diff options
Diffstat (limited to 'net/core/skbuff.c')
-rw-r--r-- | net/core/skbuff.c | 524 |
1 files changed, 288 insertions, 236 deletions
diff --git a/net/core/skbuff.c b/net/core/skbuff.c index 785daff48030..545a472273a5 100644 --- a/net/core/skbuff.c +++ b/net/core/skbuff.c @@ -119,151 +119,75 @@ static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) skb_panic(skb, sz, addr, __func__); } -/* - * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells - * the caller if emergency pfmemalloc reserves are being used. If it is and - * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves - * may be used. Otherwise, the packet data may be discarded until enough - * memory is free - */ -#define kmalloc_reserve(size, gfp, node, pfmemalloc) \ - __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) - -static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, - unsigned long ip, bool *pfmemalloc) -{ - void *obj; - bool ret_pfmemalloc = false; +#define NAPI_SKB_CACHE_SIZE 64 +#define NAPI_SKB_CACHE_BULK 16 +#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) - /* - * Try a regular allocation, when that fails and we're not entitled - * to the reserves, fail. - */ - obj = kmalloc_node_track_caller(size, - flags | __GFP_NOMEMALLOC | __GFP_NOWARN, - node); - if (obj || !(gfp_pfmemalloc_allowed(flags))) - goto out; +struct napi_alloc_cache { + struct page_frag_cache page; + unsigned int skb_count; + void *skb_cache[NAPI_SKB_CACHE_SIZE]; +}; - /* Try again but now we are using pfmemalloc reserves */ - ret_pfmemalloc = true; - obj = kmalloc_node_track_caller(size, flags, node); +static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); +static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); -out: - if (pfmemalloc) - *pfmemalloc = ret_pfmemalloc; +static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask, + unsigned int align_mask) +{ + struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); - return obj; + return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask); } -/* Allocate a new skbuff. We do this ourselves so we can fill in a few - * 'private' fields and also do memory statistics to find all the - * [BEEP] leaks. - * - */ - -/** - * __alloc_skb - allocate a network buffer - * @size: size to allocate - * @gfp_mask: allocation mask - * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache - * instead of head cache and allocate a cloned (child) skb. - * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for - * allocations in case the data is required for writeback - * @node: numa node to allocate memory on - * - * Allocate a new &sk_buff. The returned buffer has no headroom and a - * tail room of at least size bytes. The object has a reference count - * of one. The return is the buffer. On a failure the return is %NULL. - * - * Buffers may only be allocated from interrupts using a @gfp_mask of - * %GFP_ATOMIC. - */ -struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, - int flags, int node) +void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) { - struct kmem_cache *cache; - struct skb_shared_info *shinfo; - struct sk_buff *skb; - u8 *data; - bool pfmemalloc; - - cache = (flags & SKB_ALLOC_FCLONE) - ? skbuff_fclone_cache : skbuff_head_cache; - - if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) - gfp_mask |= __GFP_MEMALLOC; - - /* Get the HEAD */ - skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); - if (!skb) - goto out; - prefetchw(skb); - - /* We do our best to align skb_shared_info on a separate cache - * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives - * aligned memory blocks, unless SLUB/SLAB debug is enabled. - * Both skb->head and skb_shared_info are cache line aligned. - */ - size = SKB_DATA_ALIGN(size); - size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); - data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); - if (!data) - goto nodata; - /* kmalloc(size) might give us more room than requested. - * Put skb_shared_info exactly at the end of allocated zone, - * to allow max possible filling before reallocation. - */ - size = SKB_WITH_OVERHEAD(ksize(data)); - prefetchw(data + size); - - /* - * Only clear those fields we need to clear, not those that we will - * actually initialise below. Hence, don't put any more fields after - * the tail pointer in struct sk_buff! - */ - memset(skb, 0, offsetof(struct sk_buff, tail)); - /* Account for allocated memory : skb + skb->head */ - skb->truesize = SKB_TRUESIZE(size); - skb->pfmemalloc = pfmemalloc; - refcount_set(&skb->users, 1); - skb->head = data; - skb->data = data; - skb_reset_tail_pointer(skb); - skb->end = skb->tail + size; - skb->mac_header = (typeof(skb->mac_header))~0U; - skb->transport_header = (typeof(skb->transport_header))~0U; + fragsz = SKB_DATA_ALIGN(fragsz); - /* make sure we initialize shinfo sequentially */ - shinfo = skb_shinfo(skb); - memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); - atomic_set(&shinfo->dataref, 1); + return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); +} +EXPORT_SYMBOL(__napi_alloc_frag_align); - if (flags & SKB_ALLOC_FCLONE) { - struct sk_buff_fclones *fclones; +void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) +{ + struct page_frag_cache *nc; + void *data; - fclones = container_of(skb, struct sk_buff_fclones, skb1); + fragsz = SKB_DATA_ALIGN(fragsz); + if (in_irq() || irqs_disabled()) { + nc = this_cpu_ptr(&netdev_alloc_cache); + data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); + } else { + local_bh_disable(); + data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); + local_bh_enable(); + } + return data; +} +EXPORT_SYMBOL(__netdev_alloc_frag_align); - skb->fclone = SKB_FCLONE_ORIG; - refcount_set(&fclones->fclone_ref, 1); +static struct sk_buff *napi_skb_cache_get(void) +{ + struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); + struct sk_buff *skb; - fclones->skb2.fclone = SKB_FCLONE_CLONE; - } + if (unlikely(!nc->skb_count)) + nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, + GFP_ATOMIC, + NAPI_SKB_CACHE_BULK, + nc->skb_cache); + if (unlikely(!nc->skb_count)) + return NULL; - skb_set_kcov_handle(skb, kcov_common_handle()); + skb = nc->skb_cache[--nc->skb_count]; + kasan_unpoison_object_data(skbuff_head_cache, skb); -out: return skb; -nodata: - kmem_cache_free(cache, skb); - skb = NULL; - goto out; } -EXPORT_SYMBOL(__alloc_skb); /* Caller must provide SKB that is memset cleared */ -static struct sk_buff *__build_skb_around(struct sk_buff *skb, - void *data, unsigned int frag_size) +static void __build_skb_around(struct sk_buff *skb, void *data, + unsigned int frag_size) { struct skb_shared_info *shinfo; unsigned int size = frag_size ? : ksize(data); @@ -286,8 +210,6 @@ static struct sk_buff *__build_skb_around(struct sk_buff *skb, atomic_set(&shinfo->dataref, 1); skb_set_kcov_handle(skb, kcov_common_handle()); - - return skb; } /** @@ -318,8 +240,9 @@ struct sk_buff *__build_skb(void *data, unsigned int frag_size) return NULL; memset(skb, 0, offsetof(struct sk_buff, tail)); + __build_skb_around(skb, data, frag_size); - return __build_skb_around(skb, data, frag_size); + return skb; } /* build_skb() is wrapper over __build_skb(), that specifically @@ -352,9 +275,9 @@ struct sk_buff *build_skb_around(struct sk_buff *skb, if (unlikely(!skb)) return NULL; - skb = __build_skb_around(skb, data, frag_size); + __build_skb_around(skb, data, frag_size); - if (skb && frag_size) { + if (frag_size) { skb->head_frag = 1; if (page_is_pfmemalloc(virt_to_head_page(data))) skb->pfmemalloc = 1; @@ -363,56 +286,178 @@ struct sk_buff *build_skb_around(struct sk_buff *skb, } EXPORT_SYMBOL(build_skb_around); -#define NAPI_SKB_CACHE_SIZE 64 +/** + * __napi_build_skb - build a network buffer + * @data: data buffer provided by caller + * @frag_size: size of data, or 0 if head was kmalloced + * + * Version of __build_skb() that uses NAPI percpu caches to obtain + * skbuff_head instead of inplace allocation. + * + * Returns a new &sk_buff on success, %NULL on allocation failure. + */ +static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) +{ + struct sk_buff *skb; -struct napi_alloc_cache { - struct page_frag_cache page; - unsigned int skb_count; - void *skb_cache[NAPI_SKB_CACHE_SIZE]; -}; + skb = napi_skb_cache_get(); + if (unlikely(!skb)) + return NULL; -static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); -static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); + memset(skb, 0, offsetof(struct sk_buff, tail)); + __build_skb_around(skb, data, frag_size); -static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) + return skb; +} + +/** + * napi_build_skb - build a network buffer + * @data: data buffer provided by caller + * @frag_size: size of data, or 0 if head was kmalloced + * + * Version of __napi_build_skb() that takes care of skb->head_frag + * and skb->pfmemalloc when the data is a page or page fragment. + * + * Returns a new &sk_buff on success, %NULL on allocation failure. + */ +struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) { - struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); + struct sk_buff *skb = __napi_build_skb(data, frag_size); - return page_frag_alloc(&nc->page, fragsz, gfp_mask); + if (likely(skb) && frag_size) { + skb->head_frag = 1; + skb_propagate_pfmemalloc(virt_to_head_page(data), skb); + } + + return skb; } +EXPORT_SYMBOL(napi_build_skb); -void *napi_alloc_frag(unsigned int fragsz) +/* + * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells + * the caller if emergency pfmemalloc reserves are being used. If it is and + * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves + * may be used. Otherwise, the packet data may be discarded until enough + * memory is free + */ +static void *kmalloc_reserve(size_t size, gfp_t flags, int node, + bool *pfmemalloc) { - fragsz = SKB_DATA_ALIGN(fragsz); + void *obj; + bool ret_pfmemalloc = false; - return __napi_alloc_frag(fragsz, GFP_ATOMIC); + /* + * Try a regular allocation, when that fails and we're not entitled + * to the reserves, fail. + */ + obj = kmalloc_node_track_caller(size, + flags | __GFP_NOMEMALLOC | __GFP_NOWARN, + node); + if (obj || !(gfp_pfmemalloc_allowed(flags))) + goto out; + + /* Try again but now we are using pfmemalloc reserves */ + ret_pfmemalloc = true; + obj = kmalloc_node_track_caller(size, flags, node); + +out: + if (pfmemalloc) + *pfmemalloc = ret_pfmemalloc; + + return obj; } -EXPORT_SYMBOL(napi_alloc_frag); + +/* Allocate a new skbuff. We do this ourselves so we can fill in a few + * 'private' fields and also do memory statistics to find all the + * [BEEP] leaks. + * + */ /** - * netdev_alloc_frag - allocate a page fragment - * @fragsz: fragment size + * __alloc_skb - allocate a network buffer + * @size: size to allocate + * @gfp_mask: allocation mask + * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache + * instead of head cache and allocate a cloned (child) skb. + * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for + * allocations in case the data is required for writeback + * @node: numa node to allocate memory on + * + * Allocate a new &sk_buff. The returned buffer has no headroom and a + * tail room of at least size bytes. The object has a reference count + * of one. The return is the buffer. On a failure the return is %NULL. * - * Allocates a frag from a page for receive buffer. - * Uses GFP_ATOMIC allocations. + * Buffers may only be allocated from interrupts using a @gfp_mask of + * %GFP_ATOMIC. */ -void *netdev_alloc_frag(unsigned int fragsz) +struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, + int flags, int node) { - struct page_frag_cache *nc; - void *data; + struct kmem_cache *cache; + struct sk_buff *skb; + u8 *data; + bool pfmemalloc; - fragsz = SKB_DATA_ALIGN(fragsz); - if (in_irq() || irqs_disabled()) { - nc = this_cpu_ptr(&netdev_alloc_cache); - data = page_frag_alloc(nc, fragsz, GFP_ATOMIC); - } else { - local_bh_disable(); - data = __napi_alloc_frag(fragsz, GFP_ATOMIC); - local_bh_enable(); + cache = (flags & SKB_ALLOC_FCLONE) + ? skbuff_fclone_cache : skbuff_head_cache; + + if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) + gfp_mask |= __GFP_MEMALLOC; + + /* Get the HEAD */ + if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && + likely(node == NUMA_NO_NODE || node == numa_mem_id())) + skb = napi_skb_cache_get(); + else + skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); + if (unlikely(!skb)) + return NULL; + prefetchw(skb); + + /* We do our best to align skb_shared_info on a separate cache + * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives + * aligned memory blocks, unless SLUB/SLAB debug is enabled. + * Both skb->head and skb_shared_info are cache line aligned. + */ + size = SKB_DATA_ALIGN(size); + size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); + data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); + if (unlikely(!data)) + goto nodata; + /* kmalloc(size) might give us more room than requested. + * Put skb_shared_info exactly at the end of allocated zone, + * to allow max possible filling before reallocation. + */ + size = SKB_WITH_OVERHEAD(ksize(data)); + prefetchw(data + size); + + /* + * Only clear those fields we need to clear, not those that we will + * actually initialise below. Hence, don't put any more fields after + * the tail pointer in struct sk_buff! + */ + memset(skb, 0, offsetof(struct sk_buff, tail)); + __build_skb_around(skb, data, 0); + skb->pfmemalloc = pfmemalloc; + + if (flags & SKB_ALLOC_FCLONE) { + struct sk_buff_fclones *fclones; + + fclones = container_of(skb, struct sk_buff_fclones, skb1); + + skb->fclone = SKB_FCLONE_ORIG; + refcount_set(&fclones->fclone_ref, 1); + + fclones->skb2.fclone = SKB_FCLONE_CLONE; } - return data; + + return skb; + +nodata: + kmem_cache_free(cache, skb); + return NULL; } -EXPORT_SYMBOL(netdev_alloc_frag); +EXPORT_SYMBOL(__alloc_skb); /** * __netdev_alloc_skb - allocate an skbuff for rx on a specific device @@ -517,7 +562,8 @@ struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, if (len <= SKB_WITH_OVERHEAD(1024) || len > SKB_WITH_OVERHEAD(PAGE_SIZE) || (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { - skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); + skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, + NUMA_NO_NODE); if (!skb) goto skb_fail; goto skb_success; @@ -534,7 +580,7 @@ struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, if (unlikely(!data)) return NULL; - skb = __build_skb(data, len); + skb = __napi_build_skb(data, len); if (unlikely(!skb)) { skb_free_frag(data); return NULL; @@ -614,13 +660,14 @@ static void skb_release_data(struct sk_buff *skb) &shinfo->dataref)) return; + skb_zcopy_clear(skb, true); + for (i = 0; i < shinfo->nr_frags; i++) __skb_frag_unref(&shinfo->frags[i]); if (shinfo->frag_list) kfree_skb_list(shinfo->frag_list); - skb_zcopy_clear(skb, true); skb_free_head(skb); } @@ -864,43 +911,36 @@ void __consume_stateless_skb(struct sk_buff *skb) kfree_skbmem(skb); } -void __kfree_skb_flush(void) +static void napi_skb_cache_put(struct sk_buff *skb) { struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); + u32 i; - /* flush skb_cache if containing objects */ - if (nc->skb_count) { - kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, - nc->skb_cache); - nc->skb_count = 0; - } -} - -static inline void _kfree_skb_defer(struct sk_buff *skb) -{ - struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); - - /* drop skb->head and call any destructors for packet */ - skb_release_all(skb); - - /* record skb to CPU local list */ + kasan_poison_object_data(skbuff_head_cache, skb); nc->skb_cache[nc->skb_count++] = skb; -#ifdef CONFIG_SLUB - /* SLUB writes into objects when freeing */ - prefetchw(skb); -#endif - - /* flush skb_cache if it is filled */ if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { - kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, - nc->skb_cache); - nc->skb_count = 0; + for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) + kasan_unpoison_object_data(skbuff_head_cache, + nc->skb_cache[i]); + + kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, + nc->skb_cache + NAPI_SKB_CACHE_HALF); + nc->skb_count = NAPI_SKB_CACHE_HALF; } } + void __kfree_skb_defer(struct sk_buff *skb) { - _kfree_skb_defer(skb); + skb_release_all(skb); + napi_skb_cache_put(skb); +} + +void napi_skb_free_stolen_head(struct sk_buff *skb) +{ + skb_dst_drop(skb); + skb_ext_put(skb); + napi_skb_cache_put(skb); } void napi_consume_skb(struct sk_buff *skb, int budget) @@ -925,7 +965,8 @@ void napi_consume_skb(struct sk_buff *skb, int budget) return; } - _kfree_skb_defer(skb); + skb_release_all(skb); + napi_skb_cache_put(skb); } EXPORT_SYMBOL(napi_consume_skb); @@ -1102,7 +1143,7 @@ void mm_unaccount_pinned_pages(struct mmpin *mmp) } EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); -struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) +struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) { struct ubuf_info *uarg; struct sk_buff *skb; @@ -1122,25 +1163,26 @@ struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) return NULL; } - uarg->callback = sock_zerocopy_callback; + uarg->callback = msg_zerocopy_callback; uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; uarg->len = 1; uarg->bytelen = size; uarg->zerocopy = 1; + uarg->flags = SKBFL_ZEROCOPY_FRAG; refcount_set(&uarg->refcnt, 1); sock_hold(sk); return uarg; } -EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); +EXPORT_SYMBOL_GPL(msg_zerocopy_alloc); static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) { return container_of((void *)uarg, struct sk_buff, cb); } -struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, - struct ubuf_info *uarg) +struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, + struct ubuf_info *uarg) { if (uarg) { const u32 byte_limit = 1 << 19; /* limit to a few TSO */ @@ -1172,16 +1214,16 @@ struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, /* no extra ref when appending to datagram (MSG_MORE) */ if (sk->sk_type == SOCK_STREAM) - sock_zerocopy_get(uarg); + net_zcopy_get(uarg); return uarg; } } new_alloc: - return sock_zerocopy_alloc(sk, size); + return msg_zerocopy_alloc(sk, size); } -EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); +EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) { @@ -1203,7 +1245,7 @@ static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) return true; } -void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) +static void __msg_zerocopy_callback(struct ubuf_info *uarg) { struct sk_buff *tail, *skb = skb_from_uarg(uarg); struct sock_exterr_skb *serr; @@ -1231,7 +1273,7 @@ void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; serr->ee.ee_data = hi; serr->ee.ee_info = lo; - if (!success) + if (!uarg->zerocopy) serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; q = &sk->sk_error_queue; @@ -1250,32 +1292,28 @@ release: consume_skb(skb); sock_put(sk); } -EXPORT_SYMBOL_GPL(sock_zerocopy_callback); -void sock_zerocopy_put(struct ubuf_info *uarg) +void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, + bool success) { - if (uarg && refcount_dec_and_test(&uarg->refcnt)) { - if (uarg->callback) - uarg->callback(uarg, uarg->zerocopy); - else - consume_skb(skb_from_uarg(uarg)); - } + uarg->zerocopy = uarg->zerocopy & success; + + if (refcount_dec_and_test(&uarg->refcnt)) + __msg_zerocopy_callback(uarg); } -EXPORT_SYMBOL_GPL(sock_zerocopy_put); +EXPORT_SYMBOL_GPL(msg_zerocopy_callback); -void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) +void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) { - if (uarg) { - struct sock *sk = skb_from_uarg(uarg)->sk; + struct sock *sk = skb_from_uarg(uarg)->sk; - atomic_dec(&sk->sk_zckey); - uarg->len--; + atomic_dec(&sk->sk_zckey); + uarg->len--; - if (have_uref) - sock_zerocopy_put(uarg); - } + if (have_uref) + msg_zerocopy_callback(NULL, uarg, true); } -EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); +EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) { @@ -1339,7 +1377,7 @@ static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, * @skb: the skb to modify * @gfp_mask: allocation priority * - * This must be called on SKBTX_DEV_ZEROCOPY skb. + * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. * It will copy all frags into kernel and drop the reference * to userspace pages. * @@ -3276,8 +3314,7 @@ void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) { int pos = skb_headlen(skb); - skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & - SKBTX_SHARED_FRAG; + skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; skb_zerocopy_clone(skb1, skb, 0); if (len < pos) /* Split line is inside header. */ skb_split_inside_header(skb, skb1, len, pos); @@ -3292,7 +3329,19 @@ EXPORT_SYMBOL(skb_split); */ static int skb_prepare_for_shift(struct sk_buff *skb) { - return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); + int ret = 0; + + if (skb_cloned(skb)) { + /* Save and restore truesize: pskb_expand_head() may reallocate + * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we + * cannot change truesize at this point. + */ + unsigned int save_truesize = skb->truesize; + + ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); + skb->truesize = save_truesize; + } + return ret; } /** @@ -3901,12 +3950,8 @@ normal: } hsize = skb_headlen(head_skb) - offset; - if (hsize < 0) - hsize = 0; - if (hsize > len || !sg) - hsize = len; - if (!hsize && i >= nfrags && skb_headlen(list_skb) && + if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && (skb_headlen(list_skb) == len || sg)) { BUG_ON(skb_headlen(list_skb) > len); @@ -3949,6 +3994,11 @@ normal: skb_release_head_state(nskb); __skb_push(nskb, doffset); } else { + if (hsize < 0) + hsize = 0; + if (hsize > len || !sg) + hsize = len; + nskb = __alloc_skb(hsize + doffset + headroom, GFP_ATOMIC, skb_alloc_rx_flag(head_skb), NUMA_NO_NODE); @@ -4002,8 +4052,8 @@ normal: skb_copy_from_linear_data_offset(head_skb, offset, skb_put(nskb, hsize), hsize); - skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & - SKBTX_SHARED_FRAG; + skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & + SKBFL_SHARED_FRAG; if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) @@ -4723,6 +4773,7 @@ err: EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); void __skb_tstamp_tx(struct sk_buff *orig_skb, + const struct sk_buff *ack_skb, struct skb_shared_hwtstamps *hwtstamps, struct sock *sk, int tstype) { @@ -4745,7 +4796,8 @@ void __skb_tstamp_tx(struct sk_buff *orig_skb, if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && sk->sk_protocol == IPPROTO_TCP && sk->sk_type == SOCK_STREAM) { - skb = tcp_get_timestamping_opt_stats(sk, orig_skb); + skb = tcp_get_timestamping_opt_stats(sk, orig_skb, + ack_skb); opt_stats = true; } else #endif @@ -4774,7 +4826,7 @@ EXPORT_SYMBOL_GPL(__skb_tstamp_tx); void skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps) { - return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, + return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, SCM_TSTAMP_SND); } EXPORT_SYMBOL_GPL(skb_tstamp_tx); |