry = xa_entry_locked(xa, node, offset); + slot = &node->slots[offset]; + } else { + shift = 0; + entry = xa_head_locked(xa); + slot = &xa->xa_head; + } + + while (shift > order) { + shift -= XA_CHUNK_SHIFT; + if (!entry) { + node = xas_alloc(xas, shift); + if (!node) + break; + if (xa_track_free(xa)) + node_mark_all(node, XA_FREE_MARK); + rcu_assign_pointer(*slot, xa_mk_node(node)); + } else if (xa_is_node(entry)) { + node = xa_to_node(entry); + } else { + break; + } + entry = xas_descend(xas, node); + slot = &node->slots[xas->xa_offset]; + } + + return entry; +} + +/** + * xas_create_range() - Ensure that stores to this range will succeed + * @xas: XArray operation state. + * + * Creates all of the slots in the range covered by @xas. Sets @xas to + * create single-index entries and positions it at the beginning of the + * range. This is for the benefit of users which have not yet been + * converted to use multi-index entries. + */ +void xas_create_range(struct xa_state *xas) +{ + unsigned long index = xas->xa_index; + unsigned char shift = xas->xa_shift; + unsigned char sibs = xas->xa_sibs; + + xas->xa_index |= ((sibs + 1) << shift) - 1; + if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) + xas->xa_offset |= sibs; + xas->xa_shift = 0; + xas->xa_sibs = 0; + + for (;;) { + xas_create(xas); + if (xas_error(xas)) + goto restore; + if (xas->xa_index <= (index | XA_CHUNK_MASK)) + goto success; + xas->xa_index -= XA_CHUNK_SIZE; + + for (;;) { + struct xa_node *node = xas->xa_node; + xas->xa_node = xa_parent_locked(xas->xa, node); + xas->xa_offset = node->offset - 1; + if (node->offset != 0) + break; + } + } + +restore: + xas->xa_shift = shift; + xas->xa_sibs = sibs; + xas->xa_index = index; + return; +success: + xas->xa_index = index; + if (xas->xa_node) + xas_set_offset(xas); +} +EXPORT_SYMBOL_GPL(xas_create_range); + +static void update_node(struct xa_state *xas, struct xa_node *node, + int count, int values) +{ + if (!node || (!count && !values)) + return; + + node->count += count; + node->nr_values += values; + XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); + XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); + xas_update(xas, node); + if (count < 0) + xas_delete_node(xas); +} + +/** + * xas_store() - Store this entry in the XArray. + * @xas: XArray operation state. + * @entry: New entry. + * + * If @xas is operating on a multi-index entry, the entry returned by this + * function is essentially meaningless (it may be an internal entry or it + * may be %NULL, even if there are non-NULL entries at some of the indices + * covered by the range). This is not a problem for any current users, + * and can be changed if needed. + * + * Return: The old entry at this index. + */ +void *xas_store(struct xa_state *xas, void *entry) +{ + struct xa_node *node; + void __rcu **slot = &xas->xa->xa_head; + unsigned int offset, max; + int count = 0; + int values = 0; + void *first, *next; + bool value = xa_is_value(entry); + + if (entry) + first = xas_create(xas); + else + first = xas_load(xas); + + if (xas_invalid(xas)) + return first; + node = xas->xa_node; + if (node && (xas->xa_shift < node->shift)) + xas->xa_sibs = 0; + if ((first == entry) && !xas->xa_sibs) + return first; + + next = first; + offset = xas->xa_offset; + max = xas->xa_offset + xas->xa_sibs; + if (node) { + slot = &node->slots[offset]; + if (xas->xa_sibs) + xas_squash_marks(xas); + } + if (!entry) + xas_init_marks(xas); + + for (;;) { + /* + * Must clear the marks before setting the entry to NULL, + * otherwise xas_for_each_marked may find a NULL entry and + * stop early. rcu_assign_pointer contains a release barrier + * so the mark clearing will appear to happen before the + * entry is set to NULL. + */ + rcu_assign_pointer(*slot, entry); + if (xa_is_node(next)) + xas_free_nodes(xas, xa_to_node(next)); + if (!node) + break; + count += !next - !entry; + values += !xa_is_value(first) - !value; + if (entry) { + if (offset == max) + break; + if (!xa_is_sibling(entry)) + entry = xa_mk_sibling(xas->xa_offset); + } else { + if (offset == XA_CHUNK_MASK) + break; + } + next = xa_entry_locked(xas->xa, node, ++offset); + if (!xa_is_sibling(next)) { + if (!entry && (offset > max)) + break; + first = next; + } + slot++; + } + + update_node(xas, node, count, values); + return first; +} +EXPORT_SYMBOL_GPL(xas_store); + +/** + * xas_get_mark() - Returns the state of this mark. + * @xas: XArray operation state. + * @mark: Mark number. + * + * Return: true if the mark is set, false if the mark is clear or @xas + * is in an error state. + */ +bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) +{ + if (xas_invalid(xas)) + return false; + if (!xas->xa_node) + return xa_marked(xas->xa, mark); + return node_get_mark(xas->xa_node, xas->xa_offset, mark); +} +EXPORT_SYMBOL_GPL(xas_get_mark); + +/** + * xas_set_mark() - Sets the mark on this entry and its parents. + * @xas: XArray operation state. + * @mark: Mark number. + * + * Sets the specified mark on this entry, and walks up the tree setting it + * on all the ancestor entries. Does nothing if @xas has not been walked to + * an entry, or is in an error state. + */ +void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) +{ + struct xa_node *node = xas->xa_node; + unsigned int offset = xas->xa_offset; + + if (xas_invalid(xas)) + return; + + while (node) { + if (node_set_mark(node, offset, mark)) + return; + offset = node->offset; + node = xa_parent_locked(xas->xa, node); + } + + if (!xa_marked(xas->xa, mark)) + xa_mark_set(xas->xa, mark); +} +EXPORT_SYMBOL_GPL(xas_set_mark); + +/** + * xas_clear_mark() - Clears the mark on this entry and its parents. + * @xas: XArray operation state. + * @mark: Mark number. + * + * Clears the specified mark on this entry, and walks back to the head + * attempting to clear it on all the ancestor entries. Does nothing if + * @xas has not been walked to an entry, or is in an error state. + */ +void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) +{ + struct xa_node *node = xas->xa_node; + unsigned int offset = xas->xa_offset; + + if (xas_invalid(xas)) + return; + + while (node) { + if (!node_clear_mark(node, offset, mark)) + return; + if (node_any_mark(node, mark)) + return; + + offset = node->offset; + node = xa_parent_locked(xas->xa, node); + } + + if (xa_marked(xas->xa, mark)) + xa_mark_clear(xas->xa, mark); +} +EXPORT_SYMBOL_GPL(xas_clear_mark); + +/** + * xas_init_marks() - Initialise all marks for the entry + * @xas: Array operations state. + * + * Initialise all marks for the entry specified by @xas. If we're tracking + * free entries with a mark, we need to set it on all entries. All other + * marks are cleared. + * + * This implementation is not as efficient as it could be; we may walk + * up the tree multiple times. + */ +void xas_init_marks(const struct xa_state *xas) +{ + xa_mark_t mark = 0; + + for (;;) { + if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) + xas_set_mark(xas, mark); + else + xas_clear_mark(xas, mark); + if (mark == XA_MARK_MAX) + break; + mark_inc(mark); + } +} +EXPORT_SYMBOL_GPL(xas_init_marks); + +/** + * xas_pause() - Pause a walk to drop a lock. + * @xas: XArray operation state. + * + * Some users need to pause a walk and drop the lock they're holding in + * order to yield to a higher priority thread or carry out an operation + * on an entry. Those users should call this function before they drop + * the lock. It resets the @xas to be suitable for the next iteration + * of the loop after the user has reacquired the lock. If most entries + * found during a walk require you to call xas_pause(), the xa_for_each() + * iterator may be more appropriate. + * + * Note that xas_pause() only works for forward iteration. If a user needs + * to pause a reverse iteration, we will need a xas_pause_rev(). + */ +void xas_pause(struct xa_state *xas) +{ + struct xa_node *node = xas->xa_node; + + if (xas_invalid(xas)) + return; + + if (node) { + unsigned int offset = xas->xa_offset; + while (++offset < XA_CHUNK_SIZE) { + if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) + break; + } + xas->xa_index += (offset - xas->xa_offset) << node->shift; + } else { + xas->xa_index++; + } + xas->xa_node = XAS_RESTART; +} +EXPORT_SYMBOL_GPL(xas_pause); + +/* + * __xas_prev() - Find the previous entry in the XArray. + * @xas: XArray operation state. + * + * Helper function for xas_prev() which handles all the complex cases + * out of line. + */ +void *__xas_prev(struct xa_state *xas) +{ + void *entry; + + if (!xas_frozen(xas->xa_node)) + xas->xa_index--; + if (xas_not_node(xas->xa_node)) + return xas_load(xas); + + if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) + xas->xa_offset--; + + while (xas->xa_offset == 255) { + xas->xa_offset = xas->xa_node->offset - 1; + xas->xa_node = xa_parent(xas->xa, xas->xa_node); + if (!xas->xa_node) + return set_bounds(xas); + } + + for (;;) { + entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); + if (!xa_is_node(entry)) + return entry; + + xas->xa_node = xa_to_node(entry); + xas_set_offset(xas); + } +} +EXPORT_SYMBOL_GPL(__xas_prev); + +/* + * __xas_next() - Find the next entry in the XArray. + * @xas: XArray operation state. + * + * Helper function for xas_next() which handles all the complex cases + * out of line. + */ +void *__xas_next(struct xa_state *xas) +{ + void *entry; + + if (!xas_frozen(xas->xa_node)) + xas->xa_index++; + if (xas_not_node(xas->xa_node)) + return xas_load(xas); + + if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) + xas->xa_offset++; + + while (xas->xa_offset == XA_CHUNK_SIZE) { + xas->xa_offset = xas->xa_node->offset + 1; + xas->xa_node = xa_parent(xas->xa, xas->xa_node); + if (!xas->xa_node) + return set_bounds(xas); + } + + for (;;) { + entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); + if (!xa_is_node(entry)) + return entry; + + xas->xa_node = xa_to_node(entry); + xas_set_offset(xas); + } +} +EXPORT_SYMBOL_GPL(__xas_next); + +/** + * xas_find() - Find the next present entry in the XArray. + * @xas: XArray operation state. + * @max: Highest index to return. + * + * If the @xas has not yet been walked to an entry, return the entry + * which has an index >= xas.xa_index. If it has been walked, the entry + * currently being pointed at has been processed, and so we move to the + * next entry. + * + * If no entry is found and the array is smaller than @max, the iterator + * is set to the smallest index not yet in the array. This allows @xas + * to be immediately passed to xas_store(). + * + * Return: The entry, if found, otherwise %NULL. + */ +void *xas_find(struct xa_state *xas, unsigned long max) +{ + void *entry; + + if (xas_error(xas)) + return NULL; + + if (!xas->xa_node) { + xas->xa_index = 1; + return set_bounds(xas); + } else if (xas_top(xas->xa_node)) { + entry = xas_load(xas); + if (entry || xas_not_node(xas->xa_node)) + return entry; + } else if (!xas->xa_node->shift && + xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { + xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; + } + + xas_advance(xas); + + while (xas->xa_node && (xas->xa_index <= max)) { + if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { + xas->xa_offset = xas->xa_node->offset + 1; + xas->xa_node = xa_parent(xas->xa, xas->xa_node); + continue; + } + + entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); + if (xa_is_node(entry)) { + xas->xa_node = xa_to_node(entry); + xas->xa_offset = 0; + continue; + } + if (entry && !xa_is_sibling(entry)) + return entry; + + xas_advance(xas); + } + + if (!xas->xa_node) + xas->xa_node = XAS_BOUNDS; + return NULL; +} +EXPORT_SYMBOL_GPL(xas_find); + +/** + * xas_find_marked() - Find the next marked entry in the XArray. + * @xas: XArray operation state. + * @max: Highest index to return. + * @mark: Mark number to search for. + * + * If the @xas has not yet been walked to an entry, return the marked entry + * which has an index >= xas.xa_index. If it has been walked, the entry + * currently being pointed at has been processed, and so we return the + * first marked entry with an index > xas.xa_index. + * + * If no marked entry is found and the array is smaller than @max, @xas is + * set to the bounds state and xas->xa_index is set to the smallest index + * not yet in the array. This allows @xas to be immediately passed to + * xas_store(). + * + * If no entry is found before @max is reached, @xas is set to the restart + * state. + * + * Return: The entry, if found, otherwise %NULL. + */ +void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) +{ + bool advance = true; + unsigned int offset; + void *entry; + + if (xas_error(xas)) + return NULL; + + if (!xas->xa_node) { + xas->xa_index = 1; + goto out; + } else if (xas_top(xas->xa_node)) { + advance = false; + entry = xa_head(xas->xa); + xas->xa_node = NULL; + if (xas->xa_index > max_index(entry)) + goto bounds; + if (!xa_is_node(entry)) { + if (xa_marked(xas->xa, mark)) + return entry; + xas->xa_index = 1; + goto out; + } + xas->xa_node = xa_to_node(entry); + xas->xa_offset = xas->xa_index >> xas->xa_node->shift; + } + + while (xas->xa_index <= max) { + if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { + xas->xa_offset = xas->xa_node->offset + 1; + xas->xa_node = xa_parent(xas->xa, xas->xa_node); + if (!xas->xa_node) + break; + advance = false; + continue; + } + + if (!advance) { + entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); + if (xa_is_sibling(entry)) { + xas->xa_offset = xa_to_sibling(entry); + xas_move_index(xas, xas->xa_offset); + } + } + + offset = xas_find_chunk(xas, advance, mark); + if (offset > xas->xa_offset) { + advance = false; + xas_move_index(xas, offset); + /* Mind the wrap */ + if ((xas->xa_index - 1) >= max) + goto max; + xas->xa_offset = offset; + if (offset == XA_CHUNK_SIZE) + continue; + } + + entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); + if (!xa_is_node(entry)) + return entry; + xas->xa_node = xa_to_node(entry); + xas_set_offset(xas); + } + +out: + if (!max) + goto max; +bounds: + xas->xa_node = XAS_BOUNDS; + return NULL; +max: + xas->xa_node = XAS_RESTART; + return NULL; +} +EXPORT_SYMBOL_GPL(xas_find_marked); + +/** + * xas_find_conflict() - Find the next present entry in a range. + * @xas: XArray operation state. + * + * The @xas describes both a range and a position within that range. + * + * Context: Any context. Expects xa_lock to be held. + * Return: The next entry in the range covered by @xas or %NULL. + */ +void *xas_find_conflict(struct xa_state *xas) +{ + void *curr; + + if (xas_error(xas)) + return NULL; + + if (!xas->xa_node) + return NULL; + + if (xas_top(xas->xa_node)) { + curr = xas_start(xas); + if (!curr) + return NULL; + while (xa_is_node(curr)) { + struct xa_node *node = xa_to_node(curr); + curr = xas_descend(xas, node); + } + if (curr) + return curr; + } + + if (xas->xa_node->shift > xas->xa_shift) + return NULL; + + for (;;) { + if (xas->xa_node->shift == xas->xa_shift) { + if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) + break; + } else if (xas->xa_offset == XA_CHUNK_MASK) { + xas->xa_offset = xas->xa_node->offset; + xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); + if (!xas->xa_node) + break; + continue; + } + curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); + if (xa_is_sibling(curr)) + continue; + while (xa_is_node(curr)) { + xas->xa_node = xa_to_node(curr); + xas->xa_offset = 0; + curr = xa_entry_locked(xas->xa, xas->xa_node, 0); + } + if (curr) + return curr; + } + xas->xa_offset -= xas->xa_sibs; + return NULL; +} +EXPORT_SYMBOL_GPL(xas_find_conflict); + +/** + * xa_init_flags() - Initialise an empty XArray with flags. + * @xa: XArray. + * @flags: XA_FLAG values. + * + * If you need to initialise an XArray with special flags (eg you need + * to take the lock from interrupt context), use this function instead + * of xa_init(). + * + * Context: Any context. + */ +void xa_init_flags(struct xarray *xa, gfp_t flags) +{ + unsigned int lock_type; + static struct lock_class_key xa_lock_irq; + static struct lock_class_key xa_lock_bh; + + spin_lock_init(&xa->xa_lock); + xa->xa_flags = flags; + xa->xa_head = NULL; + + lock_type = xa_lock_type(xa); + if (lock_type == XA_LOCK_IRQ) + lockdep_set_class(&xa->xa_lock, &xa_lock_irq); + else if (lock_type == XA_LOCK_BH) + lockdep_set_class(&xa->xa_lock, &xa_lock_bh); +} +EXPORT_SYMBOL(xa_init_flags); + +/** + * xa_load() - Load an entry from an XArray. + * @xa: XArray. + * @index: index into array. + * + * Context: Any context. Takes and releases the RCU lock. + * Return: The entry at @index in @xa. + */ +void *xa_load(struct xarray *xa, unsigned long index) +{ + XA_STATE(xas, xa, index); + void *entry; + + rcu_read_lock(); + do { + entry = xas_load(&xas); + if (xa_is_zero(entry)) + entry = NULL; + } while (xas_retry(&xas, entry)); + rcu_read_unlock(); + + return entry; +} +EXPORT_SYMBOL(xa_load); + +static void *xas_result(struct xa_state *xas, void *curr) +{ + if (xa_is_zero(curr)) + return NULL; + XA_NODE_BUG_ON(xas->xa_node, xa_is_internal(curr)); + if (xas_error(xas)) + curr = xas->xa_node; + return curr; +} + +/** + * __xa_erase() - Erase this entry from the XArray while locked. + * @xa: XArray. + * @index: Index into array. + * + * If the entry at this index is a multi-index entry then all indices will + * be erased, and the entry will no longer be a multi-index entry. + * This function expects the xa_lock to be held on entry. + * + * Context: Any context. Expects xa_lock to be held on entry. May + * release and reacquire xa_lock if @gfp flags permit. + * Return: The old entry at this index. + */ +void *__xa_erase(struct xarray *xa, unsigned long index) +{ + XA_STATE(xas, xa, index); + return xas_result(&xas, xas_store(&xas, NULL)); +} +EXPORT_SYMBOL_GPL(__xa_erase); + +/** + * xa_store() - Store this entry in the XArray. + * @xa: XArray. + * @index: Index into array. + * @entry: New entry. + * @gfp: Memory allocation flags. + * + * After this function returns, loads from this index will return @entry. + * Storing into an existing multislot entry updates the entry of every index. + * The marks associated with @index are unaffected unless @entry is %NULL. + * + * Context: Process context. Takes and releases the xa_lock. May sleep + * if the @gfp flags permit. + * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry + * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation + * failed. + */ +void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) +{ + XA_STATE(xas, xa, index); + void *curr; + + if (WARN_ON_ONCE(xa_is_internal(entry))) + return XA_ERROR(-EINVAL); + + do { + xas_lock(&xas); + curr = xas_store(&xas, entry); + if (xa_track_free(xa) && entry) + xas_clear_mark(&xas, XA_FREE_MARK); + xas_unlock(&xas); + } while (xas_nomem(&xas, gfp)); + + return xas_result(&xas, curr); +} +EXPORT_SYMBOL(xa_store); + +/** + * __xa_store() - Store this entry in the XArray. + * @xa: XArray. + * @index: Index into array. + * @entry: New entry. + * @gfp: Memory allocation flags. + * + * You must already be holding the xa_lock when calling this function. + * It will drop the lock if needed to allocate memory, and then reacquire + * it afterwards. + * + * Context: Any context. Expects xa_lock to be held on entry. May + * release and reacquire xa_lock if @gfp flags permit. + * Return: The old entry at this index or xa_err() if an error happened. + */ +void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) +{ + XA_STATE(xas, xa, index); + void *curr; + + if (WARN_ON_ONCE(xa_is_internal(entry))) + return XA_ERROR(-EINVAL); + + do { + curr = xas_store(&xas, entry); + if (xa_track_free(xa) && entry) + xas_clear_mark(&xas, XA_FREE_MARK); + } while (__xas_nomem(&xas, gfp)); + + return xas_result(&xas, curr); +} +EXPORT_SYMBOL(__xa_store); + +/** + * xa_cmpxchg() - Conditionally replace an entry in the XArray. + * @xa: XArray. + * @index: Index into array. + * @old: Old value to test against. + * @entry: New value to place in array. + * @gfp: Memory allocation flags. + * + * If the entry at @index is the same as @old, replace it with @entry. + * If the return value is equal to @old, then the exchange was successful. + * + * Context: Process context. Takes and releases the xa_lock. May sleep + * if the @gfp flags permit. + * Return: The old value at this index or xa_err() if an error happened. + */ +void *xa_cmpxchg(struct xarray *xa, unsigned long index, + void *old, void *entry, gfp_t gfp) +{ + XA_STATE(xas, xa, index); + void *curr; + + if (WARN_ON_ONCE(xa_is_internal(entry))) + return XA_ERROR(-EINVAL); + + do { + xas_lock(&xas); + curr = xas_load(&xas); + if (curr == XA_ZERO_ENTRY) + curr = NULL; + if (curr == old) { + xas_store(&xas, entry); + if (xa_track_free(xa) && entry) + xas_clear_mark(&xas, XA_FREE_MARK); + } + xas_unlock(&xas); + } while (xas_nomem(&xas, gfp)); + + return xas_result(&xas, curr); +} +EXPORT_SYMBOL(xa_cmpxchg); + +/** + * __xa_cmpxchg() - Store this entry in the XArray. + * @xa: XArray. + * @index: Index into array. + * @old: Old value to test against. + * @entry: New entry. + * @gfp: Memory allocation flags. + * + * You must already be holding the xa_lock when calling this function. + * It will drop the lock if needed to allocate memory, and then reacquire + * it afterwards. + * + * Context: Any context. Expects xa_lock to be held on entry. May + * release and reacquire xa_lock if @gfp flags permit. + * Return: The old entry at this index or xa_err() if an error happened. + */ +void *__xa_cmpxchg(struct xarray *xa, unsigned long index, + void *old, void *entry, gfp_t gfp) +{ + XA_STATE(xas, xa, index); + void *curr; + + if (WARN_ON_ONCE(xa_is_internal(entry))) + return XA_ERROR(-EINVAL); + + do { + curr = xas_load(&xas); + if (curr == XA_ZERO_ENTRY) + curr = NULL; + if (curr == old) { + xas_store(&xas, entry); + if (xa_track_free(xa) && entry) + xas_clear_mark(&xas, XA_FREE_MARK); + } + } while (__xas_nomem(&xas, gfp)); + + return xas_result(&xas, curr); +} +EXPORT_SYMBOL(__xa_cmpxchg); + +/** + * xa_reserve() - Reserve this index in the XArray. + * @xa: XArray. + * @index: Index into array. + * @gfp: Memory allocation flags. + * + * Ensures there is somewhere to store an entry at @index in the array. + * If there is already something stored at @index, this function does + * nothing. If there was nothing there, the entry is marked as reserved. + * Loads from @index will continue to see a %NULL pointer until a + * subsequent store to @index. + * + * If you do not use the entry that you have reserved, call xa_release() + * or xa_erase() to free any unnecessary memory. + * + * Context: Process context. Takes and releases the xa_lock, IRQ or BH safe + * if specified in XArray flags. May sleep if the @gfp flags permit. + * Return: 0 if the reservation succeeded or -ENOMEM if it failed. + */ +int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) +{ + XA_STATE(xas, xa, index); + unsigned int lock_type = xa_lock_type(xa); + void *curr; + + do { + xas_lock_type(&xas, lock_type); + curr = xas_load(&xas); + if (!curr) + xas_store(&xas, XA_ZERO_ENTRY); + xas_unlock_type(&xas, lock_type); + } while (xas_nomem(&xas, gfp)); + + return xas_error(&xas); +} +EXPORT_SYMBOL(xa_reserve); + +#ifdef CONFIG_XARRAY_MULTI +static void xas_set_range(struct xa_state *xas, unsigned long first, + unsigned long last) +{ + unsigned int shift = 0; + unsigned long sibs = last - first; + unsigned int offset = XA_CHUNK_MASK; + + xas_set(xas, first); + + while ((first & XA_CHUNK_MASK) == 0) { + if (sibs < XA_CHUNK_MASK) + break; + if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) + break; + shift += XA_CHUNK_SHIFT; + if (offset == XA_CHUNK_MASK) + offset = sibs & XA_CHUNK_MASK; + sibs >>= XA_CHUNK_SHIFT; + first >>= XA_CHUNK_SHIFT; + } + + offset = first & XA_CHUNK_MASK; + if (offset + sibs > XA_CHUNK_MASK) + sibs = XA_CHUNK_MASK - offset; + if ((((first + sibs + 1) << shift) - 1) > last) + sibs -= 1; + + xas->xa_shift = shift; + xas->xa_sibs = sibs; +} + +/** + * xa_store_range() - Store this entry at a range of indices in the XArray. + * @xa: XArray. + * @first: First index to affect. + * @last: Last index to affect. + * @entry: New entry. + * @gfp: Memory allocation flags. + * + * After this function returns, loads from any index between @first and @last, + * inclusive will return @entry. + * Storing into an existing multislot entry updates the entry of every index. + * The marks associated with @index are unaffected unless @entry is %NULL. + * + * Context: Process context. Takes and releases the xa_lock. May sleep + * if the @gfp flags permit. + * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in + * an XArray, or xa_err(-ENOMEM) if memory allocation failed. + */ +void *xa_store_range(struct xarray *xa, unsigned long first, + unsigned long last, void *entry, gfp_t gfp) +{ + XA_STATE(xas, xa, 0); + + if (WARN_ON_ONCE(xa_is_internal(entry))) + return XA_ERROR(-EINVAL); + if (last < first) + return XA_ERROR(-EINVAL); + + do { + xas_lock(&xas); + if (entry) { + unsigned int order = (last == ~0UL) ? 64 : + ilog2(last + 1); + xas_set_order(&xas, last, order); + xas_create(&xas); + if (xas_error(&xas)) + goto unlock; + } + do { + xas_set_range(&xas, first, last); + xas_store(&xas, entry); + if (xas_error(&xas)) + goto unlock; + first += xas_size(&xas); + } while (first <= last); +unlock: + xas_unlock(&xas); + } while (xas_nomem(&xas, gfp)); + + return xas_result(&xas, NULL); +} +EXPORT_SYMBOL(xa_store_range); +#endif /* CONFIG_XARRAY_MULTI */ + +/** + * __xa_alloc() - Find somewhere to store this entry in the XArray. + * @xa: XArray. + * @id: Pointer to ID. + * @max: Maximum ID to allocate (inclusive). + * @entry: New entry. + * @gfp: Memory allocation flags. + * + * Allocates an unused ID in the range specified by @id and @max. + * Updates the @id pointer with the index, then stores the entry at that + * index. A concurrent lookup will not see an uninitialised @id. + * + * Context: Any context. Expects xa_lock to be held on entry. May + * release and reacquire xa_lock if @gfp flags permit. + * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if + * there is no more space in the XArray. + */ +int __xa_alloc(struct xarray *xa, u32 *id, u32 max, void *entry, gfp_t gfp) +{ + XA_STATE(xas, xa, 0); + int err; + + if (WARN_ON_ONCE(xa_is_internal(entry))) + return -EINVAL; + if (WARN_ON_ONCE(!xa_track_free(xa))) + return -EINVAL; + + if (!entry) + entry = XA_ZERO_ENTRY; + + do { + xas.xa_index = *id; + xas_find_marked(&xas, max, XA_FREE_MARK); + if (xas.xa_node == XAS_RESTART) + xas_set_err(&xas, -ENOSPC); + xas_store(&xas, entry); + xas_clear_mark(&xas, XA_FREE_MARK); + } while (__xas_nomem(&xas, gfp)); + + err = xas_error(&xas); + if (!err) + *id = xas.xa_index; + return err; +} +EXPORT_SYMBOL(__xa_alloc); + +/** + * __xa_set_mark() - Set this mark on this entry while locked. + * @xa: XArray. + * @index: Index of entry. + * @mark: Mark number. + * + * Attempting to set a mark on a NULL entry does not succeed. + * + * Context: Any context. Expects xa_lock to be held on entry. + */ +void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) +{ + XA_STATE(xas, xa, index); + void *entry = xas_load(&xas); + + if (entry) + xas_set_mark(&xas, mark); +} +EXPORT_SYMBOL_GPL(__xa_set_mark); + +/** + * __xa_clear_mark() - Clear this mark on this entry while locked. + * @xa: XArray. + * @index: Index of entry. + * @mark: Mark number. + * + * Context: Any context. Expects xa_lock to be held on entry. + */ +void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) +{ + XA_STATE(xas, xa, index); + void *entry = xas_load(&xas); + + if (entry) + xas_clear_mark(&xas, mark); +} +EXPORT_SYMBOL_GPL(__xa_clear_mark); + +/** + * xa_get_mark() - Inquire whether this mark is set on this entry. + * @xa: XArray. + * @index: Index of entry. + * @mark: Mark number. + * + * This function uses the RCU read lock, so the result may be out of date + * by the time it returns. If you need the result to be stable, use a lock. + * + * Context: Any context. Takes and releases the RCU lock. + * Return: True if the entry at @index has this mark set, false if it doesn't. + */ +bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) +{ + XA_STATE(xas, xa, index); + void *entry; + + rcu_read_lock(); + entry = xas_start(&xas); + while (xas_get_mark(&xas, mark)) { + if (!xa_is_node(entry)) + goto found; + entry = xas_descend(&xas, xa_to_node(entry)); + } + rcu_read_unlock(); + return false; + found: + rcu_read_unlock(); + return true; +} +EXPORT_SYMBOL(xa_get_mark); + +/** + * xa_set_mark() - Set this mark on this entry. + * @xa: XArray. + * @index: Index of entry. + * @mark: Mark number. + * + * Attempting to set a mark on a NULL entry does not succeed. + * + * Context: Process context. Takes and releases the xa_lock. + */ +void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) +{ + xa_lock(xa); + __xa_set_mark(xa, index, mark); + xa_unlock(xa); +} +EXPORT_SYMBOL(xa_set_mark); + +/** + * xa_clear_mark() - Clear this mark on this entry. + * @xa: XArray. + * @index: Index of entry. + * @mark: Mark number. + * + * Clearing a mark always succeeds. + * + * Context: Process context. Takes and releases the xa_lock. + */ +void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) +{ + xa_lock(xa); + __xa_clear_mark(xa, index, mark); + xa_unlock(xa); +} +EXPORT_SYMBOL(xa_clear_mark); + +/** + * xa_find() - Search the XArray for an entry. + * @xa: XArray. + * @indexp: Pointer to an index. + * @max: Maximum index to search to. + * @filter: Selection criterion. + * + * Finds the entry in @xa which matches the @filter, and has the lowest + * index that is at least @indexp and no more than @max. + * If an entry is found, @indexp is updated to be the index of the entry. + * This function is protected by the RCU read lock, so it may not find + * entries which are being simultaneously added. It will not return an + * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). + * + * Context: Any context. Takes and releases the RCU lock. + * Return: The entry, if found, otherwise %NULL. + */ +void *xa_find(struct xarray *xa, unsigned long *indexp, + unsigned long max, xa_mark_t filter) +{ + XA_STATE(xas, xa, *indexp); + void *entry; + + rcu_read_lock(); + do { + if ((__force unsigned int)filter < XA_MAX_MARKS) + entry = xas_find_marked(&xas, max, filter); + else + entry = xas_find(&xas, max); + } while (xas_retry(&xas, entry)); + rcu_read_unlock(); + + if (entry) + *indexp = xas.xa_index; + return entry; +} +EXPORT_SYMBOL(xa_find); + +/** + * xa_find_after() - Search the XArray for a present entry. + * @xa: XArray. + * @indexp: Pointer to an index. + * @max: Maximum index to search to. + * @filter: Selection criterion. + * + * Finds the entry in @xa which matches the @filter and has the lowest + * index that is above @indexp and no more than @max. + * If an entry is found, @indexp is updated to be the index of the entry. + * This function is protected by the RCU read lock, so it may miss entries + * which are being simultaneously added. It will not return an + * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). + * + * Context: Any context. Takes and releases the RCU lock. + * Return: The pointer, if found, otherwise %NULL. + */ +void *xa_find_after(struct xarray *xa, unsigned long *indexp, + unsigned long max, xa_mark_t filter) +{ + XA_STATE(xas, xa, *indexp + 1); + void *entry; + + rcu_read_lock(); + for (;;) { + if ((__force unsigned int)filter < XA_MAX_MARKS) + entry = xas_find_marked(&xas, max, filter); + else + entry = xas_find(&xas, max); + if (xas.xa_shift) { + if (xas.xa_index & ((1UL << xas.xa_shift) - 1)) + continue; + } else { + if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK)) + continue; + } + if (!xas_retry(&xas, entry)) + break; + } + rcu_read_unlock(); + + if (entry) + *indexp = xas.xa_index; + return entry; +} +EXPORT_SYMBOL(xa_find_after); + +static unsigned int xas_extract_present(struct xa_state *xas, void **dst, + unsigned long max, unsigned int n) +{ + void *entry; + unsigned int i = 0; + + rcu_read_lock(); + xas_for_each(xas, entry, max) { + if (xas_retry(xas, entry)) + continue; + dst[i++] = entry; + if (i == n) + break; + } + rcu_read_unlock(); + + return i; +} + +static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, + unsigned long max, unsigned int n, xa_mark_t mark) +{ + void *entry; + unsigned int i = 0; + + rcu_read_lock(); + xas_for_each_marked(xas, entry, max, mark) { + if (xas_retry(xas, entry)) + continue; + dst[i++] = entry; + if (i == n) + break; + } + rcu_read_unlock(); + + return i; +} + +/** + * xa_extract() - Copy selected entries from the XArray into a normal array. + * @xa: The source XArray to copy from. + * @dst: The buffer to copy entries into. + * @start: The first index in the XArray eligible to be selected. + * @max: The last index in the XArray eligible to be selected. + * @n: The maximum number of entries to copy. + * @filter: Selection criterion. + * + * Copies up to @n entries that match @filter from the XArray. The + * copied entries will have indices between @start and @max, inclusive. + * + * The @filter may be an XArray mark value, in which case entries which are + * marked with that mark will be copied. It may also be %XA_PRESENT, in + * which case all entries which are not NULL will be copied. + * + * The entries returned may not represent a snapshot of the XArray at a + * moment in time. For example, if another thread stores to index 5, then + * index 10, calling xa_extract() may return the old contents of index 5 + * and the new contents of index 10. Indices not modified while this + * function is running will not be skipped. + * + * If you need stronger guarantees, holding the xa_lock across calls to this + * function will prevent concurrent modification. + * + * Context: Any context. Takes and releases the RCU lock. + * Return: The number of entries copied. + */ +unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, + unsigned long max, unsigned int n, xa_mark_t filter) +{ + XA_STATE(xas, xa, start); + + if (!n) + return 0; + + if ((__force unsigned int)filter < XA_MAX_MARKS) + return xas_extract_marked(&xas, dst, max, n, filter); + return xas_extract_present(&xas, dst, max, n); +} +EXPORT_SYMBOL(xa_extract); + +/** + * xa_destroy() - Free all internal data structures. + * @xa: XArray. + * + * After calling this function, the XArray is empty and has freed all memory + * allocated for its internal data structures. You are responsible for + * freeing the objects referenced by the XArray. + * + * Context: Any context. Takes and releases the xa_lock, interrupt-safe. + */ +void xa_destroy(struct xarray *xa) +{ + XA_STATE(xas, xa, 0); + unsigned long flags; + void *entry; + + xas.xa_node = NULL; + xas_lock_irqsave(&xas, flags); + entry = xa_head_locked(xa); + RCU_INIT_POINTER(xa->xa_head, NULL); + xas_init_marks(&xas); + /* lockdep checks we're still holding the lock in xas_free_nodes() */ + if (xa_is_node(entry)) + xas_free_nodes(&xas, xa_to_node(entry)); + xas_unlock_irqrestore(&xas, flags); +} +EXPORT_SYMBOL(xa_destroy); + +#ifdef XA_DEBUG +void xa_dump_node(const struct xa_node *node) +{ + unsigned i, j; + + if (!node) + return; + if ((unsigned long)node & 3) { + pr_cont("node %px\n", node); + return; + } + + pr_cont("node %px %s %d parent %px shift %d count %d values %d " + "array %px list %px %px marks", + node, node->parent ? "offset" : "max", node->offset, + node->parent, node->shift, node->count, node->nr_values, + node->array, node->private_list.prev, node->private_list.next); + for (i = 0; i < XA_MAX_MARKS; i++) + for (j = 0; j < XA_MARK_LONGS; j++) + pr_cont(" %lx", node->marks[i][j]); + pr_cont("\n"); +} + +void xa_dump_index(unsigned long index, unsigned int shift) +{ + if (!shift) + pr_info("%lu: ", index); + else if (shift >= BITS_PER_LONG) + pr_info("0-%lu: ", ~0UL); + else + pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); +} + +void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) +{ + if (!entry) + return; + + xa_dump_index(index, shift); + + if (xa_is_node(entry)) { + if (shift == 0) { + pr_cont("%px\n", entry); + } else { + unsigned long i; + struct xa_node *node = xa_to_node(entry); + xa_dump_node(node); + for (i = 0; i < XA_CHUNK_SIZE; i++) + xa_dump_entry(node->slots[i], + index + (i << node->shift), node->shift); + } + } else if (xa_is_value(entry)) + pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), + xa_to_value(entry), entry); + else if (!xa_is_internal(entry)) + pr_cont("%px\n", entry); + else if (xa_is_retry(entry)) + pr_cont("retry (%ld)\n", xa_to_internal(entry)); + else if (xa_is_sibling(entry)) + pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); + else if (xa_is_zero(entry)) + pr_cont("zero (%ld)\n", xa_to_internal(entry)); + else + pr_cont("UNKNOWN ENTRY (%px)\n", entry); +} + +void xa_dump(const struct xarray *xa) +{ + void *entry = xa->xa_head; + unsigned int shift = 0; + + pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, + xa->xa_flags, xa_marked(xa, XA_MARK_0), + xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); + if (xa_is_node(entry)) + shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; + xa_dump_entry(entry, 0, shift); +} +#endif diff --git a/lib/zlib_inflate/inflate.c b/lib/zlib_inflate/inflate.c index 58a733b10387..48f14cd58c77 100644 --- a/lib/zlib_inflate/inflate.c +++ b/lib/zlib_inflate/inflate.c @@ -382,6 +382,7 @@ int zlib_inflate(z_streamp strm, int flush) strm->adler = state->check = REVERSE(hold); INITBITS(); state->mode = DICT; + /* fall through */ case DICT: if (state->havedict == 0) { RESTORE(); @@ -389,8 +390,10 @@ int zlib_inflate(z_streamp strm, int flush) } strm->adler = state->check = zlib_adler32(0L, NULL, 0); state->mode = TYPE; + /* fall through */ case TYPE: if (flush == Z_BLOCK) goto inf_leave; + /* fall through */ case TYPEDO: if (state->last) { BYTEBITS(); @@ -428,6 +431,7 @@ int zlib_inflate(z_streamp strm, int flush) state->length = (unsigned)hold & 0xffff; INITBITS(); state->mode = COPY; + /* fall through */ case COPY: copy = state->length; if (copy) { @@ -461,6 +465,7 @@ int zlib_inflate(z_streamp strm, int flush) #endif state->have = 0; state->mode = LENLENS; + /* fall through */ case LENLENS: while (state->have < state->ncode) { NEEDBITS(3); @@ -481,6 +486,7 @@ int zlib_inflate(z_streamp strm, int flush) } state->have = 0; state->mode = CODELENS; + /* fall through */ case CODELENS: while (state->have < state->nlen + state->ndist) { for (;;) { @@ -554,6 +560,7 @@ int zlib_inflate(z_streamp strm, int flush) break; } state->mode = LEN; + /* fall through */ case LEN: if (have >= 6 && left >= 258) { RESTORE(); @@ -593,6 +600,7 @@ int zlib_inflate(z_streamp strm, int flush) } state->extra = (unsigned)(this.op) & 15; state->mode = LENEXT; + /* fall through */ case LENEXT: if (state->extra) { NEEDBITS(state->extra); @@ -600,6 +608,7 @@ int zlib_inflate(z_streamp strm, int flush) DROPBITS(state->extra); } state->mode = DIST; + /* fall through */ case DIST: for (;;) { this = state->distcode[BITS(state->distbits)]; @@ -625,6 +634,7 @@ int zlib_inflate(z_streamp strm, int flush) state->offset = (unsigned)this.val; state->extra = (unsigned)(this.op) & 15; state->mode = DISTEXT; + /* fall through */ case DISTEXT: if (state->extra) { NEEDBITS(state->extra); @@ -644,6 +654,7 @@ int zlib_inflate(z_streamp strm, int flush) break; } state->mode = MATCH; + /* fall through */ case MATCH: if (left == 0) goto inf_leave; copy = out - left; @@ -694,6 +705,7 @@ int zlib_inflate(z_streamp strm, int flush) INITBITS(); } state->mode = DONE; + /* fall through */ case DONE: ret = Z_STREAM_END; goto inf_leave; |