Age | Commit message (Collapse) | Author |
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
These changes based on work by Steven King <sfking@fdwdc.com> to support
the i2c hardware modules on ColdFire SoC family devices.
This is the per SoC hardware support. Contains a common platform device
setup. Each of the SoC family members tends to have some minor local
setup required to initialize the module. But all ColdFire family members
use the same i2c hardware module.
This i2c hardware module is the same as used in the Freescale iMX ARM
based family of SoC devices. Steven's original patches were based on using
a new and different i2c-coldfire.c driver. But this is not neccessary as
we can use the existing Linux i2c-imx.c driver with no change required to
it. And this patch is now based on using the existing i2c-imx driver.
This patch only contains the ColdFire platform changes.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Tested-by: Angelo Dureghello <angelo@sysam.it>
|
|
The 520x has individually controllable clocks for its peripherals. Add clk
definitions for these and add default initialization of either enabled or
disabled for all of the clocks.
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
that don't have a third interrupt controller.
Extending the interrupt controller code in intc-simr.c to support the third
interrupt controller on the m5441x means we need to add defines (as 0) for the
third interrupt controller on devices that don't have a third interrupt
controller.
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
use MCF_IRQ_PIT1 instead of MCFINT_VECBASE + MCFINT_PIT1 so we can support
those parts that have the pit1 interrupt on other than the first interrupt
controller.
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 520x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 520x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.
So modify the ColdFire 520x UART addressing so that:
. UARTs are numbered from 0 up
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
The problem has its root in the calculation of the set-port offsets (macro
MCFGPIO_SETR() in arch/m68k/include/asm/gpio.h), this assumes that all ports
have the same offset from the base port address (MCFGPIO_SETR) which is
defined in mcf520xsim.h as an alias of MCFGIO_PSETR_BUSCTL. Because the BUSCTL
and BE port do not have a set-register (see MCF5208 Reference Manual Page
13-10, Table 13-3) the offset calculations went wrong.
Because the BE and BUSCTL port do not seem useful in these parts, as they
lack a set register, I removed them and adapted the gpio chip bases which
are also used for the offset-calculations. Now both setting and resetting
the chip selects works as expected from userland and from the kernelspace.
Signed-off-by: Peter Turczak <peter@turczak.de>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Fixes generated by 'codespell' and manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
|
|
The EDGE Port module of some ColdFire parts using the intc-simr interrupt
controller provides support for 7 external interrupts. These interrupts
go off-chip (that is they are not for internal peripherals). They need
some special handling and have some extra setup registers. Add code to
support them.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
The reality is that you do not need the abiltity to configure the
clock divider for ColdFire CPUs. It is a fixed ratio on any given
ColdFire family member. It is not the same for all ColdFire parts,
but it is always the same in a model range. So hard define the divider
for each supported ColdFire CPU type and remove the Kconfig option.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
The ColdFire 5207 and 5208 CPUs have fixed peripheral addresses.
They do not use the setable peripheral address registers like the MBAR
and IPSBAR used on many other ColdFire parts. Don't use fake values
of MBAR and IPSBAR when using peripheral addresses for them, there
is no need to.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
The PIT hardware timer module used in some ColdFire CPU's is not always
addressed relative to an IPSBAR register. Parts like the ColdFire 5207 and
5208 have fixed peripheral addresses. So lets not define the register
addresses of the PIT relative to an IPSBAR definition. Move the base
address definitions into the per-part headers. This is a lot more consistent
since all the other peripheral base addresses are defined in the per-part
header files already.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
The version 2 ColdFire CPU based cores all contain a similar cache
controller unit. Create a set of bit flag definitions for the supporting
registers.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
The ColdFire UART base addresses varies between the different ColdFire
family members. Instead of keeping the base addresses with the UART
definitions keep them with the other addresses definitions for each
ColdFire part.
The motivation for this move is so that when we add new ColdFire
part definitions, they are all in a single file (and we shouldn't
normally need to modify the UART definitions in mcfuart.h at all).
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
The instruction timings of the ColdFire 54xx family parts are
different to other version 4 parts (or version 2 or 3 parts for
that matter too).
Move the instruction timing setting into the ColdFire part
specific headers, and set the 54xx value appropriately.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Move the ColdFire CPU names out of setup.c and into their repsective
headers. That way when we add new ones we won't need to modify
setup.c any more.
Add the missing 548x CPU name.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Since Grant has added the coldfire-qspi driver to next-spi, here is the
platform support for the parts that have qspi hardware. This sets up
gpio to do the spi chip select using the default chip select pins; it should
be trivial for boards that require different or additional spi chip selects to
use other gpios as needed.
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
With proper interrupt controller code in place there is no need for
devices like the timers to have custom interrupt masking code.
Remove it (and the defines that go along with it).
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
The ColdFire 532x family of parts uses 2 of the same INTC interrupt
controlers used in the ColdFire 520x family. So modify the code to
support both parts. The extra code for the second INTC controler in
the case of the 520x is easily optimized away to nothing.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Create general interrupt controller code for the ColdFire 520x family,
that does proper masking and unmasking of interrupts. With this in
place some of the driver hacks in place to support ColdFire interrupts
can finally go away.
Within the ColdFire family there is a variety of different interrupt
controllers in use. Some are used on multiple parts, some on only one.
There is quite some differences in some varients, so much so that
common code for all ColdFire parts would be impossible.
This commit introduces code to support one of the newer interrupt
controllers in the ColdFire 5208 and 5207 parts. It has very simple
mask and unmask operations, so is one of the easiest to support.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Add support for the 520x.
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Merge header files for m68k and m68knommu to the single location:
arch/m68k/include/asm
The majority of this patch was the result of the
script that is included in the changelog below.
The script was originally written by Arnd Bergman and
exten by me to cover a few more files.
When the header files differed the script uses the following:
The original m68k file is named <file>_mm.h [mm for memory manager]
The m68knommu file is named <file>_no.h [no for no memory manager]
The files uses the following include guard:
This include gaurd works as the m68knommu toolchain set
the __uClinux__ symbol - so this should work in userspace too.
Merging the header files for m68k and m68knommu exposes the
(unexpected?) ABI differences thus it is easier to actually
identify these and thus to fix them.
The commit has been build tested with both a m68k and
a m68knommu toolchain - with success.
The commit has also been tested with "make headers_check"
and this patch fixes make headers_check for m68knommu.
The script used:
TARGET=arch/m68k/include/asm
SOURCE=arch/m68knommu/include/asm
INCLUDE="cachectl.h errno.h fcntl.h hwtest.h ioctls.h ipcbuf.h \
linkage.h math-emu.h md.h mman.h movs.h msgbuf.h openprom.h \
oplib.h poll.h posix_types.h resource.h rtc.h sembuf.h shmbuf.h \
shm.h shmparam.h socket.h sockios.h spinlock.h statfs.h stat.h \
termbits.h termios.h tlb.h types.h user.h"
EQUAL="auxvec.h cputime.h device.h emergency-restart.h futex.h \
ioctl.h irq_regs.h kdebug.h local.h mutex.h percpu.h \
sections.h topology.h"
NOMUUFILES="anchor.h bootstd.h coldfire.h commproc.h dbg.h \
elia.h flat.h m5206sim.h m520xsim.h m523xsim.h m5249sim.h \
m5272sim.h m527xsim.h m528xsim.h m5307sim.h m532xsim.h \
m5407sim.h m68360_enet.h m68360.h m68360_pram.h m68360_quicc.h \
m68360_regs.h MC68328.h MC68332.h MC68EZ328.h MC68VZ328.h \
mcfcache.h mcfdma.h mcfmbus.h mcfne.h mcfpci.h mcfpit.h \
mcfsim.h mcfsmc.h mcftimer.h mcfuart.h mcfwdebug.h \
nettel.h quicc_simple.h smp.h"
FILES="atomic.h bitops.h bootinfo.h bug.h bugs.h byteorder.h cache.h \
cacheflush.h checksum.h current.h delay.h div64.h \
dma-mapping.h dma.h elf.h entry.h fb.h fpu.h hardirq.h hw_irq.h io.h \
irq.h kmap_types.h machdep.h mc146818rtc.h mmu.h mmu_context.h \
module.h page.h page_offset.h param.h pci.h pgalloc.h \
pgtable.h processor.h ptrace.h scatterlist.h segment.h \
setup.h sigcontext.h siginfo.h signal.h string.h system.h swab.h \
thread_info.h timex.h tlbflush.h traps.h uaccess.h ucontext.h \
unaligned.h unistd.h"
mergefile() {
BASE=${1%.h}
git mv ${SOURCE}/$1 ${TARGET}/${BASE}_no.h
git mv ${TARGET}/$1 ${TARGET}/${BASE}_mm.h
cat << EOF > ${TARGET}/$1
EOF
git add ${TARGET}/$1
}
set -e
mkdir -p ${TARGET}
git mv include/asm-m68k/* ${TARGET}
rmdir include/asm-m68k
git rm ${SOURCE}/Kbuild
for F in $INCLUDE $EQUAL; do
git rm ${SOURCE}/$F
done
for F in $NOMUUFILES; do
git mv ${SOURCE}/$F ${TARGET}/$F
done
for F in $FILES ; do
mergefile $F
done
rmdir arch/m68knommu/include/asm
rmdir arch/m68knommu/include
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|