Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux
Pull parisc architecture update from Helge Deller:
- Fix function graph tracing disablement on parisc
* tag 'parisc-for-6.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc/ftrace: Fix function graph tracing disablement
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- The series "zram: optimal post-processing target selection" from
Sergey Senozhatsky improves zram's post-processing selection
algorithm. This leads to improved memory savings.
- Wei Yang has gone to town on the mapletree code, contributing several
series which clean up the implementation:
- "refine mas_mab_cp()"
- "Reduce the space to be cleared for maple_big_node"
- "maple_tree: simplify mas_push_node()"
- "Following cleanup after introduce mas_wr_store_type()"
- "refine storing null"
- The series "selftests/mm: hugetlb_fault_after_madv improvements" from
David Hildenbrand fixes this selftest for s390.
- The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng
implements some rationaizations and cleanups in the page mapping
code.
- The series "mm: optimize shadow entries removal" from Shakeel Butt
optimizes the file truncation code by speeding up the handling of
shadow entries.
- The series "Remove PageKsm()" from Matthew Wilcox completes the
migration of this flag over to being a folio-based flag.
- The series "Unify hugetlb into arch_get_unmapped_area functions" from
Oscar Salvador implements a bunch of consolidations and cleanups in
the hugetlb code.
- The series "Do not shatter hugezeropage on wp-fault" from Dev Jain
takes away the wp-fault time practice of turning a huge zero page
into small pages. Instead we replace the whole thing with a THP. More
consistent cleaner and potentiall saves a large number of pagefaults.
- The series "percpu: Add a test case and fix for clang" from Andy
Shevchenko enhances and fixes the kernel's built in percpu test code.
- The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett
optimizes mremap() by avoiding doing things which we didn't need to
do.
- The series "Improve the tmpfs large folio read performance" from
Baolin Wang teaches tmpfs to copy data into userspace at the folio
size rather than as individual pages. A 20% speedup was observed.
- The series "mm/damon/vaddr: Fix issue in
damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON
splitting.
- The series "memcg-v1: fully deprecate charge moving" from Shakeel
Butt removes the long-deprecated memcgv2 charge moving feature.
- The series "fix error handling in mmap_region() and refactor" from
Lorenzo Stoakes cleanup up some of the mmap() error handling and
addresses some potential performance issues.
- The series "x86/module: use large ROX pages for text allocations"
from Mike Rapoport teaches x86 to use large pages for
read-only-execute module text.
- The series "page allocation tag compression" from Suren Baghdasaryan
is followon maintenance work for the new page allocation profiling
feature.
- The series "page->index removals in mm" from Matthew Wilcox remove
most references to page->index in mm/. A slow march towards shrinking
struct page.
- The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs
interface tests" from Andrew Paniakin performs maintenance work for
DAMON's self testing code.
- The series "mm: zswap swap-out of large folios" from Kanchana Sridhar
improves zswap's batching of compression and decompression. It is a
step along the way towards using Intel IAA hardware acceleration for
this zswap operation.
- The series "kasan: migrate the last module test to kunit" from
Sabyrzhan Tasbolatov completes the migration of the KASAN built-in
tests over to the KUnit framework.
- The series "implement lightweight guard pages" from Lorenzo Stoakes
permits userapace to place fault-generating guard pages within a
single VMA, rather than requiring that multiple VMAs be created for
this. Improved efficiencies for userspace memory allocators are
expected.
- The series "memcg: tracepoint for flushing stats" from JP Kobryn uses
tracepoints to provide increased visibility into memcg stats flushing
activity.
- The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky
fixes a zram buglet which potentially affected performance.
- The series "mm: add more kernel parameters to control mTHP" from
Maíra Canal enhances our ability to control/configuremultisize THP
from the kernel boot command line.
- The series "kasan: few improvements on kunit tests" from Sabyrzhan
Tasbolatov has a couple of fixups for the KASAN KUnit tests.
- The series "mm/list_lru: Split list_lru lock into per-cgroup scope"
from Kairui Song optimizes list_lru memory utilization when lockdep
is enabled.
* tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits)
cma: enforce non-zero pageblock_order during cma_init_reserved_mem()
mm/kfence: add a new kunit test test_use_after_free_read_nofault()
zram: fix NULL pointer in comp_algorithm_show()
memcg/hugetlb: add hugeTLB counters to memcg
vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event
mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount
zram: ZRAM_DEF_COMP should depend on ZRAM
MAINTAINERS/MEMORY MANAGEMENT: add document files for mm
Docs/mm/damon: recommend academic papers to read and/or cite
mm: define general function pXd_init()
kmemleak: iommu/iova: fix transient kmemleak false positive
mm/list_lru: simplify the list_lru walk callback function
mm/list_lru: split the lock to per-cgroup scope
mm/list_lru: simplify reparenting and initial allocation
mm/list_lru: code clean up for reparenting
mm/list_lru: don't export list_lru_add
mm/list_lru: don't pass unnecessary key parameters
kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller
kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW
kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols
...
|
|
Pull xattr updates from Al Viro:
"Sanitize xattr and io_uring interactions with it, add *xattrat()
syscalls, sanitize struct filename handling in there"
* tag 'pull-xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
xattr: remove redundant check on variable err
fs/xattr: add *at family syscalls
new helpers: file_removexattr(), filename_removexattr()
new helpers: file_listxattr(), filename_listxattr()
replace do_getxattr() with saner helpers.
replace do_setxattr() with saner helpers.
new helper: import_xattr_name()
fs: rename struct xattr_ctx to kernel_xattr_ctx
xattr: switch to CLASS(fd)
io_[gs]etxattr_prep(): just use getname()
io_uring: IORING_OP_F[GS]ETXATTR is fine with REQ_F_FIXED_FILE
getname_maybe_null() - the third variant of pathname copy-in
teach filename_lookup() to treat NULL filename as ""
|
|
Due to an apparent copy-paste bug, the parisc implementation of
ftrace_disable_ftrace_graph_caller() doesn't actually do anything.
It enables the (already-enabled) static key rather than disabling it.
The result is that after function graph tracing has been "disabled", any
subsequent (non-graph) function tracing will inadvertently also enable
the slow fgraph return address hijacking.
Fixes: 98f2926171ae ("parisc/ftrace: use static key to enable/disable function graph tracer")
Cc: stable@vger.kernel.org # 5.16+
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Several architectures support text patching, but they name the header
files that declare patching functions differently.
Make all such headers consistently named text-patching.h and add an empty
header in asm-generic for architectures that do not support text patching.
Link: https://lkml.kernel.org/r/20241023162711.2579610-4-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Acked-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Tested-by: kdevops <kdevops@lists.linux.dev>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Brian Cain <bcain@quicinc.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Song Liu <song@kernel.org>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add the four syscalls setxattrat(), getxattrat(), listxattrat() and
removexattrat(). Those can be used to operate on extended attributes,
especially security related ones, either relative to a pinned directory
or on a file descriptor without read access, avoiding a
/proc/<pid>/fd/<fd> detour, requiring a mounted procfs.
One use case will be setfiles(8) setting SELinux file contexts
("security.selinux") without race conditions and without a file
descriptor opened with read access requiring SELinux read permission.
Use the do_{name}at() pattern from fs/open.c.
Pass the value of the extended attribute, its length, and for
setxattrat(2) the command (XATTR_CREATE or XATTR_REPLACE) via an added
struct xattr_args to not exceed six syscall arguments and not
merging the AT_* and XATTR_* flags.
[AV: fixes by Christian Brauner folded in, the entire thing rebased on
top of {filename,file}_...xattr() primitives, treatment of empty
pathnames regularized. As the result, AT_EMPTY_PATH+NULL handling
is cheap, so f...(2) can use it]
Signed-off-by: Christian Göttsche <cgzones@googlemail.com>
Link: https://lore.kernel.org/r/20240426162042.191916-1-cgoettsche@seltendoof.de
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
CC: x86@kernel.org
CC: linux-alpha@vger.kernel.org
CC: linux-kernel@vger.kernel.org
CC: linux-arm-kernel@lists.infradead.org
CC: linux-ia64@vger.kernel.org
CC: linux-m68k@lists.linux-m68k.org
CC: linux-mips@vger.kernel.org
CC: linux-parisc@vger.kernel.org
CC: linuxppc-dev@lists.ozlabs.org
CC: linux-s390@vger.kernel.org
CC: linux-sh@vger.kernel.org
CC: sparclinux@vger.kernel.org
CC: linux-fsdevel@vger.kernel.org
CC: audit@vger.kernel.org
CC: linux-arch@vger.kernel.org
CC: linux-api@vger.kernel.org
CC: linux-security-module@vger.kernel.org
CC: selinux@vger.kernel.org
[brauner: slight tweaks]
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
asm/unaligned.h is always an include of asm-generic/unaligned.h;
might as well move that thing to linux/unaligned.h and include
that - there's nothing arch-specific in that header.
auto-generated by the following:
for i in `git grep -l -w asm/unaligned.h`; do
sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i
done
for i in `git grep -l -w asm-generic/unaligned.h`; do
sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i
done
git mv include/asm-generic/unaligned.h include/linux/unaligned.h
git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h
sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild
sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
|
|
Declarations local to arch/*/kernel/*.c are better off *not* in a public
header - arch/parisc/kernel/unaligned.h is just fine for those
bits.
With that done parisc asm/unaligned.h is reduced to include
of asm-generic/unaligned.h and can be removed - unaligned.h is in
mandatory-y in include/asm-generic/Kbuild.
Acked-by: Helge Deller <deller@gmx.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
no_llseek had been defined to NULL two years ago, in commit 868941b14441
("fs: remove no_llseek")
To quote that commit,
At -rc1 we'll need do a mechanical removal of no_llseek -
git grep -l -w no_llseek | grep -v porting.rst | while read i; do
sed -i '/\<no_llseek\>/d' $i
done
would do it.
Unfortunately, that hadn't been done. Linus, could you do that now, so
that we could finally put that thing to rest? All instances are of the
form
.llseek = no_llseek,
so it's obviously safe.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Along with the usual shower of singleton patches, notable patch series
in this pull request are:
- "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds
consistency to the APIs and behaviour of these two core allocation
functions. This also simplifies/enables Rustification.
- "Some cleanups for shmem" from Baolin Wang. No functional changes -
mode code reuse, better function naming, logic simplifications.
- "mm: some small page fault cleanups" from Josef Bacik. No
functional changes - code cleanups only.
- "Various memory tiering fixes" from Zi Yan. A small fix and a
little cleanup.
- "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and
simplifications and .text shrinkage.
- "Kernel stack usage histogram" from Pasha Tatashin and Shakeel
Butt. This is a feature, it adds new feilds to /proc/vmstat such as
$ grep kstack /proc/vmstat
kstack_1k 3
kstack_2k 188
kstack_4k 11391
kstack_8k 243
kstack_16k 0
which tells us that 11391 processes used 4k of stack while none at
all used 16k. Useful for some system tuning things, but
partivularly useful for "the dynamic kernel stack project".
- "kmemleak: support for percpu memory leak detect" from Pavel
Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory.
- "mm: memcg: page counters optimizations" from Roman Gushchin. "3
independent small optimizations of page counters".
- "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from
David Hildenbrand. Improves PTE/PMD splitlock detection, makes
powerpc/8xx work correctly by design rather than by accident.
- "mm: remove arch_make_page_accessible()" from David Hildenbrand.
Some folio conversions which make arch_make_page_accessible()
unneeded.
- "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David
Finkel. Cleans up and fixes our handling of the resetting of the
cgroup/process peak-memory-use detector.
- "Make core VMA operations internal and testable" from Lorenzo
Stoakes. Rationalizaion and encapsulation of the VMA manipulation
APIs. With a view to better enable testing of the VMA functions,
even from a userspace-only harness.
- "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix
issues in the zswap global shrinker, resulting in improved
performance.
- "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill
in some missing info in /proc/zoneinfo.
- "mm: replace follow_page() by folio_walk" from David Hildenbrand.
Code cleanups and rationalizations (conversion to folio_walk())
resulting in the removal of follow_page().
- "improving dynamic zswap shrinker protection scheme" from Nhat
Pham. Some tuning to improve zswap's dynamic shrinker. Significant
reductions in swapin and improvements in performance are shown.
- "mm: Fix several issues with unaccepted memory" from Kirill
Shutemov. Improvements to the new unaccepted memory feature,
- "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on
DAX PUDs. This was missing, although nobody seems to have notied
yet.
- "Introduce a store type enum for the Maple tree" from Sidhartha
Kumar. Cleanups and modest performance improvements for the maple
tree library code.
- "memcg: further decouple v1 code from v2" from Shakeel Butt. Move
more cgroup v1 remnants away from the v2 memcg code.
- "memcg: initiate deprecation of v1 features" from Shakeel Butt.
Adds various warnings telling users that memcg v1 features are
deprecated.
- "mm: swap: mTHP swap allocator base on swap cluster order" from
Chris Li. Greatly improves the success rate of the mTHP swap
allocation.
- "mm: introduce numa_memblks" from Mike Rapoport. Moves various
disparate per-arch implementations of numa_memblk code into generic
code.
- "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly
improves the performance of munmap() of swap-filled ptes.
- "support large folio swap-out and swap-in for shmem" from Baolin
Wang. With this series we no longer split shmem large folios into
simgle-page folios when swapping out shmem.
- "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice
performance improvements and code reductions for gigantic folios.
- "support shmem mTHP collapse" from Baolin Wang. Adds support for
khugepaged's collapsing of shmem mTHP folios.
- "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect()
performance regression due to the addition of mseal().
- "Increase the number of bits available in page_type" from Matthew
Wilcox. Increases the number of bits available in page_type!
- "Simplify the page flags a little" from Matthew Wilcox. Many legacy
page flags are now folio flags, so the page-based flags and their
accessors/mutators can be removed.
- "mm: store zero pages to be swapped out in a bitmap" from Usama
Arif. An optimization which permits us to avoid writing/reading
zero-filled zswap pages to backing store.
- "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race
window which occurs when a MAP_FIXED operqtion is occurring during
an unrelated vma tree walk.
- "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of
the vma_merge() functionality, making ot cleaner, more testable and
better tested.
- "misc fixups for DAMON {self,kunit} tests" from SeongJae Park.
Minor fixups of DAMON selftests and kunit tests.
- "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang.
Code cleanups and folio conversions.
- "Shmem mTHP controls and stats improvements" from Ryan Roberts.
Cleanups for shmem controls and stats.
- "mm: count the number of anonymous THPs per size" from Barry Song.
Expose additional anon THP stats to userspace for improved tuning.
- "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more
folio conversions and removal of now-unused page-based APIs.
- "replace per-quota region priorities histogram buffer with
per-context one" from SeongJae Park. DAMON histogram
rationalization.
- "Docs/damon: update GitHub repo URLs and maintainer-profile" from
SeongJae Park. DAMON documentation updates.
- "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and
improve related doc and warn" from Jason Wang: fixes usage of page
allocator __GFP_NOFAIL and GFP_ATOMIC flags.
- "mm: split underused THPs" from Yu Zhao. Improve THP=always policy.
This was overprovisioning THPs in sparsely accessed memory areas.
- "zram: introduce custom comp backends API" frm Sergey Senozhatsky.
Add support for zram run-time compression algorithm tuning.
- "mm: Care about shadow stack guard gap when getting an unmapped
area" from Mark Brown. Fix up the various arch_get_unmapped_area()
implementations to better respect guard areas.
- "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability
of mem_cgroup_iter() and various code cleanups.
- "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge
pfnmap support.
- "resource: Fix region_intersects() vs add_memory_driver_managed()"
from Huang Ying. Fix a bug in region_intersects() for systems with
CXL memory.
- "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches
a couple more code paths to correctly recover from the encountering
of poisoned memry.
- "mm: enable large folios swap-in support" from Barry Song. Support
the swapin of mTHP memory into appropriately-sized folios, rather
than into single-page folios"
* tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits)
zram: free secondary algorithms names
uprobes: turn xol_area->pages[2] into xol_area->page
uprobes: introduce the global struct vm_special_mapping xol_mapping
Revert "uprobes: use vm_special_mapping close() functionality"
mm: support large folios swap-in for sync io devices
mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios
mm: fix swap_read_folio_zeromap() for large folios with partial zeromap
mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries
set_memory: add __must_check to generic stubs
mm/vma: return the exact errno in vms_gather_munmap_vmas()
memcg: cleanup with !CONFIG_MEMCG_V1
mm/show_mem.c: report alloc tags in human readable units
mm: support poison recovery from copy_present_page()
mm: support poison recovery from do_cow_fault()
resource, kunit: add test case for region_intersects()
resource: make alloc_free_mem_region() works for iomem_resource
mm: z3fold: deprecate CONFIG_Z3FOLD
vfio/pci: implement huge_fault support
mm/arm64: support large pfn mappings
mm/x86: support large pfn mappings
...
|
|
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
For an itlb miss when executing code above 4 Gb on ILP64 adjust the
iasq/iaoq in the same way isr/ior was adjusted. This fixes signal
delivery for the 64-bit static test program from
http://ftp.parisc-linux.org/src/64bit.tar.gz. Note that signals are
handled by the signal trampoline code in the 64-bit VDSO which is mapped
into high userspace memory region above 4GB for 64-bit processes.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: stable@vger.kernel.org # v4.19+
|
|
Patch series "mm: Care about shadow stack guard gap when getting an
unmapped area", v2.
As covered in the commit log for c44357c2e76b ("x86/mm: care about shadow
stack guard gap during placement") our current mmap() implementation does
not take care to ensure that a new mapping isn't placed with existing
mappings inside it's own guard gaps. This is particularly important for
shadow stacks since if two shadow stacks end up getting placed adjacent to
each other then they can overflow into each other which weakens the
protection offered by the feature.
On x86 there is a custom arch_get_unmapped_area() which was updated by the
above commit to cover this case by specifying a start_gap for allocations
with VM_SHADOW_STACK. Both arm64 and RISC-V have equivalent features and
use the generic implementation of arch_get_unmapped_area() so let's make
the equivalent change there so they also don't get shadow stack pages
placed without guard pages. The arm64 and RISC-V shadow stack
implementations are currently on the list:
https://lore.kernel.org/r/20240829-arm64-gcs-v12-0-42fec94743
https://lore.kernel.org/lkml/20240403234054.2020347-1-debug@rivosinc.com/
Given the addition of the use of vm_flags in the generic implementation we
also simplify the set of possibilities that have to be dealt with in the
core code by making arch_get_unmapped_area() take vm_flags as standard.
This is a bit invasive since the prototype change touches quite a few
architectures but since the parameter is ignored the change is
straightforward, the simplification for the generic code seems worth it.
This patch (of 3):
When we introduced arch_get_unmapped_area_vmflags() in 961148704acd ("mm:
introduce arch_get_unmapped_area_vmflags()") we did so as part of properly
supporting guard pages for shadow stacks on x86_64, which uses a custom
arch_get_unmapped_area(). Equivalent features are also present on both
arm64 and RISC-V, both of which use the generic implementation of
arch_get_unmapped_area() and will require equivalent modification there.
Rather than continue to deal with having two versions of the functions
let's bite the bullet and have all implementations of
arch_get_unmapped_area() take vm_flags as a parameter.
The new parameter is currently ignored by all implementations other than
x86. The only caller that doesn't have a vm_flags available is
mm_get_unmapped_area(), as for the x86 implementation and the wrapper used
on other architectures this is modified to supply no flags.
No functional changes.
Link: https://lkml.kernel.org/r/20240904-mm-generic-shadow-stack-guard-v2-0-a46b8b6dc0ed@kernel.org
Link: https://lkml.kernel.org/r/20240904-mm-generic-shadow-stack-guard-v2-1-a46b8b6dc0ed@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Acked-by: Helge Deller <deller@gmx.de> [parisc]
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Chris Zankel <chris@zankel.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently the glibc isn't yet ported to 64-bit for hppa, so
there is no usable userspace available yet.
But it's possible to manually build a static 64-bit binary
and run that for testing. One such 64-bit test program is
available at http://ftp.parisc-linux.org/src/64bit.tar.gz
and it shows various issues with the existing 64-bit syscall
path in the kernel.
This patch fixes those issues.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: stable@vger.kernel.org # v4.19+
|
|
Convert parisc timer code to generic clockevents framework.
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux
Pull parisc updates from Helge Deller:
"The gettimeofday() and clock_gettime() syscalls are now available as
vDSO functions, and Dave added a patch which allows to use NVMe cards
in the PCI slots as fast and easy alternative to SCSI discs.
Summary:
- add gettimeofday() and clock_gettime() vDSO functions
- enable PCI_MSI_ARCH_FALLBACKS to allow PCI to PCIe bridge adaptor
with PCIe NVME card to function in parisc machines
- allow users to reduce kernel unaligned runtime warnings
- minor code cleanups"
* tag 'parisc-for-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Add support for CONFIG_SYSCTL_ARCH_UNALIGN_NO_WARN
parisc: Use max() to calculate parisc_tlb_flush_threshold
parisc: Fix warning at drivers/pci/msi/msi.h:121
parisc: Add 64-bit gettimeofday() and clock_gettime() vDSO functions
parisc: Add 32-bit gettimeofday() and clock_gettime() vDSO functions
parisc: Clean up unistd.h file
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the big set of driver core changes for 6.11-rc1.
Lots of stuff in here, with not a huge diffstat, but apis are evolving
which required lots of files to be touched. Highlights of the changes
in here are:
- platform remove callback api final fixups (Uwe took many releases
to get here, finally!)
- Rust bindings for basic firmware apis and initial driver-core
interactions.
It's not all that useful for a "write a whole driver in rust" type
of thing, but the firmware bindings do help out the phy rust
drivers, and the driver core bindings give a solid base on which
others can start their work.
There is still a long way to go here before we have a multitude of
rust drivers being added, but it's a great first step.
- driver core const api changes.
This reached across all bus types, and there are some fix-ups for
some not-common bus types that linux-next and 0-day testing shook
out.
This work is being done to help make the rust bindings more safe,
as well as the C code, moving toward the end-goal of allowing us to
put driver structures into read-only memory. We aren't there yet,
but are getting closer.
- minor devres cleanups and fixes found by code inspection
- arch_topology minor changes
- other minor driver core cleanups
All of these have been in linux-next for a very long time with no
reported problems"
* tag 'driver-core-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (55 commits)
ARM: sa1100: make match function take a const pointer
sysfs/cpu: Make crash_hotplug attribute world-readable
dio: Have dio_bus_match() callback take a const *
zorro: make match function take a const pointer
driver core: module: make module_[add|remove]_driver take a const *
driver core: make driver_find_device() take a const *
driver core: make driver_[create|remove]_file take a const *
firmware_loader: fix soundness issue in `request_internal`
firmware_loader: annotate doctests as `no_run`
devres: Correct code style for functions that return a pointer type
devres: Initialize an uninitialized struct member
devres: Fix memory leakage caused by driver API devm_free_percpu()
devres: Fix devm_krealloc() wasting memory
driver core: platform: Switch to use kmemdup_array()
driver core: have match() callback in struct bus_type take a const *
MAINTAINERS: add Rust device abstractions to DRIVER CORE
device: rust: improve safety comments
MAINTAINERS: add Danilo as FIRMWARE LOADER maintainer
MAINTAINERS: add Rust FW abstractions to FIRMWARE LOADER
firmware: rust: improve safety comments
...
|
|
Allow users to disable kernel warnings for unaligned memory
accesses from kernel via the /proc/sys/kernel/ignore-unaligned-usertrap
procfs entry.
That way users can disable those warnings in case they happen too
often.
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Use max() to reduce 4 lines of code to a single line and improve its
readability.
Fixes the following Coccinelle/coccicheck warning reported by
minmax.cocci:
WARNING opportunity for max()
Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
In the match() callback, the struct device_driver * should not be
changed, so change the function callback to be a const *. This is one
step of many towards making the driver core safe to have struct
device_driver in read-only memory.
Because the match() callback is in all busses, all busses are modified
to handle this properly. This does entail switching some container_of()
calls to container_of_const() to properly handle the constant *.
For some busses, like PCI and USB and HV, the const * is cast away in
the match callback as those busses do want to modify those structures at
this point in time (they have a local lock in the driver structure.)
That will have to be changed in the future if they wish to have their
struct device * in read-only-memory.
Cc: Rafael J. Wysocki <rafael@kernel.org>
Reviewed-by: Alex Elder <elder@kernel.org>
Acked-by: Sumit Garg <sumit.garg@linaro.org>
Link: https://lore.kernel.org/r/2024070136-wrongdoer-busily-01e8@gregkh
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The sys_fanotify_mark() syscall on parisc uses the reverse word order
for the two halves of the 64-bit argument compared to all syscalls on
all 32-bit architectures. As far as I can tell, the problem is that
the function arguments on parisc are sorted backwards (26, 25, 24, 23,
...) compared to everyone else, so the calling conventions of using an
even/odd register pair in native word order result in the lower word
coming first in function arguments, matching the expected behavior
on little-endian architectures. The system call conventions however
ended up matching what the other 32-bit architectures do.
A glibc cleanup in 2020 changed the userspace behavior in a way that
handles all architectures consistently, but this inadvertently broke
parisc32 by changing to the same method as everyone else.
The change made it into glibc-2.35 and subsequently into debian 12
(bookworm), which is the latest stable release. This means we
need to choose between reverting the glibc change or changing the
kernel to match it again, but either hange will leave some systems
broken.
Pick the option that is more likely to help current and future
users and change the kernel to match current glibc. This also
means the behavior is now consistent across architectures, but
it breaks running new kernels with old glibc builds before 2.35.
Link: https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=d150181d73d9
Link: https://git.kernel.org/pub/scm/linux/kernel/git/history/history.git/commit/arch/parisc/kernel/sys_parisc.c?h=57b1dfbd5b4a39d
Cc: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Tested-by: Helge Deller <deller@gmx.de>
Acked-by: Helge Deller <deller@gmx.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
---
I found this through code inspection, please double-check to make
sure I got the bug and the fix right.
The alternative is to fix this by reverting glibc back to the
unusual behavior.
|
|
Johannes missed parisc back when he introduced the compat version
of these syscalls, so receiving cmsg messages that require a compat
conversion is still broken.
Use the correct calls like the other architectures do.
Fixes: 1dacc76d0014 ("net/compat/wext: send different messages to compat tasks")
Acked-by: Helge Deller <deller@gmx.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Add 64-bit vDSO implementations for gettimeofday() and clock_gettime().
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Add vDSO implementations for gettimeofday(), clock_gettime() and
clock_gettime64() kernel syscalls.
Currently those functions are implemented as pure syscall wrappers.
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
PA-RISC systems with PA8800 and PA8900 processors have had problems
with random segmentation faults for many years. Systems with earlier
processors are much more stable.
Systems with PA8800 and PA8900 processors have a large L2 cache which
needs per page flushing for decent performance when a large range is
flushed. The combined cache in these systems is also more sensitive to
non-equivalent aliases than the caches in earlier systems.
The majority of random segmentation faults that I have looked at
appear to be memory corruption in memory allocated using mmap and
malloc.
My first attempt at fixing the random faults didn't work. On
reviewing the cache code, I realized that there were two issues
which the existing code didn't handle correctly. Both relate
to cache move-in. Another issue is that the present bit in PTEs
is racy.
1) PA-RISC caches have a mind of their own and they can speculatively
load data and instructions for a page as long as there is a entry in
the TLB for the page which allows move-in. TLBs are local to each
CPU. Thus, the TLB entry for a page must be purged before flushing
the page. This is particularly important on SMP systems.
In some of the flush routines, the flush routine would be called
and then the TLB entry would be purged. This was because the flush
routine needed the TLB entry to do the flush.
2) My initial approach to trying the fix the random faults was to
try and use flush_cache_page_if_present for all flush operations.
This actually made things worse and led to a couple of hardware
lockups. It finally dawned on me that some lines weren't being
flushed because the pte check code was racy. This resulted in
random inequivalent mappings to physical pages.
The __flush_cache_page tmpalias flush sets up its own TLB entry
and it doesn't need the existing TLB entry. As long as we can find
the pte pointer for the vm page, we can get the pfn and physical
address of the page. We can also purge the TLB entry for the page
before doing the flush. Further, __flush_cache_page uses a special
TLB entry that inhibits cache move-in.
When switching page mappings, we need to ensure that lines are
removed from the cache. It is not sufficient to just flush the
lines to memory as they may come back.
This made it clear that we needed to implement all the required
flush operations using tmpalias routines. This includes flushes
for user and kernel pages.
After modifying the code to use tmpalias flushes, it became clear
that the random segmentation faults were not fully resolved. The
frequency of faults was worse on systems with a 64 MB L2 (PA8900)
and systems with more CPUs (rp4440).
The warning that I added to flush_cache_page_if_present to detect
pages that couldn't be flushed triggered frequently on some systems.
Helge and I looked at the pages that couldn't be flushed and found
that the PTE was either cleared or for a swap page. Ignoring pages
that were swapped out seemed okay but pages with cleared PTEs seemed
problematic.
I looked at routines related to pte_clear and noticed ptep_clear_flush.
The default implementation just flushes the TLB entry. However, it was
obvious that on parisc we need to flush the cache page as well. If
we don't flush the cache page, stale lines will be left in the cache
and cause random corruption. Once a PTE is cleared, there is no way
to find the physical address associated with the PTE and flush the
associated page at a later time.
I implemented an updated change with a parisc specific version of
ptep_clear_flush. It fixed the random data corruption on Helge's rp4440
and rp3440, as well as on my c8000.
At this point, I realized that I could restore the code where we only
flush in flush_cache_page_if_present if the page has been accessed.
However, for this, we also need to flush the cache when the accessed
bit is cleared in ptep_clear_flush_young to keep things synchronized.
The default implementation only flushes the TLB entry.
Other changes in this version are:
1) Implement parisc specific version of ptep_get. It's identical to
default but needed in arch/parisc/include/asm/pgtable.h.
2) Revise parisc implementation of ptep_test_and_clear_young to use
ptep_get (READ_ONCE).
3) Drop parisc implementation of ptep_get_and_clear. We can use default.
4) Revise flush_kernel_vmap_range and invalidate_kernel_vmap_range to
use full data cache flush.
5) Move flush_cache_vmap and flush_cache_vunmap to cache.c. Handle
VM_IOREMAP case in flush_cache_vmap.
At this time, I don't know whether it is better to always flush when
the PTE present bit is set or when both the accessed and present bits
are set. The later saves flushing pages that haven't been accessed,
but we need to flush in ptep_clear_flush_young. It also needs a page
table lookup to find the PTE pointer. The lpa instruction only needs
a page table lookup when the PTE entry isn't in the TLB.
We don't atomically handle setting and clearing the _PAGE_ACCESSED bit.
If we miss an update, we may miss a flush and the cache may get corrupted.
Whether the current code is effectively atomic depends on process control.
When CONFIG_FLUSH_PAGE_ACCESSED is set to zero, the page will eventually
be flushed when the PTE is cleared or in flush_cache_page_if_present. The
_PAGE_ACCESSED bit is not used, so the problem is avoided.
The flush method can be selected using the CONFIG_FLUSH_PAGE_ACCESSED
define in cache.c. The default is 0. I didn't see a large difference
in performance.
Signed-off-by: John David Anglin <dave.anglin@bell.net>
Cc: <stable@vger.kernel.org> # v6.6+
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Patch series "Introduce mseal", v10.
This patchset proposes a new mseal() syscall for the Linux kernel.
In a nutshell, mseal() protects the VMAs of a given virtual memory range
against modifications, such as changes to their permission bits.
Modern CPUs support memory permissions, such as the read/write (RW) and
no-execute (NX) bits. Linux has supported NX since the release of kernel
version 2.6.8 in August 2004 [1]. The memory permission feature improves
the security stance on memory corruption bugs, as an attacker cannot
simply write to arbitrary memory and point the code to it. The memory
must be marked with the X bit, or else an exception will occur.
Internally, the kernel maintains the memory permissions in a data
structure called VMA (vm_area_struct). mseal() additionally protects the
VMA itself against modifications of the selected seal type.
Memory sealing is useful to mitigate memory corruption issues where a
corrupted pointer is passed to a memory management system. For example,
such an attacker primitive can break control-flow integrity guarantees
since read-only memory that is supposed to be trusted can become writable
or .text pages can get remapped. Memory sealing can automatically be
applied by the runtime loader to seal .text and .rodata pages and
applications can additionally seal security critical data at runtime. A
similar feature already exists in the XNU kernel with the
VM_FLAGS_PERMANENT [3] flag and on OpenBSD with the mimmutable syscall
[4]. Also, Chrome wants to adopt this feature for their CFI work [2] and
this patchset has been designed to be compatible with the Chrome use case.
Two system calls are involved in sealing the map: mmap() and mseal().
The new mseal() is an syscall on 64 bit CPU, and with following signature:
int mseal(void addr, size_t len, unsigned long flags)
addr/len: memory range.
flags: reserved.
mseal() blocks following operations for the given memory range.
1> Unmapping, moving to another location, and shrinking the size,
via munmap() and mremap(), can leave an empty space, therefore can
be replaced with a VMA with a new set of attributes.
2> Moving or expanding a different VMA into the current location,
via mremap().
3> Modifying a VMA via mmap(MAP_FIXED).
4> Size expansion, via mremap(), does not appear to pose any specific
risks to sealed VMAs. It is included anyway because the use case is
unclear. In any case, users can rely on merging to expand a sealed VMA.
5> mprotect() and pkey_mprotect().
6> Some destructive madvice() behaviors (e.g. MADV_DONTNEED) for anonymous
memory, when users don't have write permission to the memory. Those
behaviors can alter region contents by discarding pages, effectively a
memset(0) for anonymous memory.
The idea that inspired this patch comes from Stephen Röttger’s work in
V8 CFI [5]. Chrome browser in ChromeOS will be the first user of this
API.
Indeed, the Chrome browser has very specific requirements for sealing,
which are distinct from those of most applications. For example, in the
case of libc, sealing is only applied to read-only (RO) or read-execute
(RX) memory segments (such as .text and .RELRO) to prevent them from
becoming writable, the lifetime of those mappings are tied to the lifetime
of the process.
Chrome wants to seal two large address space reservations that are managed
by different allocators. The memory is mapped RW- and RWX respectively
but write access to it is restricted using pkeys (or in the future ARM
permission overlay extensions). The lifetime of those mappings are not
tied to the lifetime of the process, therefore, while the memory is
sealed, the allocators still need to free or discard the unused memory.
For example, with madvise(DONTNEED).
However, always allowing madvise(DONTNEED) on this range poses a security
risk. For example if a jump instruction crosses a page boundary and the
second page gets discarded, it will overwrite the target bytes with zeros
and change the control flow. Checking write-permission before the discard
operation allows us to control when the operation is valid. In this case,
the madvise will only succeed if the executing thread has PKEY write
permissions and PKRU changes are protected in software by control-flow
integrity.
Although the initial version of this patch series is targeting the Chrome
browser as its first user, it became evident during upstream discussions
that we would also want to ensure that the patch set eventually is a
complete solution for memory sealing and compatible with other use cases.
The specific scenario currently in mind is glibc's use case of loading and
sealing ELF executables. To this end, Stephen is working on a change to
glibc to add sealing support to the dynamic linker, which will seal all
non-writable segments at startup. Once this work is completed, all
applications will be able to automatically benefit from these new
protections.
In closing, I would like to formally acknowledge the valuable
contributions received during the RFC process, which were instrumental in
shaping this patch:
Jann Horn: raising awareness and providing valuable insights on the
destructive madvise operations.
Liam R. Howlett: perf optimization.
Linus Torvalds: assisting in defining system call signature and scope.
Theo de Raadt: sharing the experiences and insight gained from
implementing mimmutable() in OpenBSD.
MM perf benchmarks
==================
This patch adds a loop in the mprotect/munmap/madvise(DONTNEED) to
check the VMAs’ sealing flag, so that no partial update can be made,
when any segment within the given memory range is sealed.
To measure the performance impact of this loop, two tests are developed.
[8]
The first is measuring the time taken for a particular system call,
by using clock_gettime(CLOCK_MONOTONIC). The second is using
PERF_COUNT_HW_REF_CPU_CYCLES (exclude user space). Both tests have
similar results.
The tests have roughly below sequence:
for (i = 0; i < 1000, i++)
create 1000 mappings (1 page per VMA)
start the sampling
for (j = 0; j < 1000, j++)
mprotect one mapping
stop and save the sample
delete 1000 mappings
calculates all samples.
Below tests are performed on Intel(R) Pentium(R) Gold 7505 @ 2.00GHz,
4G memory, Chromebook.
Based on the latest upstream code:
The first test (measuring time)
syscall__ vmas t t_mseal delta_ns per_vma %
munmap__ 1 909 944 35 35 104%
munmap__ 2 1398 1502 104 52 107%
munmap__ 4 2444 2594 149 37 106%
munmap__ 8 4029 4323 293 37 107%
munmap__ 16 6647 6935 288 18 104%
munmap__ 32 11811 12398 587 18 105%
mprotect 1 439 465 26 26 106%
mprotect 2 1659 1745 86 43 105%
mprotect 4 3747 3889 142 36 104%
mprotect 8 6755 6969 215 27 103%
mprotect 16 13748 14144 396 25 103%
mprotect 32 27827 28969 1142 36 104%
madvise_ 1 240 262 22 22 109%
madvise_ 2 366 442 76 38 121%
madvise_ 4 623 751 128 32 121%
madvise_ 8 1110 1324 215 27 119%
madvise_ 16 2127 2451 324 20 115%
madvise_ 32 4109 4642 534 17 113%
The second test (measuring cpu cycle)
syscall__ vmas cpu cmseal delta_cpu per_vma %
munmap__ 1 1790 1890 100 100 106%
munmap__ 2 2819 3033 214 107 108%
munmap__ 4 4959 5271 312 78 106%
munmap__ 8 8262 8745 483 60 106%
munmap__ 16 13099 14116 1017 64 108%
munmap__ 32 23221 24785 1565 49 107%
mprotect 1 906 967 62 62 107%
mprotect 2 3019 3203 184 92 106%
mprotect 4 6149 6569 420 105 107%
mprotect 8 9978 10524 545 68 105%
mprotect 16 20448 21427 979 61 105%
mprotect 32 40972 42935 1963 61 105%
madvise_ 1 434 497 63 63 115%
madvise_ 2 752 899 147 74 120%
madvise_ 4 1313 1513 200 50 115%
madvise_ 8 2271 2627 356 44 116%
madvise_ 16 4312 4883 571 36 113%
madvise_ 32 8376 9319 943 29 111%
Based on the result, for 6.8 kernel, sealing check adds
20-40 nano seconds, or around 50-100 CPU cycles, per VMA.
In addition, I applied the sealing to 5.10 kernel:
The first test (measuring time)
syscall__ vmas t tmseal delta_ns per_vma %
munmap__ 1 357 390 33 33 109%
munmap__ 2 442 463 21 11 105%
munmap__ 4 614 634 20 5 103%
munmap__ 8 1017 1137 120 15 112%
munmap__ 16 1889 2153 263 16 114%
munmap__ 32 4109 4088 -21 -1 99%
mprotect 1 235 227 -7 -7 97%
mprotect 2 495 464 -30 -15 94%
mprotect 4 741 764 24 6 103%
mprotect 8 1434 1437 2 0 100%
mprotect 16 2958 2991 33 2 101%
mprotect 32 6431 6608 177 6 103%
madvise_ 1 191 208 16 16 109%
madvise_ 2 300 324 24 12 108%
madvise_ 4 450 473 23 6 105%
madvise_ 8 753 806 53 7 107%
madvise_ 16 1467 1592 125 8 108%
madvise_ 32 2795 3405 610 19 122%
The second test (measuring cpu cycle)
syscall__ nbr_vma cpu cmseal delta_cpu per_vma %
munmap__ 1 684 715 31 31 105%
munmap__ 2 861 898 38 19 104%
munmap__ 4 1183 1235 51 13 104%
munmap__ 8 1999 2045 46 6 102%
munmap__ 16 3839 3816 -23 -1 99%
munmap__ 32 7672 7887 216 7 103%
mprotect 1 397 443 46 46 112%
mprotect 2 738 788 50 25 107%
mprotect 4 1221 1256 35 9 103%
mprotect 8 2356 2429 72 9 103%
mprotect 16 4961 4935 -26 -2 99%
mprotect 32 9882 10172 291 9 103%
madvise_ 1 351 380 29 29 108%
madvise_ 2 565 615 49 25 109%
madvise_ 4 872 933 61 15 107%
madvise_ 8 1508 1640 132 16 109%
madvise_ 16 3078 3323 245 15 108%
madvise_ 32 5893 6704 811 25 114%
For 5.10 kernel, sealing check adds 0-15 ns in time, or 10-30
CPU cycles, there is even decrease in some cases.
It might be interesting to compare 5.10 and 6.8 kernel
The first test (measuring time)
syscall__ vmas t_5_10 t_6_8 delta_ns per_vma %
munmap__ 1 357 909 552 552 254%
munmap__ 2 442 1398 956 478 316%
munmap__ 4 614 2444 1830 458 398%
munmap__ 8 1017 4029 3012 377 396%
munmap__ 16 1889 6647 4758 297 352%
munmap__ 32 4109 11811 7702 241 287%
mprotect 1 235 439 204 204 187%
mprotect 2 495 1659 1164 582 335%
mprotect 4 741 3747 3006 752 506%
mprotect 8 1434 6755 5320 665 471%
mprotect 16 2958 13748 10790 674 465%
mprotect 32 6431 27827 21397 669 433%
madvise_ 1 191 240 49 49 125%
madvise_ 2 300 366 67 33 122%
madvise_ 4 450 623 173 43 138%
madvise_ 8 753 1110 357 45 147%
madvise_ 16 1467 2127 660 41 145%
madvise_ 32 2795 4109 1314 41 147%
The second test (measuring cpu cycle)
syscall__ vmas cpu_5_10 c_6_8 delta_cpu per_vma %
munmap__ 1 684 1790 1106 1106 262%
munmap__ 2 861 2819 1958 979 327%
munmap__ 4 1183 4959 3776 944 419%
munmap__ 8 1999 8262 6263 783 413%
munmap__ 16 3839 13099 9260 579 341%
munmap__ 32 7672 23221 15549 486 303%
mprotect 1 397 906 509 509 228%
mprotect 2 738 3019 2281 1140 409%
mprotect 4 1221 6149 4929 1232 504%
mprotect 8 2356 9978 7622 953 423%
mprotect 16 4961 20448 15487 968 412%
mprotect 32 9882 40972 31091 972 415%
madvise_ 1 351 434 82 82 123%
madvise_ 2 565 752 186 93 133%
madvise_ 4 872 1313 442 110 151%
madvise_ 8 1508 2271 763 95 151%
madvise_ 16 3078 4312 1234 77 140%
madvise_ 32 5893 8376 2483 78 142%
From 5.10 to 6.8
munmap: added 250-550 ns in time, or 500-1100 in cpu cycle, per vma.
mprotect: added 200-750 ns in time, or 500-1200 in cpu cycle, per vma.
madvise: added 33-50 ns in time, or 70-110 in cpu cycle, per vma.
In comparison to mseal, which adds 20-40 ns or 50-100 CPU cycles, the
increase from 5.10 to 6.8 is significantly larger, approximately ten times
greater for munmap and mprotect.
When I discuss the mm performance with Brian Makin, an engineer who worked
on performance, it was brought to my attention that such performance
benchmarks, which measuring millions of mm syscall in a tight loop, may
not accurately reflect real-world scenarios, such as that of a database
service. Also this is tested using a single HW and ChromeOS, the data
from another HW or distribution might be different. It might be best to
take this data with a grain of salt.
This patch (of 5):
Wire up mseal syscall for all architectures.
Link: https://lkml.kernel.org/r/20240415163527.626541-1-jeffxu@chromium.org
Link: https://lkml.kernel.org/r/20240415163527.626541-2-jeffxu@chromium.org
Signed-off-by: Jeff Xu <jeffxu@chromium.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Jann Horn <jannh@google.com> [Bug #2]
Cc: Jeff Xu <jeffxu@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jorge Lucangeli Obes <jorgelo@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Pedro Falcato <pedro.falcato@gmail.com>
Cc: Stephen Röttger <sroettger@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Amer Al Shanawany <amer.shanawany@gmail.com>
Cc: Javier Carrasco <javier.carrasco.cruz@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
"The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs.
Notable series include:
- Lucas Stach has provided some page-mapping cleanup/consolidation/
maintainability work in the series "mm/treewide: Remove pXd_huge()
API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
one test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being
allocated: number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in
largely similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene"
Johannes Weiner has fixed the page allocator's handling of
migratetype requests, with resulting improvements in compaction
efficiency.
- In the series "make the hugetlb migration strategy consistent"
Baolin Wang has fixed a hugetlb migration issue, which should
improve hugetlb allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when
memory almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting"
Kairui Song has optimized pagecache insertion, yielding ~10%
performance improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various
page->flags cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series:
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert
hugetlb functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
series "mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs.
This is a simple first-cut implementation for now. The series is
"support multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in
the series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts
in the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call
it GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
path to use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes".
Fixes the initialization code so that migration between different
memory types works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant
driver in the series "mm: follow_pte() improvements and acrn
follow_pte() fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to
folio in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size
THP's in the series "mm: add per-order mTHP alloc and swpout
counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap
same-filled and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His
series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
optimizes the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback
instrumentation in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series
"Fix and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
the series "Improve anon_vma scalability for anon VMAs". Intel's
test bot reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as
XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking""
* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
selftests: cgroup: add tests to verify the zswap writeback path
mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
mm/damon/core: fix return value from damos_wmark_metric_value
mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
selftests: cgroup: remove redundant enabling of memory controller
Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
Docs/mm/damon/design: use a list for supported filters
Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
selftests/damon: classify tests for functionalities and regressions
selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
selftests/damon: add a test for DAMOS quota goal
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- Avoid 'constexpr', which is a keyword in C23
- Allow 'dtbs_check' and 'dt_compatible_check' run independently of
'dt_binding_check'
- Fix weak references to avoid GOT entries in position-independent code
generation
- Convert the last use of 'optional' property in arch/sh/Kconfig
- Remove support for the 'optional' property in Kconfig
- Remove support for Clang's ThinLTO caching, which does not work with
the .incbin directive
- Change the semantics of $(src) so it always points to the source
directory, which fixes Makefile inconsistencies between upstream and
downstream
- Fix 'make tar-pkg' for RISC-V to produce a consistent package
- Provide reasonable default coverage for objtool, sanitizers, and
profilers
- Remove redundant OBJECT_FILES_NON_STANDARD, KASAN_SANITIZE, etc.
- Remove the last use of tristate choice in drivers/rapidio/Kconfig
- Various cleanups and fixes in Kconfig
* tag 'kbuild-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (46 commits)
kconfig: use sym_get_choice_menu() in sym_check_prop()
rapidio: remove choice for enumeration
kconfig: lxdialog: remove initialization with A_NORMAL
kconfig: m/nconf: merge two item_add_str() calls
kconfig: m/nconf: remove dead code to display value of bool choice
kconfig: m/nconf: remove dead code to display children of choice members
kconfig: gconf: show checkbox for choice correctly
kbuild: use GCOV_PROFILE and KCSAN_SANITIZE in scripts/Makefile.modfinal
Makefile: remove redundant tool coverage variables
kbuild: provide reasonable defaults for tool coverage
modules: Drop the .export_symbol section from the final modules
kconfig: use menu_list_for_each_sym() in sym_check_choice_deps()
kconfig: use sym_get_choice_menu() in conf_write_defconfig()
kconfig: add sym_get_choice_menu() helper
kconfig: turn defaults and additional prompt for choice members into error
kconfig: turn missing prompt for choice members into error
kconfig: turn conf_choice() into void function
kconfig: use linked list in sym_set_changed()
kconfig: gconf: use MENU_CHANGED instead of SYMBOL_CHANGED
kconfig: gconf: remove debug code
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probes updates from Masami Hiramatsu:
- tracing/probes: Add new pseudo-types %pd and %pD support for dumping
dentry name from 'struct dentry *' and file name from 'struct file *'
- uprobes performance optimizations:
- Speed up the BPF uprobe event by delaying the fetching of the
uprobe event arguments that are not used in BPF
- Avoid locking by speculatively checking whether uprobe event is
valid
- Reduce lock contention by using read/write_lock instead of
spinlock for uprobe list operation. This improved BPF uprobe
benchmark result 43% on average
- rethook: Remove non-fatal warning messages when tracing stack from
BPF and skip rcu_is_watching() validation in rethook if possible
- objpool: Optimize objpool (which is used by kretprobes and fprobe as
rethook backend storage) by inlining functions and avoid caching
nr_cpu_ids because it is a const value
- fprobe: Add entry/exit callbacks types (code cleanup)
- kprobes: Check ftrace was killed in kprobes if it uses ftrace
* tag 'probes-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
kprobe/ftrace: bail out if ftrace was killed
selftests/ftrace: Fix required features for VFS type test case
objpool: cache nr_possible_cpus() and avoid caching nr_cpu_ids
objpool: enable inlining objpool_push() and objpool_pop() operations
rethook: honor CONFIG_FTRACE_VALIDATE_RCU_IS_WATCHING in rethook_try_get()
ftrace: make extra rcu_is_watching() validation check optional
uprobes: reduce contention on uprobes_tree access
rethook: Remove warning messages printed for finding return address of a frame.
fprobe: Add entry/exit callbacks types
selftests/ftrace: add fprobe test cases for VFS type "%pd" and "%pD"
selftests/ftrace: add kprobe test cases for VFS type "%pd" and "%pD"
Documentation: tracing: add new type '%pd' and '%pD' for kprobe
tracing/probes: support '%pD' type for print struct file's name
tracing/probes: support '%pd' type for print struct dentry's name
uprobes: add speculative lockless system-wide uprobe filter check
uprobes: prepare uprobe args buffer lazily
uprobes: encapsulate preparation of uprobe args buffer
|
|
If an error happens in ftrace, ftrace_kill() will prevent disarming
kprobes. Eventually, the ftrace_ops associated with the kprobes will be
freed, yet the kprobes will still be active, and when triggered, they
will use the freed memory, likely resulting in a page fault and panic.
This behavior can be reproduced quite easily, by creating a kprobe and
then triggering a ftrace_kill(). For simplicity, we can simulate an
ftrace error with a kernel module like [1]:
[1]: https://github.com/brenns10/kernel_stuff/tree/master/ftrace_killer
sudo perf probe --add commit_creds
sudo perf trace -e probe:commit_creds
# In another terminal
make
sudo insmod ftrace_killer.ko # calls ftrace_kill(), simulating bug
# Back to perf terminal
# ctrl-c
sudo perf probe --del commit_creds
After a short period, a page fault and panic would occur as the kprobe
continues to execute and uses the freed ftrace_ops. While ftrace_kill()
is supposed to be used only in extreme circumstances, it is invoked in
FTRACE_WARN_ON() and so there are many places where an unexpected bug
could be triggered, yet the system may continue operating, possibly
without the administrator noticing. If ftrace_kill() does not panic the
system, then we should do everything we can to continue operating,
rather than leave a ticking time bomb.
Link: https://lore.kernel.org/all/20240501162956.229427-1-stephen.s.brennan@oracle.com/
Signed-off-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Guo Ren <guoren@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull modules updates from Luis Chamberlain:
"Finally something fun. Mike Rapoport does some cleanup to allow us to
take out module_alloc() out of modules into a new paint shedded
execmem_alloc() and execmem_free() so to make emphasis these helpers
are actually used outside of modules.
It starts with a non-functional changes API rename / placeholders to
then allow architectures to define their requirements into a new shiny
struct execmem_info with ranges, and requirements for those ranges.
Archs now can intitialize this execmem_info as the last part of
mm_core_init() if they have to diverge from the norm. Each range is a
known type clearly articulated and spelled out in enum execmem_type.
Although a lot of this is major cleanup and prep work for future
enhancements an immediate clear gain is we get to enable KPROBES
without MODULES now. That is ultimately what motiviated to pick this
work up again, now with smaller goal as concrete stepping stone"
* tag 'modules-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux:
bpf: remove CONFIG_BPF_JIT dependency on CONFIG_MODULES of
kprobes: remove dependency on CONFIG_MODULES
powerpc: use CONFIG_EXECMEM instead of CONFIG_MODULES where appropriate
x86/ftrace: enable dynamic ftrace without CONFIG_MODULES
arch: make execmem setup available regardless of CONFIG_MODULES
powerpc: extend execmem_params for kprobes allocations
arm64: extend execmem_info for generated code allocations
riscv: extend execmem_params for generated code allocations
mm/execmem, arch: convert remaining overrides of module_alloc to execmem
mm/execmem, arch: convert simple overrides of module_alloc to execmem
mm: introduce execmem_alloc() and execmem_free()
module: make module_memory_{alloc,free} more self-contained
sparc: simplify module_alloc()
nios2: define virtual address space for modules
mips: module: rename MODULE_START to MODULES_VADDR
arm64: module: remove unneeded call to kasan_alloc_module_shadow()
kallsyms: replace deprecated strncpy with strscpy
module: allow UNUSED_KSYMS_WHITELIST to be relative against objtree.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull interrupt subsystem updates from Thomas Gleixner:
"Core code:
- Interrupt storm detection for the lockup watchdog:
Lockups which are caused by interrupt storms are not easy to debug
because there is no information about the events which make the
lockup detector trigger.
To make this more user friendly, provide an extenstion to interrupt
statistics which allows to take snapshots and an interface to
retrieve the delta to the snapshot. Use this new mechanism in the
watchdog code to do a two stage lockup analysis by taking the
snapshot and printing the deltas for the topmost active interrupts
on the second trigger.
Note: This contains both the interrupt and the watchdog changes as
the latter depend on the former obviously.
- Avoid summation loops in the /proc/interrupts output and use the
global counter when possible
- Skip suspended interrupts on CPU hotplug operations to ensure that
they are not delivered before the system resumes the device drivers
when coming out of suspend.
- On CPU hot-unplug interrupts which are affine to the outgoing CPU
are migrated to a different CPU in the affinity mask. This can fail
when the CPUs have no vectors left. Instead of giving up try to
migrate it to any online CPU and thereby breaking the affinity
setting in order to prevent a stale device interrupt which targets
an offline CPU
- The usual small cleanups
Driver code:
- Support for the RISCV AIA MSI controller
- Make the interrupt allocation for the Loongson PCH controller more
flexible to prevent vector exhaustion
- The usual set of cleanups and fixes all over the place"
* tag 'irq-core-2024-05-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (51 commits)
irqchip/gic-v3-its: Remove BUG_ON in its_vpe_irq_domain_alloc
cpuidle: Avoid explicit cpumask allocation on stack
irqchip/sifive-plic: Avoid explicit cpumask allocation on stack
irqchip/riscv-aplic-direct: Avoid explicit cpumask allocation on stack
irqchip/loongson-eiointc: Avoid explicit cpumask allocation on stack
irqchip/gic-v3-its: Avoid explicit cpumask allocation on stack
irqchip/irq-bcm6345-l1: Avoid explicit cpumask allocation on stack
cpumask: Introduce cpumask_first_and_and()
irqchip/irq-brcmstb-l2: Avoid saving mask on shutdown
genirq: Reuse irq_is_nmi()
genirq/cpuhotplug: Retry with cpu_online_mask when migration fails
genirq/cpuhotplug: Skip suspended interrupts when restoring affinity
arm64: dts: st: Add interrupt parent to pinctrl on stm32mp251
arm64: dts: st: Add exti1 and exti2 nodes on stm32mp251
ARM: dts: stm32: List exti parent interrupts on stm32mp131
ARM: dts: stm32: List exti parent interrupts on stm32mp151
arm64: Kconfig.platforms: Enable STM32_EXTI for ARCH_STM32
irqchip/stm32-exti: Mark events reserved with RIF configuration check
irqchip/stm32-exti: Skip secure events
irqchip/stm32-exti: Convert driver to standard PM
...
|
|
execmem does not depend on modules, on the contrary modules use
execmem.
To make execmem available when CONFIG_MODULES=n, for instance for
kprobes, split execmem_params initialization out from
arch/*/kernel/module.c and compile it when CONFIG_EXECMEM=y
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Several architectures override module_alloc() only to define address
range for code allocations different than VMALLOC address space.
Provide a generic implementation in execmem that uses the parameters for
address space ranges, required alignment and page protections provided
by architectures.
The architectures must fill execmem_info structure and implement
execmem_arch_setup() that returns a pointer to that structure. This way the
execmem initialization won't be called from every architecture, but rather
from a central place, namely a core_initcall() in execmem.
The execmem provides execmem_alloc() API that wraps __vmalloc_node_range()
with the parameters defined by the architectures. If an architecture does
not implement execmem_arch_setup(), execmem_alloc() will fall back to
module_alloc().
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Kbuild conventionally uses $(obj)/ for generated files, and $(src)/ for
checked-in source files. It is merely a convention without any functional
difference. In fact, $(obj) and $(src) are exactly the same, as defined
in scripts/Makefile.build:
src := $(obj)
When the kernel is built in a separate output directory, $(src) does
not accurately reflect the source directory location. While Kbuild
resolves this discrepancy by specifying VPATH=$(srctree) to search for
source files, it does not cover all cases. For example, when adding a
header search path for local headers, -I$(srctree)/$(src) is typically
passed to the compiler.
This introduces inconsistency between upstream and downstream Makefiles
because $(src) is used instead of $(srctree)/$(src) for the latter.
To address this inconsistency, this commit changes the semantics of
$(src) so that it always points to the directory in the source tree.
Going forward, the variables used in Makefiles will have the following
meanings:
$(obj) - directory in the object tree
$(src) - directory in the source tree (changed by this commit)
$(objtree) - the top of the kernel object tree
$(srctree) - the top of the kernel source tree
Consequently, $(srctree)/$(src) in upstream Makefiles need to be replaced
with $(src).
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
|
|
These are generated files. Prefix them with $(obj)/ instead of $(src)/.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Acked-by: Helge Deller <deller@gmx.de>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
|
|
Future changes will need to add a new member to struct
vm_unmapped_area_info. This would cause trouble for any call site that
doesn't initialize the struct. Currently every caller sets each member
manually, so if new members are added they will be uninitialized and the
core code parsing the struct will see garbage in the new member.
It could be possible to initialize the new member manually to 0 at each
call site. This and a couple other options were discussed, and a working
consensus (see links) was that in general the best way to accomplish this
would be via static initialization with designated member initiators.
Having some struct vm_unmapped_area_info instances not zero initialized
will put those sites at risk of feeding garbage into vm_unmapped_area() if
the convention is to zero initialize the struct and any new member
addition misses a call site that initializes each member manually.
It could be possible to leave the code mostly untouched, and just change
the line:
struct vm_unmapped_area_info info
to:
struct vm_unmapped_area_info info = {};
However, that would leave cleanup for the members that are manually set
to zero, as it would no longer be required.
So to be reduce the chance of bugs via uninitialized members, instead
simply continue the process to initialize the struct this way tree wide.
This will zero any unspecified members. Move the member initializers to
the struct declaration when they are known at that time. Leave the
members out that were manually initialized to zero, as this would be
redundant for designated initializers.
Link: https://lkml.kernel.org/r/20240326021656.202649-9-rick.p.edgecombe@intel.com
Link: https://lore.kernel.org/lkml/202402280912.33AEE7A9CF@keescook/#t
Link: https://lore.kernel.org/lkml/j7bfvig3gew3qruouxrh7z7ehjjafrgkbcmg6tcghhfh3rhmzi@wzlcoecgy5rs/
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The build rule for C is unused because 'obj-cvdso32' is not defined
in this Makefile.
If you add a C file into arch/parisc/kernel/vdso32/ in the future,
you can revert this commit. The kernel does not keep unused code.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Acked-by: Helge Deller <deller@gmx.de>
|
|
The irq_desc::kstat_irqs member is a per-CPU variable of type int, which is
only capable of counting. A snapshot mechanism for interrupt statistics
will be added soon, which requires an additional variable to store the
snapshot.
To facilitate expansion, convert kstat_irqs here to a struct containing
only the count.
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Bitao Hu <yaoma@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240411074134.30922-2-yaoma@linux.alibaba.com
|
|
Add (and export) __cmpxchg_u16(), teach __cmpxchg() to use it.
And get rid of manual truncation down to u8, etc. in there - the
only reason for those is to avoid bogus warnings about constant
truncation from sparse, and those are easy to avoid by turning
that switch into conditional expression.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
__cmpxchg_u8() had been added (initially) for the sake of
drivers/phy/ti/phy-tusb1210.c; the thing is, that drivers is
modular, so we need an export
Fixes: b344d6a83d01 "parisc: add support for cmpxchg on u8 pointers"
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Convert to use real temp variables instead of clobbering processor
registers. This aligns the 64-bit inline assembly code with the 32-bit
assembly code which was rewritten with commit 427c1073a2a1
("parisc/unaligned: Rewrite 32-bit inline assembly of emulate_ldd()").
While at it, fix comment in 32-bit rewrite code. Temporary variables are
now used for both 32-bit and 64-bit code, so move their declarations
to the function header.
No functional change intended.
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Cc: stable@vger.kernel.org # v6.0+
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Since commit d492cc2573a0 ("driver core: device.h: make struct
bus_type a const *"), the driver core can properly handle constant
struct bus_type, move the parisc_bus_type variable to be a constant
structure as well, placing it into read-only memory which can not be
modified at runtime.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ricardo B. Marliere <ricardo@marliere.net>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Warn if some kernel function triggers unaligned memory accesses.
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Use irq*_rcu() functions to fix this kernel warning:
WARNING: CPU: 0 PID: 0 at kernel/context_tracking.c:367 ct_irq_enter+0xa0/0xd0
Modules linked in:
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 6.7.0-rc3-64bit+ #1037
Hardware name: 9000/785/C3700
IASQ: 0000000000000000 0000000000000000 IAOQ: 00000000412cd758 00000000412cd75c
IIR: 03ffe01f ISR: 0000000000000000 IOR: 0000000043c20c20
CPU: 0 CR30: 0000000041caa000 CR31: 0000000000000000
ORIG_R28: 0000000000000005
IAOQ[0]: ct_irq_enter+0xa0/0xd0
IAOQ[1]: ct_irq_enter+0xa4/0xd0
RP(r2): irq_enter+0x34/0x68
Backtrace:
[<000000004034a3ec>] irq_enter+0x34/0x68
[<000000004030dc48>] do_cpu_irq_mask+0xc0/0x450
[<0000000040303070>] intr_return+0x0/0xc
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Debugging shows a large number of unaligned access traps in the unwinder
code. Code analysis reveals a number of issues with this code:
- handle_interruption is passed twice through
dereference_kernel_function_descriptor()
- ret_from_kernel_thread, syscall_exit, intr_return,
_switch_to_ret, and _call_on_stack are passed through
dereference_kernel_function_descriptor() even though they are
not declared as function pointers.
To fix the problems, drop one of the calls to
dereference_kernel_function_descriptor() for handle_interruption,
and compare the other pointers directly.
Fixes: 6414b30b39f9 ("parisc: unwind: Avoid missing prototype warning for handle_interruption()")
Fixes: 8e0ba125c2bf ("parisc/unwind: fix unwinder when CONFIG_64BIT is enabled")
Cc: Helge Deller <deller@gmx.de>
Cc: Sven Schnelle <svens@stackframe.org>
Cc: John David Anglin <dave.anglin@bell.net>
Cc: Charlie Jenkins <charlie@rivosinc.com>
Cc: David Laight <David.Laight@ACULAB.COM>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Fixes a bug revealed by -Wmissing-prototypes when
CONFIG_FUNCTION_GRAPH_TRACER is enabled but not CONFIG_DYNAMIC_FTRACE:
arch/parisc/kernel/ftrace.c:82:5: error: no previous prototype for 'ftrace_enable_ftrace_graph_caller' [-Werror=missing-prototypes]
82 | int ftrace_enable_ftrace_graph_caller(void)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
arch/parisc/kernel/ftrace.c:88:5: error: no previous prototype for 'ftrace_disable_ftrace_graph_caller' [-Werror=missing-prototypes]
88 | int ftrace_disable_ftrace_graph_caller(void)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Signed-off-by: Max Kellermann <max.kellermann@ionos.com>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
This reverts commit 0921244f6f4f0d05698b953fe632a99b38907226.
It broke CPU hotplugging because it modifies the __cpu_possible_mask
after bootup, so that it will be different than nr_cpu_ids, which
then effictively breaks the workqueue setup code and triggers crashes
when shutting down CPUs at runtime.
Guenter was the first who noticed the wrong values in __cpu_possible_mask,
since the cpumask Kunit tests were failig.
Reverting this commit fixes both issues, but sadly brings back this
uncritical runtime warning:
register_cpu_capacity_sysctl: too early to get CPU4 device!
Signed-off-by: Helge Deller <deller@gmx.de>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lkml.org/lkml/2024/2/4/146
Link: https://lore.kernel.org/lkml/Zb0mbHlIud_bqftx@slm.duckdns.org/t/
Cc: stable@vger.kernel.org # 6.0+
|
|
When using hotplug and bringing up a 32-bit CPU, ask the firmware about the
BTLB information to set up the static (block) TLB entries.
For that write access to the static btlb_info struct is needed, but
since it is marked __ro_after_init the kernel segfaults with missing
write permissions.
Fix the crash by dropping the __ro_after_init annotation.
Fixes: e5ef93d02d6c ("parisc: BTLB: Initialize BTLB tables at CPU startup")
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: <stable@vger.kernel.org> # v6.6+
|
|
The current exception handler implementation, which assists when accessing
user space memory, may exhibit random data corruption if the compiler decides
to use a different register than the specified register %r29 (defined in
ASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another
register, the fault handler will nevertheless store -EFAULT into %r29 and thus
trash whatever this register is used for.
Looking at the assembly I found that this happens sometimes in emulate_ldd().
To solve the issue, the easiest solution would be if it somehow is
possible to tell the fault handler which register is used to hold the error
code. Using %0 or %1 in the inline assembly is not posssible as it will show
up as e.g. %r29 (with the "%r" prefix), which the GNU assembler can not
convert to an integer.
This patch takes another, better and more flexible approach:
We extend the __ex_table (which is out of the execution path) by one 32-word.
In this word we tell the compiler to insert the assembler instruction
"or %r0,%r0,%reg", where %reg references the register which the compiler
choosed for the error return code.
In case of an access failure, the fault handler finds the __ex_table entry and
can examine the opcode. The used register is encoded in the lowest 5 bits, and
the fault handler can then store -EFAULT into this register.
Since we extend the __ex_table to 3 words we can't use the BUILDTIME_TABLE_SORT
config option any longer.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: <stable@vger.kernel.org> # v6.0+
|