summaryrefslogtreecommitdiff
path: root/Documentation/devicetree/bindings/dma/dma.txt
AgeCommit message (Collapse)Author
2019-07-29dt-bindings: dmaengine: Add YAML schemas for the generic DMA bindingsMaxime Ripard
The DMA controllers and consumers have a bunch of generic properties that are needed in a device tree. Add a YAML schemas for those. Signed-off-by: Maxime Ripard <maxime.ripard@bootlin.com> Reviewed-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20190720092607.31095-1-maxime.ripard@bootlin.com Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-02-04Documentation: bindings: dma: Add binding for dma-channel-maskJohn Stultz
Some dma channels can be reserved for secure mode or other hardware on the SoC, so provide a binding for a bitmask listing the available channels for the kernel to use. This follows the pre-existing bcm,dma-channel-mask binding. Cc: Vinod Koul <vkoul@kernel.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Tanglei Han <hantanglei@huawei.com> Cc: Zhuangluan Su <suzhuangluan@hisilicon.com> Cc: Ryan Grachek <ryan@edited.us> Cc: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Cc: dmaengine@vger.kernel.org Cc: devicetree@vger.kernel.org Reviewed-by: Rob Herring <robh@kernel.org> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Vinod Koul <vkoul@kernel.org>
2015-05-09dmaengine: of_dma: Support for DMA routersPeter Ujfalusi
DMA routers are transparent devices used to mux DMA requests from peripherals to DMA controllers. They are used when the SoC integrates more devices with DMA requests then their controller can handle. DRA7x is one example of such SoC, where the sDMA can hanlde 128 DMA request lines, but in SoC level it has 205 DMA requests. The of_dma_router will be registered as of_dma_controller with special xlate function and additional parameters. The driver for the router is responsible to craft the dma_spec (in the of_dma_route_allocate callback) which can be used to requests a DMA channel from the real DMA controller. This way the router can be transparent for the system while remaining generic enough to be used in different environments. Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2014-05-23of: dma: doc fixesGeert Uytterhoeven
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2013-01-06of: dma: fix typos in generic dma binding definitionMatt Porter
Some semicolons were left out in the examples. The #dma-channels and #dma-requests properties have a prefix that is, by convention, reserved for cell size properties. Rename those properties to dma-channels and dma-requests. Signed-off-by: Matt Porter <mporter@ti.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Jon Hunter <jon-hunter@ti.com> Signed-off-by: Vinod Koul <vinod.koul@linux.intel.com>
2013-01-06of: Add generic device tree DMA helpersJon Hunter
This is based upon the work by Benoit Cousson [1] and Nicolas Ferre [2] to add some basic helpers to retrieve a DMA controller device_node and the DMA request/channel information. Aim of DMA helpers - The purpose of device-tree is to describe the capabilites of the hardware. Thinking about DMA controllers purely from the context of the hardware to begin with, we can describe a device in terms of a DMA controller as follows ... 1. Number of DMA controllers 2. Number of channels (maybe physical or logical) 3. Mapping of DMA requests signals to DMA controller 4. Number of DMA interrupts 5. Mapping of DMA interrupts to channels - With the above in mind the aim of the DT DMA helper functions is to extract the above information from the DT and provide to the appropriate driver. However, due to the vast number of DMA controllers and not all are using a common driver (such as DMA Engine) it has been seen that this is not a trivial task. In previous discussions on this topic the following concerns have been raised ... 1. How does the binding support devices with multiple DMA controllers? 2. How to support both legacy DMA controllers not using DMA Engine as well as those that support DMA Engine. 3. When using with DMA Engine how do we support the various implementations where the opaque filter function parameter differs between implementations? 4. How do we handle DMA channels that are identified with a string versus a integer? - Hence the design of the DMA helpers has to accomodate the above or align on an agreement what can be or should be supported. Design of DMA helpers 1. Registering DMA controllers In the case of DMA controllers that are using DMA Engine, requesting a channel is performed by calling the following function. struct dma_chan *dma_request_channel(dma_cap_mask_t mask, dma_filter_fn filter_fn, void *filter_param); The mask variable is used to match a type of the device controller in a list of controllers. The filter_fn and filter_param are used to identify the required dma channel and return a handle to the dma channel of type dma_chan. From the examples I have seen, the mask and filter_fn are constant for a given DMA controller and therefore, we can specify these as controller specific data when registering the DMA controller with the device-tree DMA helpers. The filter_param variable is of an unknown type and is typically specific to the DMA engine implementation for a given DMA controller. To allow some flexibility in the type and formating of this filter_param we employ an xlate to translate the device-tree binding information into the appropriate format. The xlate function used for a DMA controller can also be specified when registering the DMA controller with the device-tree DMA helpers. Based upon the above, a function for registering the DMA controller with the DMA helpers now looks like the below. The data variable is used to pass a pointer to DMA controller specific data used by the xlate function. int of_dma_controller_register(struct device_node *np, struct dma_chan *(*of_dma_xlate) (struct of_phandle_args *, struct of_dma *), void *data) For example, in the case where DMA engine is used, we define the following structure (that stores the DMA engine capability mask and filter function) and pass this to the data variable in the above function. struct of_dma_filter_info { dma_cap_mask_t dma_cap; dma_filter_fn filter_fn; }; 2. Representing and requesting channel information Please see the dma binding documentation included in this patch for a description of how DMA controllers and client information should be represented with device-tree. For more information on how this binding came about please see [3]. In addition to this, feedback received from the Linux kernel summit showed a consensus (among those who attended) to use a name to identify DMA client information [4]. A DMA channel can be requested by calling the following function, where name is a required parameter used for identifying a DMA channel. This function has been designed to return a structure of type dma_chan to work with the DMA engine driver. Note that if DMA engine is used then drivers should be using the DMA engine API dma_request_slave_channel() (implemented in part 2 of this series, "dmaengine: add helper function to request a slave DMA channel") which will in turn call the below function if device-tree is present. The aim being to have a common DMA engine interface regardless of whether device tree is being used. struct dma_chan *of_dma_request_slave_channel(struct device_node *np, char *name) 3. Supporting legacy devices not using DMA Engine These devices present a problem, as there may not be a uniform way to easily support them with regard to device tree. Ideally, these should be migrated to DMA engine. However, if this is not possible, then they should still be able to use this binding, the only constaint imposed by this implementation is that when requesting a DMA channel via of_dma_request_slave_channel(), it will return a type of dma_chan. This implementation has been tested on OMAP4430 using the kernel v3.6-rc5. I have validated that MMC is working on the PANDA board with this implementation. My development branch for testing on OMAP can be found here [5]. v6: - minor corrections in DMA binding documentation v5: - minor update to binding documentation - added loop to exhaustively search for a slave channel in the case where there could be alternative channels available v4: - revert the removal of xlate function from v3 - update the proposed binding format and APIs based upon discussions [3] v3: - avoid passing an xlate function and instead pass DMA engine parameters - define number of dma channels and requests in dma-controller node v2: - remove of_dma_to_resource API - make property #dma-cells required (no fallback anymore) - another check in of_dma_xlate_onenumbercell() function [1] http://article.gmane.org/gmane.linux.drivers.devicetree/12022 [2] http://article.gmane.org/gmane.linux.ports.arm.omap/73622 [3] http://marc.info/?l=linux-omap&m=133582085008539&w=2 [4] http://pad.linaro.org/arm-mini-summit-2012 [5] https://github.com/jonhunter/linux/tree/dev-dt-dma Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Stephen Warren <swarren@nvidia.com> Cc: Grant Likely <grant.likely@secretlab.ca> Cc: Russell King <linux@arm.linux.org.uk> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Vinod Koul <vinod.koul@intel.com> Cc: Dan Williams <djbw@fb.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Nicolas Ferre <nicolas.ferre@atmel.com> Signed-off-by: Jon Hunter <jon-hunter@ti.com> Reviewed-by: Stephen Warren <swarren@wwwdotorg.org> Acked-by: Rob Herring <rob.herring@calxeda.com> Signed-off-by: Vinod Koul <vinod.koul@linux.intel.com>