diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/ksm.c | 28 |
1 files changed, 28 insertions, 0 deletions
@@ -2082,8 +2082,22 @@ static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) tree_rmap_item = unstable_tree_search_insert(rmap_item, page, &tree_page); if (tree_rmap_item) { + bool split; + kpage = try_to_merge_two_pages(rmap_item, page, tree_rmap_item, tree_page); + /* + * If both pages we tried to merge belong to the same compound + * page, then we actually ended up increasing the reference + * count of the same compound page twice, and split_huge_page + * failed. + * Here we set a flag if that happened, and we use it later to + * try split_huge_page again. Since we call put_page right + * afterwards, the reference count will be correct and + * split_huge_page should succeed. + */ + split = PageTransCompound(page) + && compound_head(page) == compound_head(tree_page); put_page(tree_page); if (kpage) { /* @@ -2110,6 +2124,20 @@ static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) break_cow(tree_rmap_item); break_cow(rmap_item); } + } else if (split) { + /* + * We are here if we tried to merge two pages and + * failed because they both belonged to the same + * compound page. We will split the page now, but no + * merging will take place. + * We do not want to add the cost of a full lock; if + * the page is locked, it is better to skip it and + * perhaps try again later. + */ + if (!trylock_page(page)) + return; + split_huge_page(page); + unlock_page(page); } } } |