diff options
Diffstat (limited to 'mm/mm_init.c')
-rw-r--r-- | mm/mm_init.c | 2550 |
1 files changed, 2550 insertions, 0 deletions
diff --git a/mm/mm_init.c b/mm/mm_init.c index c1883362e71d..7f7f9c677854 100644 --- a/mm/mm_init.c +++ b/mm/mm_init.c @@ -14,7 +14,23 @@ #include <linux/notifier.h> #include <linux/sched.h> #include <linux/mman.h> +#include <linux/memblock.h> +#include <linux/page-isolation.h> +#include <linux/padata.h> +#include <linux/nmi.h> +#include <linux/buffer_head.h> +#include <linux/kmemleak.h> +#include <linux/kfence.h> +#include <linux/page_ext.h> +#include <linux/pti.h> +#include <linux/pgtable.h> +#include <linux/swap.h> +#include <linux/cma.h> #include "internal.h" +#include "slab.h" +#include "shuffle.h" + +#include <asm/setup.h> #ifdef CONFIG_DEBUG_MEMORY_INIT int __meminitdata mminit_loglevel; @@ -198,3 +214,2537 @@ static int __init mm_sysfs_init(void) return 0; } postcore_initcall(mm_sysfs_init); + +static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; +static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; +static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; + +static unsigned long required_kernelcore __initdata; +static unsigned long required_kernelcore_percent __initdata; +static unsigned long required_movablecore __initdata; +static unsigned long required_movablecore_percent __initdata; + +static unsigned long nr_kernel_pages __initdata; +static unsigned long nr_all_pages __initdata; +static unsigned long dma_reserve __initdata; + +static bool deferred_struct_pages __meminitdata; + +static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); + +static int __init cmdline_parse_core(char *p, unsigned long *core, + unsigned long *percent) +{ + unsigned long long coremem; + char *endptr; + + if (!p) + return -EINVAL; + + /* Value may be a percentage of total memory, otherwise bytes */ + coremem = simple_strtoull(p, &endptr, 0); + if (*endptr == '%') { + /* Paranoid check for percent values greater than 100 */ + WARN_ON(coremem > 100); + + *percent = coremem; + } else { + coremem = memparse(p, &p); + /* Paranoid check that UL is enough for the coremem value */ + WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); + + *core = coremem >> PAGE_SHIFT; + *percent = 0UL; + } + return 0; +} + +/* + * kernelcore=size sets the amount of memory for use for allocations that + * cannot be reclaimed or migrated. + */ +static int __init cmdline_parse_kernelcore(char *p) +{ + /* parse kernelcore=mirror */ + if (parse_option_str(p, "mirror")) { + mirrored_kernelcore = true; + return 0; + } + + return cmdline_parse_core(p, &required_kernelcore, + &required_kernelcore_percent); +} +early_param("kernelcore", cmdline_parse_kernelcore); + +/* + * movablecore=size sets the amount of memory for use for allocations that + * can be reclaimed or migrated. + */ +static int __init cmdline_parse_movablecore(char *p) +{ + return cmdline_parse_core(p, &required_movablecore, + &required_movablecore_percent); +} +early_param("movablecore", cmdline_parse_movablecore); + +/* + * early_calculate_totalpages() + * Sum pages in active regions for movable zone. + * Populate N_MEMORY for calculating usable_nodes. + */ +static unsigned long __init early_calculate_totalpages(void) +{ + unsigned long totalpages = 0; + unsigned long start_pfn, end_pfn; + int i, nid; + + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { + unsigned long pages = end_pfn - start_pfn; + + totalpages += pages; + if (pages) + node_set_state(nid, N_MEMORY); + } + return totalpages; +} + +/* + * This finds a zone that can be used for ZONE_MOVABLE pages. The + * assumption is made that zones within a node are ordered in monotonic + * increasing memory addresses so that the "highest" populated zone is used + */ +static void __init find_usable_zone_for_movable(void) +{ + int zone_index; + for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { + if (zone_index == ZONE_MOVABLE) + continue; + + if (arch_zone_highest_possible_pfn[zone_index] > + arch_zone_lowest_possible_pfn[zone_index]) + break; + } + + VM_BUG_ON(zone_index == -1); + movable_zone = zone_index; +} + +/* + * Find the PFN the Movable zone begins in each node. Kernel memory + * is spread evenly between nodes as long as the nodes have enough + * memory. When they don't, some nodes will have more kernelcore than + * others + */ +static void __init find_zone_movable_pfns_for_nodes(void) +{ + int i, nid; + unsigned long usable_startpfn; + unsigned long kernelcore_node, kernelcore_remaining; + /* save the state before borrow the nodemask */ + nodemask_t saved_node_state = node_states[N_MEMORY]; + unsigned long totalpages = early_calculate_totalpages(); + int usable_nodes = nodes_weight(node_states[N_MEMORY]); + struct memblock_region *r; + + /* Need to find movable_zone earlier when movable_node is specified. */ + find_usable_zone_for_movable(); + + /* + * If movable_node is specified, ignore kernelcore and movablecore + * options. + */ + if (movable_node_is_enabled()) { + for_each_mem_region(r) { + if (!memblock_is_hotpluggable(r)) + continue; + + nid = memblock_get_region_node(r); + + usable_startpfn = PFN_DOWN(r->base); + zone_movable_pfn[nid] = zone_movable_pfn[nid] ? + min(usable_startpfn, zone_movable_pfn[nid]) : + usable_startpfn; + } + + goto out2; + } + + /* + * If kernelcore=mirror is specified, ignore movablecore option + */ + if (mirrored_kernelcore) { + bool mem_below_4gb_not_mirrored = false; + + for_each_mem_region(r) { + if (memblock_is_mirror(r)) + continue; + + nid = memblock_get_region_node(r); + + usable_startpfn = memblock_region_memory_base_pfn(r); + + if (usable_startpfn < PHYS_PFN(SZ_4G)) { + mem_below_4gb_not_mirrored = true; + continue; + } + + zone_movable_pfn[nid] = zone_movable_pfn[nid] ? + min(usable_startpfn, zone_movable_pfn[nid]) : + usable_startpfn; + } + + if (mem_below_4gb_not_mirrored) + pr_warn("This configuration results in unmirrored kernel memory.\n"); + + goto out2; + } + + /* + * If kernelcore=nn% or movablecore=nn% was specified, calculate the + * amount of necessary memory. + */ + if (required_kernelcore_percent) + required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / + 10000UL; + if (required_movablecore_percent) + required_movablecore = (totalpages * 100 * required_movablecore_percent) / + 10000UL; + + /* + * If movablecore= was specified, calculate what size of + * kernelcore that corresponds so that memory usable for + * any allocation type is evenly spread. If both kernelcore + * and movablecore are specified, then the value of kernelcore + * will be used for required_kernelcore if it's greater than + * what movablecore would have allowed. + */ + if (required_movablecore) { + unsigned long corepages; + + /* + * Round-up so that ZONE_MOVABLE is at least as large as what + * was requested by the user + */ + required_movablecore = + roundup(required_movablecore, MAX_ORDER_NR_PAGES); + required_movablecore = min(totalpages, required_movablecore); + corepages = totalpages - required_movablecore; + + required_kernelcore = max(required_kernelcore, corepages); + } + + /* + * If kernelcore was not specified or kernelcore size is larger + * than totalpages, there is no ZONE_MOVABLE. + */ + if (!required_kernelcore || required_kernelcore >= totalpages) + goto out; + + /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ + usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; + +restart: + /* Spread kernelcore memory as evenly as possible throughout nodes */ + kernelcore_node = required_kernelcore / usable_nodes; + for_each_node_state(nid, N_MEMORY) { + unsigned long start_pfn, end_pfn; + + /* + * Recalculate kernelcore_node if the division per node + * now exceeds what is necessary to satisfy the requested + * amount of memory for the kernel + */ + if (required_kernelcore < kernelcore_node) + kernelcore_node = required_kernelcore / usable_nodes; + + /* + * As the map is walked, we track how much memory is usable + * by the kernel using kernelcore_remaining. When it is + * 0, the rest of the node is usable by ZONE_MOVABLE + */ + kernelcore_remaining = kernelcore_node; + + /* Go through each range of PFNs within this node */ + for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { + unsigned long size_pages; + + start_pfn = max(start_pfn, zone_movable_pfn[nid]); + if (start_pfn >= end_pfn) + continue; + + /* Account for what is only usable for kernelcore */ + if (start_pfn < usable_startpfn) { + unsigned long kernel_pages; + kernel_pages = min(end_pfn, usable_startpfn) + - start_pfn; + + kernelcore_remaining -= min(kernel_pages, + kernelcore_remaining); + required_kernelcore -= min(kernel_pages, + required_kernelcore); + + /* Continue if range is now fully accounted */ + if (end_pfn <= usable_startpfn) { + + /* + * Push zone_movable_pfn to the end so + * that if we have to rebalance + * kernelcore across nodes, we will + * not double account here + */ + zone_movable_pfn[nid] = end_pfn; + continue; + } + start_pfn = usable_startpfn; + } + + /* + * The usable PFN range for ZONE_MOVABLE is from + * start_pfn->end_pfn. Calculate size_pages as the + * number of pages used as kernelcore + */ + size_pages = end_pfn - start_pfn; + if (size_pages > kernelcore_remaining) + size_pages = kernelcore_remaining; + zone_movable_pfn[nid] = start_pfn + size_pages; + + /* + * Some kernelcore has been met, update counts and + * break if the kernelcore for this node has been + * satisfied + */ + required_kernelcore -= min(required_kernelcore, + size_pages); + kernelcore_remaining -= size_pages; + if (!kernelcore_remaining) + break; + } + } + + /* + * If there is still required_kernelcore, we do another pass with one + * less node in the count. This will push zone_movable_pfn[nid] further + * along on the nodes that still have memory until kernelcore is + * satisfied + */ + usable_nodes--; + if (usable_nodes && required_kernelcore > usable_nodes) + goto restart; + +out2: + /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ + for (nid = 0; nid < MAX_NUMNODES; nid++) { + unsigned long start_pfn, end_pfn; + + zone_movable_pfn[nid] = + roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); + + get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); + if (zone_movable_pfn[nid] >= end_pfn) + zone_movable_pfn[nid] = 0; + } + +out: + /* restore the node_state */ + node_states[N_MEMORY] = saved_node_state; +} + +static void __meminit __init_single_page(struct page *page, unsigned long pfn, + unsigned long zone, int nid) +{ + mm_zero_struct_page(page); + set_page_links(page, zone, nid, pfn); + init_page_count(page); + page_mapcount_reset(page); + page_cpupid_reset_last(page); + page_kasan_tag_reset(page); + + INIT_LIST_HEAD(&page->lru); +#ifdef WANT_PAGE_VIRTUAL + /* The shift won't overflow because ZONE_NORMAL is below 4G. */ + if (!is_highmem_idx(zone)) + set_page_address(page, __va(pfn << PAGE_SHIFT)); +#endif +} + +#ifdef CONFIG_NUMA +/* + * During memory init memblocks map pfns to nids. The search is expensive and + * this caches recent lookups. The implementation of __early_pfn_to_nid + * treats start/end as pfns. + */ +struct mminit_pfnnid_cache { + unsigned long last_start; + unsigned long last_end; + int last_nid; +}; + +static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; + +/* + * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. + */ +static int __meminit __early_pfn_to_nid(unsigned long pfn, + struct mminit_pfnnid_cache *state) +{ + unsigned long start_pfn, end_pfn; + int nid; + + if (state->last_start <= pfn && pfn < state->last_end) + return state->last_nid; + + nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); + if (nid != NUMA_NO_NODE) { + state->last_start = start_pfn; + state->last_end = end_pfn; + state->last_nid = nid; + } + + return nid; +} + +int __meminit early_pfn_to_nid(unsigned long pfn) +{ + static DEFINE_SPINLOCK(early_pfn_lock); + int nid; + + spin_lock(&early_pfn_lock); + nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); + if (nid < 0) + nid = first_online_node; + spin_unlock(&early_pfn_lock); + + return nid; +} + +int hashdist = HASHDIST_DEFAULT; + +static int __init set_hashdist(char *str) +{ + if (!str) + return 0; + hashdist = simple_strtoul(str, &str, 0); + return 1; +} +__setup("hashdist=", set_hashdist); + +static inline void fixup_hashdist(void) +{ + if (num_node_state(N_MEMORY) == 1) + hashdist = 0; +} +#else +static inline void fixup_hashdist(void) {} +#endif /* CONFIG_NUMA */ + +#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT +static inline void pgdat_set_deferred_range(pg_data_t *pgdat) +{ + pgdat->first_deferred_pfn = ULONG_MAX; +} + +/* Returns true if the struct page for the pfn is initialised */ +static inline bool __meminit early_page_initialised(unsigned long pfn) +{ + int nid = early_pfn_to_nid(pfn); + + if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) + return false; + + return true; +} + +/* + * Returns true when the remaining initialisation should be deferred until + * later in the boot cycle when it can be parallelised. + */ +static bool __meminit +defer_init(int nid, unsigned long pfn, unsigned long end_pfn) +{ + static unsigned long prev_end_pfn, nr_initialised; + + if (early_page_ext_enabled()) + return false; + /* + * prev_end_pfn static that contains the end of previous zone + * No need to protect because called very early in boot before smp_init. + */ + if (prev_end_pfn != end_pfn) { + prev_end_pfn = end_pfn; + nr_initialised = 0; + } + + /* Always populate low zones for address-constrained allocations */ + if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) + return false; + + if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) + return true; + /* + * We start only with one section of pages, more pages are added as + * needed until the rest of deferred pages are initialized. + */ + nr_initialised++; + if ((nr_initialised > PAGES_PER_SECTION) && + (pfn & (PAGES_PER_SECTION - 1)) == 0) { + NODE_DATA(nid)->first_deferred_pfn = pfn; + return true; + } + return false; +} + +static void __meminit init_reserved_page(unsigned long pfn) +{ + pg_data_t *pgdat; + int nid, zid; + + if (early_page_initialised(pfn)) + return; + + nid = early_pfn_to_nid(pfn); + pgdat = NODE_DATA(nid); + + for (zid = 0; zid < MAX_NR_ZONES; zid++) { + struct zone *zone = &pgdat->node_zones[zid]; + + if (zone_spans_pfn(zone, pfn)) + break; + } + __init_single_page(pfn_to_page(pfn), pfn, zid, nid); +} +#else +static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} + +static inline bool early_page_initialised(unsigned long pfn) +{ + return true; +} + +static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) +{ + return false; +} + +static inline void init_reserved_page(unsigned long pfn) +{ +} +#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ + +/* + * Initialised pages do not have PageReserved set. This function is + * called for each range allocated by the bootmem allocator and + * marks the pages PageReserved. The remaining valid pages are later + * sent to the buddy page allocator. + */ +void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) +{ + unsigned long start_pfn = PFN_DOWN(start); + unsigned long end_pfn = PFN_UP(end); + + for (; start_pfn < end_pfn; start_pfn++) { + if (pfn_valid(start_pfn)) { + struct page *page = pfn_to_page(start_pfn); + + init_reserved_page(start_pfn); + + /* Avoid false-positive PageTail() */ + INIT_LIST_HEAD(&page->lru); + + /* + * no need for atomic set_bit because the struct + * page is not visible yet so nobody should + * access it yet. + */ + __SetPageReserved(page); + } + } +} + +/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ +static bool __meminit +overlap_memmap_init(unsigned long zone, unsigned long *pfn) +{ + static struct memblock_region *r; + + if (mirrored_kernelcore && zone == ZONE_MOVABLE) { + if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { + for_each_mem_region(r) { + if (*pfn < memblock_region_memory_end_pfn(r)) + break; + } + } + if (*pfn >= memblock_region_memory_base_pfn(r) && + memblock_is_mirror(r)) { + *pfn = memblock_region_memory_end_pfn(r); + return true; + } + } + return false; +} + +/* + * Only struct pages that correspond to ranges defined by memblock.memory + * are zeroed and initialized by going through __init_single_page() during + * memmap_init_zone_range(). + * + * But, there could be struct pages that correspond to holes in + * memblock.memory. This can happen because of the following reasons: + * - physical memory bank size is not necessarily the exact multiple of the + * arbitrary section size + * - early reserved memory may not be listed in memblock.memory + * - memory layouts defined with memmap= kernel parameter may not align + * nicely with memmap sections + * + * Explicitly initialize those struct pages so that: + * - PG_Reserved is set + * - zone and node links point to zone and node that span the page if the + * hole is in the middle of a zone + * - zone and node links point to adjacent zone/node if the hole falls on + * the zone boundary; the pages in such holes will be prepended to the + * zone/node above the hole except for the trailing pages in the last + * section that will be appended to the zone/node below. + */ +static void __init init_unavailable_range(unsigned long spfn, + unsigned long epfn, + int zone, int node) +{ + unsigned long pfn; + u64 pgcnt = 0; + + for (pfn = spfn; pfn < epfn; pfn++) { + if (!pfn_valid(pageblock_start_pfn(pfn))) { + pfn = pageblock_end_pfn(pfn) - 1; + continue; + } + __init_single_page(pfn_to_page(pfn), pfn, zone, node); + __SetPageReserved(pfn_to_page(pfn)); + pgcnt++; + } + + if (pgcnt) + pr_info("On node %d, zone %s: %lld pages in unavailable ranges", + node, zone_names[zone], pgcnt); +} + +/* + * Initially all pages are reserved - free ones are freed + * up by memblock_free_all() once the early boot process is + * done. Non-atomic initialization, single-pass. + * + * All aligned pageblocks are initialized to the specified migratetype + * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related + * zone stats (e.g., nr_isolate_pageblock) are touched. + */ +void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, + unsigned long start_pfn, unsigned long zone_end_pfn, + enum meminit_context context, + struct vmem_altmap *altmap, int migratetype) +{ + unsigned long pfn, end_pfn = start_pfn + size; + struct page *page; + + if (highest_memmap_pfn < end_pfn - 1) + highest_memmap_pfn = end_pfn - 1; + +#ifdef CONFIG_ZONE_DEVICE + /* + * Honor reservation requested by the driver for this ZONE_DEVICE + * memory. We limit the total number of pages to initialize to just + * those that might contain the memory mapping. We will defer the + * ZONE_DEVICE page initialization until after we have released + * the hotplug lock. + */ + if (zone == ZONE_DEVICE) { + if (!altmap) + return; + + if (start_pfn == altmap->base_pfn) + start_pfn += altmap->reserve; + end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); + } +#endif + + for (pfn = start_pfn; pfn < end_pfn; ) { + /* + * There can be holes in boot-time mem_map[]s handed to this + * function. They do not exist on hotplugged memory. + */ + if (context == MEMINIT_EARLY) { + if (overlap_memmap_init(zone, &pfn)) + continue; + if (defer_init(nid, pfn, zone_end_pfn)) { + deferred_struct_pages = true; + break; + } + } + + page = pfn_to_page(pfn); + __init_single_page(page, pfn, zone, nid); + if (context == MEMINIT_HOTPLUG) + __SetPageReserved(page); + + /* + * Usually, we want to mark the pageblock MIGRATE_MOVABLE, + * such that unmovable allocations won't be scattered all + * over the place during system boot. + */ + if (pageblock_aligned(pfn)) { + set_pageblock_migratetype(page, migratetype); + cond_resched(); + } + pfn++; + } +} + +static void __init memmap_init_zone_range(struct zone *zone, + unsigned long start_pfn, + unsigned long end_pfn, + unsigned long *hole_pfn) +{ + unsigned long zone_start_pfn = zone->zone_start_pfn; + unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; + int nid = zone_to_nid(zone), zone_id = zone_idx(zone); + + start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); + end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); + + if (start_pfn >= end_pfn) + return; + + memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, + zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); + + if (*hole_pfn < start_pfn) + init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); + + *hole_pfn = end_pfn; +} + +static void __init memmap_init(void) +{ + unsigned long start_pfn, end_pfn; + unsigned long hole_pfn = 0; + int i, j, zone_id = 0, nid; + + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { + struct pglist_data *node = NODE_DATA(nid); + + for (j = 0; j < MAX_NR_ZONES; j++) { + struct zone *zone = node->node_zones + j; + + if (!populated_zone(zone)) + continue; + + memmap_init_zone_range(zone, start_pfn, end_pfn, + &hole_pfn); + zone_id = j; + } + } + +#ifdef CONFIG_SPARSEMEM + /* + * Initialize the memory map for hole in the range [memory_end, + * section_end]. + * Append the pages in this hole to the highest zone in the last + * node. + * The call to init_unavailable_range() is outside the ifdef to + * silence the compiler warining about zone_id set but not used; + * for FLATMEM it is a nop anyway + */ + end_pfn = round_up(end_pfn, PAGES_PER_SECTION); + if (hole_pfn < end_pfn) +#endif + init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); +} + +#ifdef CONFIG_ZONE_DEVICE +static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, + unsigned long zone_idx, int nid, + struct dev_pagemap *pgmap) +{ + + __init_single_page(page, pfn, zone_idx, nid); + + /* + * Mark page reserved as it will need to wait for onlining + * phase for it to be fully associated with a zone. + * + * We can use the non-atomic __set_bit operation for setting + * the flag as we are still initializing the pages. + */ + __SetPageReserved(page); + + /* + * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer + * and zone_device_data. It is a bug if a ZONE_DEVICE page is + * ever freed or placed on a driver-private list. + */ + page->pgmap = pgmap; + page->zone_device_data = NULL; + + /* + * Mark the block movable so that blocks are reserved for + * movable at startup. This will force kernel allocations + * to reserve their blocks rather than leaking throughout + * the address space during boot when many long-lived + * kernel allocations are made. + * + * Please note that MEMINIT_HOTPLUG path doesn't clear memmap + * because this is done early in section_activate() + */ + if (pageblock_aligned(pfn)) { + set_pageblock_migratetype(page, MIGRATE_MOVABLE); + cond_resched(); + } + + /* + * ZONE_DEVICE pages are released directly to the driver page allocator + * which will set the page count to 1 when allocating the page. + */ + if (pgmap->type == MEMORY_DEVICE_PRIVATE || + pgmap->type == MEMORY_DEVICE_COHERENT) + set_page_count(page, 0); +} + +/* + * With compound page geometry and when struct pages are stored in ram most + * tail pages are reused. Consequently, the amount of unique struct pages to + * initialize is a lot smaller that the total amount of struct pages being + * mapped. This is a paired / mild layering violation with explicit knowledge + * of how the sparse_vmemmap internals handle compound pages in the lack + * of an altmap. See vmemmap_populate_compound_pages(). + */ +static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, + struct dev_pagemap *pgmap) +{ + if (!vmemmap_can_optimize(altmap, pgmap)) + return pgmap_vmemmap_nr(pgmap); + + return 2 * (PAGE_SIZE / sizeof(struct page)); +} + +static void __ref memmap_init_compound(struct page *head, + unsigned long head_pfn, + unsigned long zone_idx, int nid, + struct dev_pagemap *pgmap, + unsigned long nr_pages) +{ + unsigned long pfn, end_pfn = head_pfn + nr_pages; + unsigned int order = pgmap->vmemmap_shift; + + __SetPageHead(head); + for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { + struct page *page = pfn_to_page(pfn); + + __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); + prep_compound_tail(head, pfn - head_pfn); + set_page_count(page, 0); + + /* + * The first tail page stores important compound page info. + * Call prep_compound_head() after the first tail page has + * been initialized, to not have the data overwritten. + */ + if (pfn == head_pfn + 1) + prep_compound_head(head, order); + } +} + +void __ref memmap_init_zone_device(struct zone *zone, + unsigned long start_pfn, + unsigned long nr_pages, + struct dev_pagemap *pgmap) +{ + unsigned long pfn, end_pfn = start_pfn + nr_pages; + struct pglist_data *pgdat = zone->zone_pgdat; + struct vmem_altmap *altmap = pgmap_altmap(pgmap); + unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); + unsigned long zone_idx = zone_idx(zone); + unsigned long start = jiffies; + int nid = pgdat->node_id; + + if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) + return; + + /* + * The call to memmap_init should have already taken care + * of the pages reserved for the memmap, so we can just jump to + * the end of that region and start processing the device pages. + */ + if (altmap) { + start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); + nr_pages = end_pfn - start_pfn; + } + + for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { + struct page *page = pfn_to_page(pfn); + + __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); + + if (pfns_per_compound == 1) + continue; + + memmap_init_compound(page, pfn, zone_idx, nid, pgmap, + compound_nr_pages(altmap, pgmap)); + } + + pr_debug("%s initialised %lu pages in %ums\n", __func__, + nr_pages, jiffies_to_msecs(jiffies - start)); +} +#endif + +/* + * The zone ranges provided by the architecture do not include ZONE_MOVABLE + * because it is sized independent of architecture. Unlike the other zones, + * the starting point for ZONE_MOVABLE is not fixed. It may be different + * in each node depending on the size of each node and how evenly kernelcore + * is distributed. This helper function adjusts the zone ranges + * provided by the architecture for a given node by using the end of the + * highest usable zone for ZONE_MOVABLE. This preserves the assumption that + * zones within a node are in order of monotonic increases memory addresses + */ +static void __init adjust_zone_range_for_zone_movable(int nid, + unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn, + unsigned long *zone_start_pfn, + unsigned long *zone_end_pfn) +{ + /* Only adjust if ZONE_MOVABLE is on this node */ + if (zone_movable_pfn[nid]) { + /* Size ZONE_MOVABLE */ + if (zone_type == ZONE_MOVABLE) { + *zone_start_pfn = zone_movable_pfn[nid]; + *zone_end_pfn = min(node_end_pfn, + arch_zone_highest_possible_pfn[movable_zone]); + + /* Adjust for ZONE_MOVABLE starting within this range */ + } else if (!mirrored_kernelcore && + *zone_start_pfn < zone_movable_pfn[nid] && + *zone_end_pfn > zone_movable_pfn[nid]) { + *zone_end_pfn = zone_movable_pfn[nid]; + + /* Check if this whole range is within ZONE_MOVABLE */ + } else if (*zone_start_pfn >= zone_movable_pfn[nid]) + *zone_start_pfn = *zone_end_pfn; + } +} + +/* + * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, + * then all holes in the requested range will be accounted for. + */ +unsigned long __init __absent_pages_in_range(int nid, + unsigned long range_start_pfn, + unsigned long range_end_pfn) +{ + unsigned long nr_absent = range_end_pfn - range_start_pfn; + unsigned long start_pfn, end_pfn; + int i; + + for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { + start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); + end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); + nr_absent -= end_pfn - start_pfn; + } + return nr_absent; +} + +/** + * absent_pages_in_range - Return number of page frames in holes within a range + * @start_pfn: The start PFN to start searching for holes + * @end_pfn: The end PFN to stop searching for holes + * + * Return: the number of pages frames in memory holes within a range. + */ +unsigned long __init absent_pages_in_range(unsigned long start_pfn, + unsigned long end_pfn) +{ + return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); +} + +/* Return the number of page frames in holes in a zone on a node */ +static unsigned long __init zone_absent_pages_in_node(int nid, + unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn) +{ + unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; + unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; + unsigned long zone_start_pfn, zone_end_pfn; + unsigned long nr_absent; + + /* When hotadd a new node from cpu_up(), the node should be empty */ + if (!node_start_pfn && !node_end_pfn) + return 0; + + zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); + zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); + + adjust_zone_range_for_zone_movable(nid, zone_type, + node_start_pfn, node_end_pfn, + &zone_start_pfn, &zone_end_pfn); + nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); + + /* + * ZONE_MOVABLE handling. + * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages + * and vice versa. + */ + if (mirrored_kernelcore && zone_movable_pfn[nid]) { + unsigned long start_pfn, end_pfn; + struct memblock_region *r; + + for_each_mem_region(r) { + start_pfn = clamp(memblock_region_memory_base_pfn(r), + zone_start_pfn, zone_end_pfn); + end_pfn = clamp(memblock_region_memory_end_pfn(r), + zone_start_pfn, zone_end_pfn); + + if (zone_type == ZONE_MOVABLE && + memblock_is_mirror(r)) + nr_absent += end_pfn - start_pfn; + + if (zone_type == ZONE_NORMAL && + !memblock_is_mirror(r)) + nr_absent += end_pfn - start_pfn; + } + } + + return nr_absent; +} + +/* + * Return the number of pages a zone spans in a node, including holes + * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() + */ +static unsigned long __init zone_spanned_pages_in_node(int nid, + unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn, + unsigned long *zone_start_pfn, + unsigned long *zone_end_pfn) +{ + unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; + unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; + /* When hotadd a new node from cpu_up(), the node should be empty */ + if (!node_start_pfn && !node_end_pfn) + return 0; + + /* Get the start and end of the zone */ + *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); + *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); + adjust_zone_range_for_zone_movable(nid, zone_type, + node_start_pfn, node_end_pfn, + zone_start_pfn, zone_end_pfn); + + /* Check that this node has pages within the zone's required range */ + if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) + return 0; + + /* Move the zone boundaries inside the node if necessary */ + *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); + *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); + + /* Return the spanned pages */ + return *zone_end_pfn - *zone_start_pfn; +} + +static void __init calculate_node_totalpages(struct pglist_data *pgdat, + unsigned long node_start_pfn, + unsigned long node_end_pfn) +{ + unsigned long realtotalpages = 0, totalpages = 0; + enum zone_type i; + + for (i = 0; i < MAX_NR_ZONES; i++) { + struct zone *zone = pgdat->node_zones + i; + unsigned long zone_start_pfn, zone_end_pfn; + unsigned long spanned, absent; + unsigned long size, real_size; + + spanned = zone_spanned_pages_in_node(pgdat->node_id, i, + node_start_pfn, + node_end_pfn, + &zone_start_pfn, + &zone_end_pfn); + absent = zone_absent_pages_in_node(pgdat->node_id, i, + node_start_pfn, + node_end_pfn); + + size = spanned; + real_size = size - absent; + + if (size) + zone->zone_start_pfn = zone_start_pfn; + else + zone->zone_start_pfn = 0; + zone->spanned_pages = size; + zone->present_pages = real_size; +#if defined(CONFIG_MEMORY_HOTPLUG) + zone->present_early_pages = real_size; +#endif + + totalpages += size; + realtotalpages += real_size; + } + + pgdat->node_spanned_pages = totalpages; + pgdat->node_present_pages = realtotalpages; + pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); +} + +static unsigned long __init calc_memmap_size(unsigned long spanned_pages, + unsigned long present_pages) +{ + unsigned long pages = spanned_pages; + + /* + * Provide a more accurate estimation if there are holes within + * the zone and SPARSEMEM is in use. If there are holes within the + * zone, each populated memory region may cost us one or two extra + * memmap pages due to alignment because memmap pages for each + * populated regions may not be naturally aligned on page boundary. + * So the (present_pages >> 4) heuristic is a tradeoff for that. + */ + if (spanned_pages > present_pages + (present_pages >> 4) && + IS_ENABLED(CONFIG_SPARSEMEM)) + pages = present_pages; + + return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; +} + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static void pgdat_init_split_queue(struct pglist_data *pgdat) +{ + struct deferred_split *ds_queue = &pgdat->deferred_split_queue; + + spin_lock_init(&ds_queue->split_queue_lock); + INIT_LIST_HEAD(&ds_queue->split_queue); + ds_queue->split_queue_len = 0; +} +#else +static void pgdat_init_split_queue(struct pglist_data *pgdat) {} +#endif + +#ifdef CONFIG_COMPACTION +static void pgdat_init_kcompactd(struct pglist_data *pgdat) +{ + init_waitqueue_head(&pgdat->kcompactd_wait); +} +#else +static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} +#endif + +static void __meminit pgdat_init_internals(struct pglist_data *pgdat) +{ + int i; + + pgdat_resize_init(pgdat); + pgdat_kswapd_lock_init(pgdat); + + pgdat_init_split_queue(pgdat); + pgdat_init_kcompactd(pgdat); + + init_waitqueue_head(&pgdat->kswapd_wait); + init_waitqueue_head(&pgdat->pfmemalloc_wait); + + for (i = 0; i < NR_VMSCAN_THROTTLE; i++) + init_waitqueue_head(&pgdat->reclaim_wait[i]); + + pgdat_page_ext_init(pgdat); + lruvec_init(&pgdat->__lruvec); +} + +static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, + unsigned long remaining_pages) +{ + atomic_long_set(&zone->managed_pages, remaining_pages); + zone_set_nid(zone, nid); + zone->name = zone_names[idx]; + zone->zone_pgdat = NODE_DATA(nid); + spin_lock_init(&zone->lock); + zone_seqlock_init(zone); + zone_pcp_init(zone); +} + +static void __meminit zone_init_free_lists(struct zone *zone) +{ + unsigned int order, t; + for_each_migratetype_order(order, t) { + INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); + zone->free_area[order].nr_free = 0; + } +} + +void __meminit init_currently_empty_zone(struct zone *zone, + unsigned long zone_start_pfn, + unsigned long size) +{ + struct pglist_data *pgdat = zone->zone_pgdat; + int zone_idx = zone_idx(zone) + 1; + + if (zone_idx > pgdat->nr_zones) + pgdat->nr_zones = zone_idx; + + zone->zone_start_pfn = zone_start_pfn; + + mminit_dprintk(MMINIT_TRACE, "memmap_init", + "Initialising map node %d zone %lu pfns %lu -> %lu\n", + pgdat->node_id, + (unsigned long)zone_idx(zone), + zone_start_pfn, (zone_start_pfn + size)); + + zone_init_free_lists(zone); + zone->initialized = 1; +} + +#ifndef CONFIG_SPARSEMEM +/* + * Calculate the size of the zone->blockflags rounded to an unsigned long + * Start by making sure zonesize is a multiple of pageblock_order by rounding + * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally + * round what is now in bits to nearest long in bits, then return it in + * bytes. + */ +static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) +{ + unsigned long usemapsize; + + zonesize += zone_start_pfn & (pageblock_nr_pages-1); + usemapsize = roundup(zonesize, pageblock_nr_pages); + usemapsize = usemapsize >> pageblock_order; + usemapsize *= NR_PAGEBLOCK_BITS; + usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); + + return usemapsize / 8; +} + +static void __ref setup_usemap(struct zone *zone) +{ + unsigned long usemapsize = usemap_size(zone->zone_start_pfn, + zone->spanned_pages); + zone->pageblock_flags = NULL; + if (usemapsize) { + zone->pageblock_flags = + memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, + zone_to_nid(zone)); + if (!zone->pageblock_flags) + panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", + usemapsize, zone->name, zone_to_nid(zone)); + } +} +#else +static inline void setup_usemap(struct zone *zone) {} +#endif /* CONFIG_SPARSEMEM */ + +#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE + +/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ +void __init set_pageblock_order(void) +{ + unsigned int order = MAX_ORDER; + + /* Check that pageblock_nr_pages has not already been setup */ + if (pageblock_order) + return; + + /* Don't let pageblocks exceed the maximum allocation granularity. */ + if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) + order = HUGETLB_PAGE_ORDER; + + /* + * Assume the largest contiguous order of interest is a huge page. + * This value may be variable depending on boot parameters on IA64 and + * powerpc. + */ + pageblock_order = order; +} +#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ + +/* + * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() + * is unused as pageblock_order is set at compile-time. See + * include/linux/pageblock-flags.h for the values of pageblock_order based on + * the kernel config + */ +void __init set_pageblock_order(void) +{ +} + +#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ + +/* + * Set up the zone data structures + * - init pgdat internals + * - init all zones belonging to this node + * + * NOTE: this function is only called during memory hotplug + */ +#ifdef CONFIG_MEMORY_HOTPLUG +void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) +{ + int nid = pgdat->node_id; + enum zone_type z; + int cpu; + + pgdat_init_internals(pgdat); + + if (pgdat->per_cpu_nodestats == &boot_nodestats) + pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); + + /* + * Reset the nr_zones, order and highest_zoneidx before reuse. + * Note that kswapd will init kswapd_highest_zoneidx properly + * when it starts in the near future. + */ + pgdat->nr_zones = 0; + pgdat->kswapd_order = 0; + pgdat->kswapd_highest_zoneidx = 0; + pgdat->node_start_pfn = 0; + for_each_online_cpu(cpu) { + struct per_cpu_nodestat *p; + + p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); + memset(p, 0, sizeof(*p)); + } + + for (z = 0; z < MAX_NR_ZONES; z++) + zone_init_internals(&pgdat->node_zones[z], z, nid, 0); +} +#endif + +/* + * Set up the zone data structures: + * - mark all pages reserved + * - mark all memory queues empty + * - clear the memory bitmaps + * + * NOTE: pgdat should get zeroed by caller. + * NOTE: this function is only called during early init. + */ +static void __init free_area_init_core(struct pglist_data *pgdat) +{ + enum zone_type j; + int nid = pgdat->node_id; + + pgdat_init_internals(pgdat); + pgdat->per_cpu_nodestats = &boot_nodestats; + + for (j = 0; j < MAX_NR_ZONES; j++) { + struct zone *zone = pgdat->node_zones + j; + unsigned long size, freesize, memmap_pages; + + size = zone->spanned_pages; + freesize = zone->present_pages; + + /* + * Adjust freesize so that it accounts for how much memory + * is used by this zone for memmap. This affects the watermark + * and per-cpu initialisations + */ + memmap_pages = calc_memmap_size(size, freesize); + if (!is_highmem_idx(j)) { + if (freesize >= memmap_pages) { + freesize -= memmap_pages; + if (memmap_pages) + pr_debug(" %s zone: %lu pages used for memmap\n", + zone_names[j], memmap_pages); + } else + pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", + zone_names[j], memmap_pages, freesize); + } + + /* Account for reserved pages */ + if (j == 0 && freesize > dma_reserve) { + freesize -= dma_reserve; + pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); + } + + if (!is_highmem_idx(j)) + nr_kernel_pages += freesize; + /* Charge for highmem memmap if there are enough kernel pages */ + else if (nr_kernel_pages > memmap_pages * 2) + nr_kernel_pages -= memmap_pages; + nr_all_pages += freesize; + + /* + * Set an approximate value for lowmem here, it will be adjusted + * when the bootmem allocator frees pages into the buddy system. + * And all highmem pages will be managed by the buddy system. + */ + zone_init_internals(zone, j, nid, freesize); + + if (!size) + continue; + + set_pageblock_order(); + setup_usemap(zone); + init_currently_empty_zone(zone, zone->zone_start_pfn, size); + } +} + +void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, + phys_addr_t min_addr, int nid, bool exact_nid) +{ + void *ptr; + + if (exact_nid) + ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, + MEMBLOCK_ALLOC_ACCESSIBLE, + nid); + else + ptr = memblock_alloc_try_nid_raw(size, align, min_addr, + MEMBLOCK_ALLOC_ACCESSIBLE, + nid); + + if (ptr && size > 0) + page_init_poison(ptr, size); + + return ptr; +} + +#ifdef CONFIG_FLATMEM +static void __init alloc_node_mem_map(struct pglist_data *pgdat) +{ + unsigned long __maybe_unused start = 0; + unsigned long __maybe_unused offset = 0; + + /* Skip empty nodes */ + if (!pgdat->node_spanned_pages) + return; + + start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); + offset = pgdat->node_start_pfn - start; + /* ia64 gets its own node_mem_map, before this, without bootmem */ + if (!pgdat->node_mem_map) { + unsigned long size, end; + struct page *map; + + /* + * The zone's endpoints aren't required to be MAX_ORDER + * aligned but the node_mem_map endpoints must be in order + * for the buddy allocator to function correctly. + */ + end = pgdat_end_pfn(pgdat); + end = ALIGN(end, MAX_ORDER_NR_PAGES); + size = (end - start) * sizeof(struct page); + map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, + pgdat->node_id, false); + if (!map) + panic("Failed to allocate %ld bytes for node %d memory map\n", + size, pgdat->node_id); + pgdat->node_mem_map = map + offset; + } + pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", + __func__, pgdat->node_id, (unsigned long)pgdat, + (unsigned long)pgdat->node_mem_map); +#ifndef CONFIG_NUMA + /* + * With no DISCONTIG, the global mem_map is just set as node 0's + */ + if (pgdat == NODE_DATA(0)) { + mem_map = NODE_DATA(0)->node_mem_map; + if (page_to_pfn(mem_map) != pgdat->node_start_pfn) + mem_map -= offset; + } +#endif +} +#else +static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } +#endif /* CONFIG_FLATMEM */ + +/** + * get_pfn_range_for_nid - Return the start and end page frames for a node + * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. + * @start_pfn: Passed by reference. On return, it will have the node start_pfn. + * @end_pfn: Passed by reference. On return, it will have the node end_pfn. + * + * It returns the start and end page frame of a node based on information + * provided by memblock_set_node(). If called for a node + * with no available memory, a warning is printed and the start and end + * PFNs will be 0. + */ +void __init get_pfn_range_for_nid(unsigned int nid, + unsigned long *start_pfn, unsigned long *end_pfn) +{ + unsigned long this_start_pfn, this_end_pfn; + int i; + + *start_pfn = -1UL; + *end_pfn = 0; + + for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { + *start_pfn = min(*start_pfn, this_start_pfn); + *end_pfn = max(*end_pfn, this_end_pfn); + } + + if (*start_pfn == -1UL) + *start_pfn = 0; +} + +static void __init free_area_init_node(int nid) +{ + pg_data_t *pgdat = NODE_DATA(nid); + unsigned long start_pfn = 0; + unsigned long end_pfn = 0; + + /* pg_data_t should be reset to zero when it's allocated */ + WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); + + get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); + + pgdat->node_id = nid; + pgdat->node_start_pfn = start_pfn; + pgdat->per_cpu_nodestats = NULL; + + if (start_pfn != end_pfn) { + pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, + (u64)start_pfn << PAGE_SHIFT, + end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); + } else { + pr_info("Initmem setup node %d as memoryless\n", nid); + } + + calculate_node_totalpages(pgdat, start_pfn, end_pfn); + + alloc_node_mem_map(pgdat); + pgdat_set_deferred_range(pgdat); + + free_area_init_core(pgdat); + lru_gen_init_pgdat(pgdat); +} + +/* Any regular or high memory on that node ? */ +static void check_for_memory(pg_data_t *pgdat, int nid) +{ + enum zone_type zone_type; + + for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { + struct zone *zone = &pgdat->node_zones[zone_type]; + if (populated_zone(zone)) { + if (IS_ENABLED(CONFIG_HIGHMEM)) + node_set_state(nid, N_HIGH_MEMORY); + if (zone_type <= ZONE_NORMAL) + node_set_state(nid, N_NORMAL_MEMORY); + break; + } + } +} + +#if MAX_NUMNODES > 1 +/* + * Figure out the number of possible node ids. + */ +void __init setup_nr_node_ids(void) +{ + unsigned int highest; + + highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); + nr_node_ids = highest + 1; +} +#endif + +static void __init free_area_init_memoryless_node(int nid) +{ + free_area_init_node(nid); +} + +/* + * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For + * such cases we allow max_zone_pfn sorted in the descending order + */ +static bool arch_has_descending_max_zone_pfns(void) +{ + return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); +} + +/** + * free_area_init - Initialise all pg_data_t and zone data + * @max_zone_pfn: an array of max PFNs for each zone + * + * This will call free_area_init_node() for each active node in the system. + * Using the page ranges provided by memblock_set_node(), the size of each + * zone in each node and their holes is calculated. If the maximum PFN + * between two adjacent zones match, it is assumed that the zone is empty. + * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed + * that arch_max_dma32_pfn has no pages. It is also assumed that a zone + * starts where the previous one ended. For example, ZONE_DMA32 starts + * at arch_max_dma_pfn. + */ +void __init free_area_init(unsigned long *max_zone_pfn) +{ + unsigned long start_pfn, end_pfn; + int i, nid, zone; + bool descending; + + /* Record where the zone boundaries are */ + memset(arch_zone_lowest_possible_pfn, 0, + sizeof(arch_zone_lowest_possible_pfn)); + memset(arch_zone_highest_possible_pfn, 0, + sizeof(arch_zone_highest_possible_pfn)); + + start_pfn = PHYS_PFN(memblock_start_of_DRAM()); + descending = arch_has_descending_max_zone_pfns(); + + for (i = 0; i < MAX_NR_ZONES; i++) { + if (descending) + zone = MAX_NR_ZONES - i - 1; + else + zone = i; + + if (zone == ZONE_MOVABLE) + continue; + + end_pfn = max(max_zone_pfn[zone], start_pfn); + arch_zone_lowest_possible_pfn[zone] = start_pfn; + arch_zone_highest_possible_pfn[zone] = end_pfn; + + start_pfn = end_pfn; + } + + /* Find the PFNs that ZONE_MOVABLE begins at in each node */ + memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); + find_zone_movable_pfns_for_nodes(); + + /* Print out the zone ranges */ + pr_info("Zone ranges:\n"); + for (i = 0; i < MAX_NR_ZONES; i++) { + if (i == ZONE_MOVABLE) + continue; + pr_info(" %-8s ", zone_names[i]); + if (arch_zone_lowest_possible_pfn[i] == + arch_zone_highest_possible_pfn[i]) + pr_cont("empty\n"); + else + pr_cont("[mem %#018Lx-%#018Lx]\n", + (u64)arch_zone_lowest_possible_pfn[i] + << PAGE_SHIFT, + ((u64)arch_zone_highest_possible_pfn[i] + << PAGE_SHIFT) - 1); + } + + /* Print out the PFNs ZONE_MOVABLE begins at in each node */ + pr_info("Movable zone start for each node\n"); + for (i = 0; i < MAX_NUMNODES; i++) { + if (zone_movable_pfn[i]) + pr_info(" Node %d: %#018Lx\n", i, + (u64)zone_movable_pfn[i] << PAGE_SHIFT); + } + + /* + * Print out the early node map, and initialize the + * subsection-map relative to active online memory ranges to + * enable future "sub-section" extensions of the memory map. + */ + pr_info("Early memory node ranges\n"); + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { + pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, + (u64)start_pfn << PAGE_SHIFT, + ((u64)end_pfn << PAGE_SHIFT) - 1); + subsection_map_init(start_pfn, end_pfn - start_pfn); + } + + /* Initialise every node */ + mminit_verify_pageflags_layout(); + setup_nr_node_ids(); + for_each_node(nid) { + pg_data_t *pgdat; + + if (!node_online(nid)) { + pr_info("Initializing node %d as memoryless\n", nid); + + /* Allocator not initialized yet */ + pgdat = arch_alloc_nodedata(nid); + if (!pgdat) + panic("Cannot allocate %zuB for node %d.\n", + sizeof(*pgdat), nid); + arch_refresh_nodedata(nid, pgdat); + free_area_init_memoryless_node(nid); + + /* + * We do not want to confuse userspace by sysfs + * files/directories for node without any memory + * attached to it, so this node is not marked as + * N_MEMORY and not marked online so that no sysfs + * hierarchy will be created via register_one_node for + * it. The pgdat will get fully initialized by + * hotadd_init_pgdat() when memory is hotplugged into + * this node. + */ + continue; + } + + pgdat = NODE_DATA(nid); + free_area_init_node(nid); + + /* Any memory on that node */ + if (pgdat->node_present_pages) + node_set_state(nid, N_MEMORY); + check_for_memory(pgdat, nid); + } + + memmap_init(); + + /* disable hash distribution for systems with a single node */ + fixup_hashdist(); +} + +/** + * node_map_pfn_alignment - determine the maximum internode alignment + * + * This function should be called after node map is populated and sorted. + * It calculates the maximum power of two alignment which can distinguish + * all the nodes. + * + * For example, if all nodes are 1GiB and aligned to 1GiB, the return value + * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the + * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is + * shifted, 1GiB is enough and this function will indicate so. + * + * This is used to test whether pfn -> nid mapping of the chosen memory + * model has fine enough granularity to avoid incorrect mapping for the + * populated node map. + * + * Return: the determined alignment in pfn's. 0 if there is no alignment + * requirement (single node). + */ +unsigned long __init node_map_pfn_alignment(void) +{ + unsigned long accl_mask = 0, last_end = 0; + unsigned long start, end, mask; + int last_nid = NUMA_NO_NODE; + int i, nid; + + for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { + if (!start || last_nid < 0 || last_nid == nid) { + last_nid = nid; + last_end = end; + continue; + } + + /* + * Start with a mask granular enough to pin-point to the + * start pfn and tick off bits one-by-one until it becomes + * too coarse to separate the current node from the last. + */ + mask = ~((1 << __ffs(start)) - 1); + while (mask && last_end <= (start & (mask << 1))) + mask <<= 1; + + /* accumulate all internode masks */ + accl_mask |= mask; + } + + /* convert mask to number of pages */ + return ~accl_mask + 1; +} + +#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT +static void __init deferred_free_range(unsigned long pfn, + unsigned long nr_pages) +{ + struct page *page; + unsigned long i; + + if (!nr_pages) + return; + + page = pfn_to_page(pfn); + + /* Free a large naturally-aligned chunk if possible */ + if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { + for (i = 0; i < nr_pages; i += pageblock_nr_pages) + set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); + __free_pages_core(page, MAX_ORDER); + return; + } + + for (i = 0; i < nr_pages; i++, page++, pfn++) { + if (pageblock_aligned(pfn)) + set_pageblock_migratetype(page, MIGRATE_MOVABLE); + __free_pages_core(page, 0); + } +} + +/* Completion tracking for deferred_init_memmap() threads */ +static atomic_t pgdat_init_n_undone __initdata; +static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); + +static inline void __init pgdat_init_report_one_done(void) +{ + if (atomic_dec_and_test(&pgdat_init_n_undone)) + complete(&pgdat_init_all_done_comp); +} + +/* + * Returns true if page needs to be initialized or freed to buddy allocator. + * + * We check if a current MAX_ORDER block is valid by only checking the validity + * of the head pfn. + */ +static inline bool __init deferred_pfn_valid(unsigned long pfn) +{ + if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn)) + return false; + return true; +} + +/* + * Free pages to buddy allocator. Try to free aligned pages in + * MAX_ORDER_NR_PAGES sizes. + */ +static void __init deferred_free_pages(unsigned long pfn, + unsigned long end_pfn) +{ + unsigned long nr_free = 0; + + for (; pfn < end_pfn; pfn++) { + if (!deferred_pfn_valid(pfn)) { + deferred_free_range(pfn - nr_free, nr_free); + nr_free = 0; + } else if (IS_MAX_ORDER_ALIGNED(pfn)) { + deferred_free_range(pfn - nr_free, nr_free); + nr_free = 1; + } else { + nr_free++; + } + } + /* Free the last block of pages to allocator */ + deferred_free_range(pfn - nr_free, nr_free); +} + +/* + * Initialize struct pages. We minimize pfn page lookups and scheduler checks + * by performing it only once every MAX_ORDER_NR_PAGES. + * Return number of pages initialized. + */ +static unsigned long __init deferred_init_pages(struct zone *zone, + unsigned long pfn, + unsigned long end_pfn) +{ + int nid = zone_to_nid(zone); + unsigned long nr_pages = 0; + int zid = zone_idx(zone); + struct page *page = NULL; + + for (; pfn < end_pfn; pfn++) { + if (!deferred_pfn_valid(pfn)) { + page = NULL; + continue; + } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) { + page = pfn_to_page(pfn); + } else { + page++; + } + __init_single_page(page, pfn, zid, nid); + nr_pages++; + } + return (nr_pages); +} + +/* + * This function is meant to pre-load the iterator for the zone init. + * Specifically it walks through the ranges until we are caught up to the + * first_init_pfn value and exits there. If we never encounter the value we + * return false indicating there are no valid ranges left. + */ +static bool __init +deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, + unsigned long *spfn, unsigned long *epfn, + unsigned long first_init_pfn) +{ + u64 j; + + /* + * Start out by walking through the ranges in this zone that have + * already been initialized. We don't need to do anything with them + * so we just need to flush them out of the system. + */ + for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { + if (*epfn <= first_init_pfn) + continue; + if (*spfn < first_init_pfn) + *spfn = first_init_pfn; + *i = j; + return true; + } + + return false; +} + +/* + * Initialize and free pages. We do it in two loops: first we initialize + * struct page, then free to buddy allocator, because while we are + * freeing pages we can access pages that are ahead (computing buddy + * page in __free_one_page()). + * + * In order to try and keep some memory in the cache we have the loop + * broken along max page order boundaries. This way we will not cause + * any issues with the buddy page computation. + */ +static unsigned long __init +deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, + unsigned long *end_pfn) +{ + unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); + unsigned long spfn = *start_pfn, epfn = *end_pfn; + unsigned long nr_pages = 0; + u64 j = *i; + + /* First we loop through and initialize the page values */ + for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { + unsigned long t; + + if (mo_pfn <= *start_pfn) + break; + + t = min(mo_pfn, *end_pfn); + nr_pages += deferred_init_pages(zone, *start_pfn, t); + + if (mo_pfn < *end_pfn) { + *start_pfn = mo_pfn; + break; + } + } + + /* Reset values and now loop through freeing pages as needed */ + swap(j, *i); + + for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { + unsigned long t; + + if (mo_pfn <= spfn) + break; + + t = min(mo_pfn, epfn); + deferred_free_pages(spfn, t); + + if (mo_pfn <= epfn) + break; + } + + return nr_pages; +} + +static void __init +deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, + void *arg) +{ + unsigned long spfn, epfn; + struct zone *zone = arg; + u64 i; + + deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); + + /* + * Initialize and free pages in MAX_ORDER sized increments so that we + * can avoid introducing any issues with the buddy allocator. + */ + while (spfn < end_pfn) { + deferred_init_maxorder(&i, zone, &spfn, &epfn); + cond_resched(); + } +} + +/* An arch may override for more concurrency. */ +__weak int __init +deferred_page_init_max_threads(const struct cpumask *node_cpumask) +{ + return 1; +} + +/* Initialise remaining memory on a node */ +static int __init deferred_init_memmap(void *data) +{ + pg_data_t *pgdat = data; + const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); + unsigned long spfn = 0, epfn = 0; + unsigned long first_init_pfn, flags; + unsigned long start = jiffies; + struct zone *zone; + int zid, max_threads; + u64 i; + + /* Bind memory initialisation thread to a local node if possible */ + if (!cpumask_empty(cpumask)) + set_cpus_allowed_ptr(current, cpumask); + + pgdat_resize_lock(pgdat, &flags); + first_init_pfn = pgdat->first_deferred_pfn; + if (first_init_pfn == ULONG_MAX) { + pgdat_resize_unlock(pgdat, &flags); + pgdat_init_report_one_done(); + return 0; + } + + /* Sanity check boundaries */ + BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); + BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); + pgdat->first_deferred_pfn = ULONG_MAX; + + /* + * Once we unlock here, the zone cannot be grown anymore, thus if an + * interrupt thread must allocate this early in boot, zone must be + * pre-grown prior to start of deferred page initialization. + */ + pgdat_resize_unlock(pgdat, &flags); + + /* Only the highest zone is deferred so find it */ + for (zid = 0; zid < MAX_NR_ZONES; zid++) { + zone = pgdat->node_zones + zid; + if (first_init_pfn < zone_end_pfn(zone)) + break; + } + + /* If the zone is empty somebody else may have cleared out the zone */ + if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, + first_init_pfn)) + goto zone_empty; + + max_threads = deferred_page_init_max_threads(cpumask); + + while (spfn < epfn) { + unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); + struct padata_mt_job job = { + .thread_fn = deferred_init_memmap_chunk, + .fn_arg = zone, + .start = spfn, + .size = epfn_align - spfn, + .align = PAGES_PER_SECTION, + .min_chunk = PAGES_PER_SECTION, + .max_threads = max_threads, + }; + + padata_do_multithreaded(&job); + deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, + epfn_align); + } +zone_empty: + /* Sanity check that the next zone really is unpopulated */ + WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); + + pr_info("node %d deferred pages initialised in %ums\n", + pgdat->node_id, jiffies_to_msecs(jiffies - start)); + + pgdat_init_report_one_done(); + return 0; +} + +/* + * If this zone has deferred pages, try to grow it by initializing enough + * deferred pages to satisfy the allocation specified by order, rounded up to + * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments + * of SECTION_SIZE bytes by initializing struct pages in increments of + * PAGES_PER_SECTION * sizeof(struct page) bytes. + * + * Return true when zone was grown, otherwise return false. We return true even + * when we grow less than requested, to let the caller decide if there are + * enough pages to satisfy the allocation. + * + * Note: We use noinline because this function is needed only during boot, and + * it is called from a __ref function _deferred_grow_zone. This way we are + * making sure that it is not inlined into permanent text section. + */ +bool __init deferred_grow_zone(struct zone *zone, unsigned int order) +{ + unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); + pg_data_t *pgdat = zone->zone_pgdat; + unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; + unsigned long spfn, epfn, flags; + unsigned long nr_pages = 0; + u64 i; + + /* Only the last zone may have deferred pages */ + if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) + return false; + + pgdat_resize_lock(pgdat, &flags); + + /* + * If someone grew this zone while we were waiting for spinlock, return + * true, as there might be enough pages already. + */ + if (first_deferred_pfn != pgdat->first_deferred_pfn) { + pgdat_resize_unlock(pgdat, &flags); + return true; + } + + /* If the zone is empty somebody else may have cleared out the zone */ + if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, + first_deferred_pfn)) { + pgdat->first_deferred_pfn = ULONG_MAX; + pgdat_resize_unlock(pgdat, &flags); + /* Retry only once. */ + return first_deferred_pfn != ULONG_MAX; + } + + /* + * Initialize and free pages in MAX_ORDER sized increments so + * that we can avoid introducing any issues with the buddy + * allocator. + */ + while (spfn < epfn) { + /* update our first deferred PFN for this section */ + first_deferred_pfn = spfn; + + nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); + touch_nmi_watchdog(); + + /* We should only stop along section boundaries */ + if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) + continue; + + /* If our quota has been met we can stop here */ + if (nr_pages >= nr_pages_needed) + break; + } + + pgdat->first_deferred_pfn = spfn; + pgdat_resize_unlock(pgdat, &flags); + + return nr_pages > 0; +} + +#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ + +#ifdef CONFIG_CMA +void __init init_cma_reserved_pageblock(struct page *page) +{ + unsigned i = pageblock_nr_pages; + struct page *p = page; + + do { + __ClearPageReserved(p); + set_page_count(p, 0); + } while (++p, --i); + + set_pageblock_migratetype(page, MIGRATE_CMA); + set_page_refcounted(page); + __free_pages(page, pageblock_order); + + adjust_managed_page_count(page, pageblock_nr_pages); + page_zone(page)->cma_pages += pageblock_nr_pages; +} +#endif + +void __init page_alloc_init_late(void) +{ + struct zone *zone; + int nid; + +#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT + + /* There will be num_node_state(N_MEMORY) threads */ + atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); + for_each_node_state(nid, N_MEMORY) { + kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); + } + + /* Block until all are initialised */ + wait_for_completion(&pgdat_init_all_done_comp); + + /* + * We initialized the rest of the deferred pages. Permanently disable + * on-demand struct page initialization. + */ + static_branch_disable(&deferred_pages); + + /* Reinit limits that are based on free pages after the kernel is up */ + files_maxfiles_init(); +#endif + + buffer_init(); + + /* Discard memblock private memory */ + memblock_discard(); + + for_each_node_state(nid, N_MEMORY) + shuffle_free_memory(NODE_DATA(nid)); + + for_each_populated_zone(zone) + set_zone_contiguous(zone); + + /* Initialize page ext after all struct pages are initialized. */ + if (deferred_struct_pages) + page_ext_init(); +} + +#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES +/* + * Returns the number of pages that arch has reserved but + * is not known to alloc_large_system_hash(). + */ +static unsigned long __init arch_reserved_kernel_pages(void) +{ + return 0; +} +#endif + +/* + * Adaptive scale is meant to reduce sizes of hash tables on large memory + * machines. As memory size is increased the scale is also increased but at + * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory + * quadruples the scale is increased by one, which means the size of hash table + * only doubles, instead of quadrupling as well. + * Because 32-bit systems cannot have large physical memory, where this scaling + * makes sense, it is disabled on such platforms. + */ +#if __BITS_PER_LONG > 32 +#define ADAPT_SCALE_BASE (64ul << 30) +#define ADAPT_SCALE_SHIFT 2 +#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) +#endif + +/* + * allocate a large system hash table from bootmem + * - it is assumed that the hash table must contain an exact power-of-2 + * quantity of entries + * - limit is the number of hash buckets, not the total allocation size + */ +void *__init alloc_large_system_hash(const char *tablename, + unsigned long bucketsize, + unsigned long numentries, + int scale, + int flags, + unsigned int *_hash_shift, + unsigned int *_hash_mask, + unsigned long low_limit, + unsigned long high_limit) +{ + unsigned long long max = high_limit; + unsigned long log2qty, size; + void *table; + gfp_t gfp_flags; + bool virt; + bool huge; + + /* allow the kernel cmdline to have a say */ + if (!numentries) { + /* round applicable memory size up to nearest megabyte */ + numentries = nr_kernel_pages; + numentries -= arch_reserved_kernel_pages(); + + /* It isn't necessary when PAGE_SIZE >= 1MB */ + if (PAGE_SIZE < SZ_1M) + numentries = round_up(numentries, SZ_1M / PAGE_SIZE); + +#if __BITS_PER_LONG > 32 + if (!high_limit) { + unsigned long adapt; + + for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; + adapt <<= ADAPT_SCALE_SHIFT) + scale++; + } +#endif + + /* limit to 1 bucket per 2^scale bytes of low memory */ + if (scale > PAGE_SHIFT) + numentries >>= (scale - PAGE_SHIFT); + else + numentries <<= (PAGE_SHIFT - scale); + + /* Make sure we've got at least a 0-order allocation.. */ + if (unlikely(flags & HASH_SMALL)) { + /* Makes no sense without HASH_EARLY */ + WARN_ON(!(flags & HASH_EARLY)); + if (!(numentries >> *_hash_shift)) { + numentries = 1UL << *_hash_shift; + BUG_ON(!numentries); + } + } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) + numentries = PAGE_SIZE / bucketsize; + } + numentries = roundup_pow_of_two(numentries); + + /* limit allocation size to 1/16 total memory by default */ + if (max == 0) { + max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; + do_div(max, bucketsize); + } + max = min(max, 0x80000000ULL); + + if (numentries < low_limit) + numentries = low_limit; + if (numentries > max) + numentries = max; + + log2qty = ilog2(numentries); + + gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; + do { + virt = false; + size = bucketsize << log2qty; + if (flags & HASH_EARLY) { + if (flags & HASH_ZERO) + table = memblock_alloc(size, SMP_CACHE_BYTES); + else + table = memblock_alloc_raw(size, + SMP_CACHE_BYTES); + } else if (get_order(size) > MAX_ORDER || hashdist) { + table = vmalloc_huge(size, gfp_flags); + virt = true; + if (table) + huge = is_vm_area_hugepages(table); + } else { + /* + * If bucketsize is not a power-of-two, we may free + * some pages at the end of hash table which + * alloc_pages_exact() automatically does + */ + table = alloc_pages_exact(size, gfp_flags); + kmemleak_alloc(table, size, 1, gfp_flags); + } + } while (!table && size > PAGE_SIZE && --log2qty); + + if (!table) + panic("Failed to allocate %s hash table\n", tablename); + + pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", + tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, + virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); + + if (_hash_shift) + *_hash_shift = log2qty; + if (_hash_mask) + *_hash_mask = (1 << log2qty) - 1; + + return table; +} + +/** + * set_dma_reserve - set the specified number of pages reserved in the first zone + * @new_dma_reserve: The number of pages to mark reserved + * + * The per-cpu batchsize and zone watermarks are determined by managed_pages. + * In the DMA zone, a significant percentage may be consumed by kernel image + * and other unfreeable allocations which can skew the watermarks badly. This + * function may optionally be used to account for unfreeable pages in the + * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and + * smaller per-cpu batchsize. + */ +void __init set_dma_reserve(unsigned long new_dma_reserve) +{ + dma_reserve = new_dma_reserve; +} + +void __init memblock_free_pages(struct page *page, unsigned long pfn, + unsigned int order) +{ + if (!early_page_initialised(pfn)) + return; + if (!kmsan_memblock_free_pages(page, order)) { + /* KMSAN will take care of these pages. */ + return; + } + __free_pages_core(page, order); +} + +static bool _init_on_alloc_enabled_early __read_mostly + = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); +static int __init early_init_on_alloc(char *buf) +{ + + return kstrtobool(buf, &_init_on_alloc_enabled_early); +} +early_param("init_on_alloc", early_init_on_alloc); + +static bool _init_on_free_enabled_early __read_mostly + = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); +static int __init early_init_on_free(char *buf) +{ + return kstrtobool(buf, &_init_on_free_enabled_early); +} +early_param("init_on_free", early_init_on_free); + +DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); + +/* + * Enable static keys related to various memory debugging and hardening options. + * Some override others, and depend on early params that are evaluated in the + * order of appearance. So we need to first gather the full picture of what was + * enabled, and then make decisions. + */ +static void __init mem_debugging_and_hardening_init(void) +{ + bool page_poisoning_requested = false; + bool want_check_pages = false; + +#ifdef CONFIG_PAGE_POISONING + /* + * Page poisoning is debug page alloc for some arches. If + * either of those options are enabled, enable poisoning. + */ + if (page_poisoning_enabled() || + (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && + debug_pagealloc_enabled())) { + static_branch_enable(&_page_poisoning_enabled); + page_poisoning_requested = true; + want_check_pages = true; + } +#endif + + if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && + page_poisoning_requested) { + pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " + "will take precedence over init_on_alloc and init_on_free\n"); + _init_on_alloc_enabled_early = false; + _init_on_free_enabled_early = false; + } + + if (_init_on_alloc_enabled_early) { + want_check_pages = true; + static_branch_enable(&init_on_alloc); + } else { + static_branch_disable(&init_on_alloc); + } + + if (_init_on_free_enabled_early) { + want_check_pages = true; + static_branch_enable(&init_on_free); + } else { + static_branch_disable(&init_on_free); + } + + if (IS_ENABLED(CONFIG_KMSAN) && + (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) + pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); + +#ifdef CONFIG_DEBUG_PAGEALLOC + if (debug_pagealloc_enabled()) { + want_check_pages = true; + static_branch_enable(&_debug_pagealloc_enabled); + + if (debug_guardpage_minorder()) + static_branch_enable(&_debug_guardpage_enabled); + } +#endif + + /* + * Any page debugging or hardening option also enables sanity checking + * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's + * enabled already. + */ + if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) + static_branch_enable(&check_pages_enabled); +} + +/* Report memory auto-initialization states for this boot. */ +static void __init report_meminit(void) +{ + const char *stack; + + if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) + stack = "all(pattern)"; + else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) + stack = "all(zero)"; + else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) + stack = "byref_all(zero)"; + else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) + stack = "byref(zero)"; + else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) + stack = "__user(zero)"; + else + stack = "off"; + + pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", + stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", + want_init_on_free() ? "on" : "off"); + if (want_init_on_free()) + pr_info("mem auto-init: clearing system memory may take some time...\n"); +} + +static void __init mem_init_print_info(void) +{ + unsigned long physpages, codesize, datasize, rosize, bss_size; + unsigned long init_code_size, init_data_size; + + physpages = get_num_physpages(); + codesize = _etext - _stext; + datasize = _edata - _sdata; + rosize = __end_rodata - __start_rodata; + bss_size = __bss_stop - __bss_start; + init_data_size = __init_end - __init_begin; + init_code_size = _einittext - _sinittext; + + /* + * Detect special cases and adjust section sizes accordingly: + * 1) .init.* may be embedded into .data sections + * 2) .init.text.* may be out of [__init_begin, __init_end], + * please refer to arch/tile/kernel/vmlinux.lds.S. + * 3) .rodata.* may be embedded into .text or .data sections. + */ +#define adj_init_size(start, end, size, pos, adj) \ + do { \ + if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ + size -= adj; \ + } while (0) + + adj_init_size(__init_begin, __init_end, init_data_size, + _sinittext, init_code_size); + adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); + adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); + adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); + adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); + +#undef adj_init_size + + pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" +#ifdef CONFIG_HIGHMEM + ", %luK highmem" +#endif + ")\n", + K(nr_free_pages()), K(physpages), + codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, + (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, + K(physpages - totalram_pages() - totalcma_pages), + K(totalcma_pages) +#ifdef CONFIG_HIGHMEM + , K(totalhigh_pages()) +#endif + ); +} + +/* + * Set up kernel memory allocators + */ +void __init mm_core_init(void) +{ + /* Initializations relying on SMP setup */ + build_all_zonelists(NULL); + page_alloc_init_cpuhp(); + + /* + * page_ext requires contiguous pages, + * bigger than MAX_ORDER unless SPARSEMEM. + */ + page_ext_init_flatmem(); + mem_debugging_and_hardening_init(); + kfence_alloc_pool(); + report_meminit(); + kmsan_init_shadow(); + stack_depot_early_init(); + mem_init(); + mem_init_print_info(); + kmem_cache_init(); + /* + * page_owner must be initialized after buddy is ready, and also after + * slab is ready so that stack_depot_init() works properly + */ + page_ext_init_flatmem_late(); + kmemleak_init(); + ptlock_cache_init(); + pgtable_cache_init(); + debug_objects_mem_init(); + vmalloc_init(); + /* If no deferred init page_ext now, as vmap is fully initialized */ + if (!deferred_struct_pages) + page_ext_init(); + /* Should be run before the first non-init thread is created */ + init_espfix_bsp(); + /* Should be run after espfix64 is set up. */ + pti_init(); + kmsan_init_runtime(); + mm_cache_init(); +} |