diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/compaction.c | 33 | ||||
-rw-r--r-- | mm/hugetlb.c | 116 |
2 files changed, 146 insertions, 3 deletions
diff --git a/mm/compaction.c b/mm/compaction.c index c4d8007221b7..b77e1382307f 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -788,7 +788,7 @@ static bool too_many_isolated(pg_data_t *pgdat) * Isolate all pages that can be migrated from the range specified by * [low_pfn, end_pfn). The range is expected to be within same pageblock. * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, - * or 0. + * -ENOMEM in case we could not allocate a page, or 0. * cc->migrate_pfn will contain the next pfn to scan. * * The pages are isolated on cc->migratepages list (not required to be empty), @@ -906,6 +906,29 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, valid_page = page; } + if (PageHuge(page) && cc->alloc_contig) { + ret = isolate_or_dissolve_huge_page(page); + + /* + * Fail isolation in case isolate_or_dissolve_huge_page() + * reports an error. In case of -ENOMEM, abort right away. + */ + if (ret < 0) { + /* Do not report -EBUSY down the chain */ + if (ret == -EBUSY) + ret = 0; + low_pfn += (1UL << compound_order(page)) - 1; + goto isolate_fail; + } + + /* + * Ok, the hugepage was dissolved. Now these pages are + * Buddy and cannot be re-allocated because they are + * isolated. Fall-through as the check below handles + * Buddy pages. + */ + } + /* * Skip if free. We read page order here without zone lock * which is generally unsafe, but the race window is small and @@ -1065,7 +1088,7 @@ isolate_fail_put: put_page(page); isolate_fail: - if (!skip_on_failure) + if (!skip_on_failure && ret != -ENOMEM) continue; /* @@ -1091,6 +1114,9 @@ isolate_fail: */ next_skip_pfn += 1UL << cc->order; } + + if (ret == -ENOMEM) + break; } /* @@ -1143,7 +1169,8 @@ fatal_pending: * @start_pfn: The first PFN to start isolating. * @end_pfn: The one-past-last PFN. * - * Returns -EAGAIN when contented, -EINTR in case of a signal pending or 0. + * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM + * in case we could not allocate a page, or 0. */ int isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 63760be2688e..92f3cd08946f 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -2267,6 +2267,122 @@ static void restore_reserve_on_error(struct hstate *h, } } +/* + * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one + * @h: struct hstate old page belongs to + * @old_page: Old page to dissolve + * Returns 0 on success, otherwise negated error. + */ +static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page) +{ + gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; + int nid = page_to_nid(old_page); + struct page *new_page; + int ret = 0; + + /* + * Before dissolving the page, we need to allocate a new one for the + * pool to remain stable. Using alloc_buddy_huge_page() allows us to + * not having to deal with prep_new_huge_page() and avoids dealing of any + * counters. This simplifies and let us do the whole thing under the + * lock. + */ + new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); + if (!new_page) + return -ENOMEM; + +retry: + spin_lock_irq(&hugetlb_lock); + if (!PageHuge(old_page)) { + /* + * Freed from under us. Drop new_page too. + */ + goto free_new; + } else if (page_count(old_page)) { + /* + * Someone has grabbed the page, fail for now. + */ + ret = -EBUSY; + goto free_new; + } else if (!HPageFreed(old_page)) { + /* + * Page's refcount is 0 but it has not been enqueued in the + * freelist yet. Race window is small, so we can succeed here if + * we retry. + */ + spin_unlock_irq(&hugetlb_lock); + cond_resched(); + goto retry; + } else { + /* + * Ok, old_page is still a genuine free hugepage. Remove it from + * the freelist and decrease the counters. These will be + * incremented again when calling __prep_account_new_huge_page() + * and enqueue_huge_page() for new_page. The counters will remain + * stable since this happens under the lock. + */ + remove_hugetlb_page(h, old_page, false); + + /* + * new_page needs to be initialized with the standard hugetlb + * state. This is normally done by prep_new_huge_page() but + * that takes hugetlb_lock which is already held so we need to + * open code it here. + * Reference count trick is needed because allocator gives us + * referenced page but the pool requires pages with 0 refcount. + */ + __prep_new_huge_page(new_page); + __prep_account_new_huge_page(h, nid); + page_ref_dec(new_page); + enqueue_huge_page(h, new_page); + + /* + * Pages have been replaced, we can safely free the old one. + */ + spin_unlock_irq(&hugetlb_lock); + update_and_free_page(h, old_page); + } + + return ret; + +free_new: + spin_unlock_irq(&hugetlb_lock); + __free_pages(new_page, huge_page_order(h)); + + return ret; +} + +int isolate_or_dissolve_huge_page(struct page *page) +{ + struct hstate *h; + struct page *head; + + /* + * The page might have been dissolved from under our feet, so make sure + * to carefully check the state under the lock. + * Return success when racing as if we dissolved the page ourselves. + */ + spin_lock_irq(&hugetlb_lock); + if (PageHuge(page)) { + head = compound_head(page); + h = page_hstate(head); + } else { + spin_unlock_irq(&hugetlb_lock); + return 0; + } + spin_unlock_irq(&hugetlb_lock); + + /* + * Fence off gigantic pages as there is a cyclic dependency between + * alloc_contig_range and them. Return -ENOMEM as this has the effect + * of bailing out right away without further retrying. + */ + if (hstate_is_gigantic(h)) + return -ENOMEM; + + return alloc_and_dissolve_huge_page(h, head); +} + struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr, int avoid_reserve) { |