summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/cpu.h
AgeCommit message (Collapse)Author
2024-02-15x86/cpu/topology: Rework possible CPU managementThomas Gleixner
Managing possible CPUs is an unreadable and uncomprehensible maze. Aside of that it's backwards because it applies command line limits after registering all APICs. Rewrite it so that it: - Applies the command line limits upfront so that only the allowed amount of APIC IDs can be registered. - Applies eventual late restrictions in an understandable way - Uses simple min_t() calculations which are trivial to follow. - Provides a separate function for resetting to UP mode late in the bringup process. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Link: https://lore.kernel.org/r/20240213210252.290098853@linutronix.de
2023-12-06x86/topology: Switch over to GENERIC_CPU_DEVICESJames Morse
Now that GENERIC_CPU_DEVICES calls arch_register_cpu(), which can be overridden by the arch code, switch over to this to allow common code to choose when the register_cpu() call is made. x86's struct cpus come from struct x86_cpu, which has no other members or users. Remove this and use the version defined by common code. This is an intermediate step to the logic being moved to drivers/acpi, where GENERIC_CPU_DEVICES will do the work when booting with acpi=off. This patch also has the effect of moving the registration of CPUs from subsys to driver core initialisation, prior to any initcalls running. ---- Changes since RFC: * Fixed the second copy of arch_register_cpu() used for non-hotplug Changes since RFC v2: * Remove duplicate of the weak generic arch_register_cpu(), spotted by Jonathan Cameron. Add note about initialisation order change. Changes since RFC v3: * Adapt to removal of EXPORT_SYMBOL()s Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Signed-off-by: "Russell King (Oracle)" <rmk+kernel@armlinux.org.uk> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/E1r5R3l-00Cszm-UA@rmk-PC.armlinux.org.uk Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-24x86/microcode/intel: Rework intel_find_matching_signature()Thomas Gleixner
Take a cpu_signature argument and work from there. Move the match() helper next to the callsite as there is no point for having it in a header. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231002115902.797820205@linutronix.de
2023-10-24x86/microcode/intel: Rework intel_cpu_collect_info()Thomas Gleixner
Nothing needs struct ucode_cpu_info. Make it take struct cpu_signature, let it return a boolean and simplify the implementation. Rename it now that the silly name clash with collect_cpu_info() is gone. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.851573238@linutronix.de
2023-10-11cpu-hotplug: Provide prototypes for arch CPU registrationRussell King (Oracle)
Provide common prototypes for arch_register_cpu() and arch_unregister_cpu(). These are called by acpi_processor.c, with weak versions, so the prototype for this is already set. It is generally not necessary for function prototypes to be conditional on preprocessor macros. Some architectures (e.g. Loongarch) are missing the prototype for this, and rather than add it to Loongarch's asm/cpu.h, do the job once for everyone. Since this covers everyone, remove the now unnecessary prototypes in asm/cpu.h, and therefore remove the 'static' from one of ia64's arch_register_cpu() definitions. [ tglx: Bring back the ia64 part and remove the ACPI prototypes ] Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/E1qkoRr-0088Q8-Da@rmk-PC.armlinux.org.uk
2023-06-26Merge tag 'x86-core-2023-06-26' of ↵Linus Torvalds
ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 core updates from Thomas Gleixner: "A set of fixes for kexec(), reboot and shutdown issues: - Ensure that the WBINVD in stop_this_cpu() has been completed before the control CPU proceedes. stop_this_cpu() is used for kexec(), reboot and shutdown to park the APs in a HLT loop. The control CPU sends an IPI to the APs and waits for their CPU online bits to be cleared. Once they all are marked "offline" it proceeds. But stop_this_cpu() clears the CPU online bit before issuing WBINVD, which means there is no guarantee that the AP has reached the HLT loop. This was reported to cause intermittent reboot/shutdown failures due to some dubious interaction with the firmware. This is not only a problem of WBINVD. The code to actually "stop" the CPU which runs between clearing the online bit and reaching the HLT loop can cause large enough delays on its own (think virtualization). That's especially dangerous for kexec() as kexec() expects that all APs are in a safe state and not executing code while the boot CPU jumps to the new kernel. There are more issues vs kexec() which are addressed separately. Cure this by implementing an explicit synchronization point right before the AP reaches HLT. This guarantees that the AP has completed the full stop proceedure. - Fix the condition for WBINVD in stop_this_cpu(). The WBINVD in stop_this_cpu() is required for ensuring that when switching to or from memory encryption no dirty data is left in the cache lines which might cause a write back in the wrong more later. This checks CPUID directly because the feature bit might have been cleared due to a command line option. But that CPUID check accesses leaf 0x8000001f::EAX unconditionally. Intel CPUs return the content of the highest supported leaf when a non-existing leaf is read, while AMD CPUs return all zeros for unsupported leafs. So the result of the test on Intel CPUs is lottery and on AMD its just correct by chance. While harmless it's incorrect and causes the conditional wbinvd() to be issued where not required, which caused the above issue to be unearthed. - Make kexec() robust against AP code execution Ashok observed triple faults when doing kexec() on a system which had been booted with "nosmt". It turned out that the SMT siblings which had been brought up partially are parked in mwait_play_dead() to enable power savings. mwait_play_dead() is monitoring the thread flags of the AP's idle task, which has been chosen as it's unlikely to be written to. But kexec() can overwrite the previous kernel text and data including page tables etc. When it overwrites the cache lines monitored by an AP that AP resumes execution after the MWAIT on eventually overwritten text, stack and page tables, which obviously might end up in a triple fault easily. Make this more robust in several steps: 1) Use an explicit per CPU cache line for monitoring. 2) Write a command to these cache lines to kick APs out of MWAIT before proceeding with kexec(), shutdown or reboot. The APs confirm the wakeup by writing status back and then enter a HLT loop. 3) If the system uses INIT/INIT/STARTUP for AP bringup, park the APs in INIT state. HLT is not a guarantee that an AP won't wake up and resume execution. HLT is woken up by NMI and SMI. SMI puts the CPU back into HLT (+/- firmware bugs), but NMI is delivered to the CPU which executes the NMI handler. Same issue as the MWAIT scenario described above. Sending an INIT/INIT sequence to the APs puts them into wait for STARTUP state, which is safe against NMI. There is still an issue remaining which can't be fixed: #MCE If the AP sits in HLT and receives a broadcast #MCE it will try to handle it with the obvious consequences. INIT/INIT clears CR4.MCE in the AP which will cause a broadcast #MCE to shut down the machine. So there is a choice between fire (HLT) and frying pan (INIT). Frying pan has been chosen as it's at least preventing the NMI issue. On systems which are not using INIT/INIT/STARTUP there is not much which can be done right now, but at least the obvious and easy to trigger MWAIT issue has been addressed" * tag 'x86-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/smp: Put CPUs into INIT on shutdown if possible x86/smp: Split sending INIT IPI out into a helper function x86/smp: Cure kexec() vs. mwait_play_dead() breakage x86/smp: Use dedicated cache-line for mwait_play_dead() x86/smp: Remove pointless wmb()s from native_stop_other_cpus() x86/smp: Dont access non-existing CPUID leaf x86/smp: Make stop_other_cpus() more robust
2023-06-20x86/smp: Make stop_other_cpus() more robustThomas Gleixner
Tony reported intermittent lockups on poweroff. His analysis identified the wbinvd() in stop_this_cpu() as the culprit. This was added to ensure that on SME enabled machines a kexec() does not leave any stale data in the caches when switching from encrypted to non-encrypted mode or vice versa. That wbinvd() is conditional on the SME feature bit which is read directly from CPUID. But that readout does not check whether the CPUID leaf is available or not. If it's not available the CPU will return the value of the highest supported leaf instead. Depending on the content the "SME" bit might be set or not. That's incorrect but harmless. Making the CPUID readout conditional makes the observed hangs go away, but it does not fix the underlying problem: CPU0 CPU1 stop_other_cpus() send_IPIs(REBOOT); stop_this_cpu() while (num_online_cpus() > 1); set_online(false); proceed... -> hang wbinvd() WBINVD is an expensive operation and if multiple CPUs issue it at the same time the resulting delays are even larger. But CPU0 already observed num_online_cpus() going down to 1 and proceeds which causes the system to hang. This issue exists independent of WBINVD, but the delays caused by WBINVD make it more prominent. Make this more robust by adding a cpumask which is initialized to the online CPU mask before sending the IPIs and CPUs clear their bit in stop_this_cpu() after the WBINVD completed. Check for that cpumask to become empty in stop_other_cpus() instead of watching num_online_cpus(). The cpumask cannot plug all holes either, but it's better than a raw counter and allows to restrict the NMI fallback IPI to be sent only the CPUs which have not reported within the timeout window. Fixes: 08f253ec3767 ("x86/cpu: Clear SME feature flag when not in use") Reported-by: Tony Battersby <tonyb@cybernetics.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Ashok Raj <ashok.raj@intel.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/all/3817d810-e0f1-8ef8-0bbd-663b919ca49b@cybernetics.com Link: https://lore.kernel.org/r/87h6r770bv.ffs@tglx
2023-05-15x86/topology: Remove CPU0 hotplug optionThomas Gleixner
This was introduced together with commit e1c467e69040 ("x86, hotplug: Wake up CPU0 via NMI instead of INIT, SIPI, SIPI") to eventually support physical hotplug of CPU0: "We'll change this code in the future to wake up hard offlined CPU0 if real platform and request are available." 11 years later this has not happened and physical hotplug is not officially supported. Remove the cruft. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Helge Deller <deller@gmx.de> # parisc Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Link: https://lore.kernel.org/r/20230512205255.715707999@linutronix.de
2023-05-15x86/smpboot: Rename start_cpu0() to soft_restart_cpu()Thomas Gleixner
This is used in the SEV play_dead() implementation to re-online CPUs. But that has nothing to do with CPU0. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Helge Deller <deller@gmx.de> # parisc Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Link: https://lore.kernel.org/r/20230512205255.662319599@linutronix.de
2022-11-18x86/microcode/intel: Add hdr_type to intel_microcode_sanity_check()Jithu Joseph
IFS test images and microcode blobs use the same header format. Microcode blobs use header type of 1, whereas IFS test images will use header type of 2. In preparation for IFS reusing intel_microcode_sanity_check(), add header type as a parameter for sanity check. [ bp: Touchups. ] Signed-off-by: Jithu Joseph <jithu.joseph@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Ashok Raj <ashok.raj@intel.com> Link: https://lore.kernel.org/r/20221117035935.4136738-9-jithu.joseph@intel.com
2022-11-18x86/microcode/intel: Reuse microcode_sanity_check()Jithu Joseph
IFS test image carries the same microcode header as regular Intel microcode blobs. Reuse microcode_sanity_check() in the IFS driver to perform sanity check of the IFS test images too. Signed-off-by: Jithu Joseph <jithu.joseph@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Ashok Raj <ashok.raj@intel.com> Reviewed-by: Sohil Mehta <sohil.mehta@intel.com> Link: https://lore.kernel.org/r/20221117035935.4136738-8-jithu.joseph@intel.com
2022-11-18x86/microcode/intel: Reuse find_matching_signature()Jithu Joseph
IFS uses test images provided by Intel that can be regarded as firmware. An IFS test image carries microcode header with an extended signature table. Reuse find_matching_signature() for verifying if the test image header or the extended signature table indicate whether that image is fit to run on a system. No functional changes. Signed-off-by: Jithu Joseph <jithu.joseph@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Ashok Raj <ashok.raj@intel.com> Reviewed-by: Sohil Mehta <sohil.mehta@intel.com> Link: https://lore.kernel.org/r/20221117035935.4136738-6-jithu.joseph@intel.com
2022-08-31x86/apic: Don't disable x2APIC if lockedDaniel Sneddon
The APIC supports two modes, legacy APIC (or xAPIC), and Extended APIC (or x2APIC). X2APIC mode is mostly compatible with legacy APIC, but it disables the memory-mapped APIC interface in favor of one that uses MSRs. The APIC mode is controlled by the EXT bit in the APIC MSR. The MMIO/xAPIC interface has some problems, most notably the APIC LEAK [1]. This bug allows an attacker to use the APIC MMIO interface to extract data from the SGX enclave. Introduce support for a new feature that will allow the BIOS to lock the APIC in x2APIC mode. If the APIC is locked in x2APIC mode and the kernel tries to disable the APIC or revert to legacy APIC mode a GP fault will occur. Introduce support for a new MSR (IA32_XAPIC_DISABLE_STATUS) and handle the new locked mode when the LEGACY_XAPIC_DISABLED bit is set by preventing the kernel from trying to disable the x2APIC. On platforms with the IA32_XAPIC_DISABLE_STATUS MSR, if SGX or TDX are enabled the LEGACY_XAPIC_DISABLED will be set by the BIOS. If legacy APIC is required, then it SGX and TDX need to be disabled in the BIOS. [1]: https://aepicleak.com/aepicleak.pdf Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Neelima Krishnan <neelima.krishnan@intel.com> Link: https://lkml.kernel.org/r/20220816231943.1152579-1-daniel.sneddon@linux.intel.com
2022-05-23Merge tag 'platform-drivers-x86-v5.19-1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86 Pull x86 platform driver updates from Hans de Goede: "This includes some small changes to kernel/stop_machine.c and arch/x86 which are deps of the new Intel IFS support. Highlights: - New drivers: - Intel "In Field Scan" (IFS) support - Winmate FM07/FM07P buttons - Mellanox SN2201 support - AMD PMC driver enhancements - Lots of various other small fixes and hardware-id additions" * tag 'platform-drivers-x86-v5.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86: (54 commits) platform/x86/intel/ifs: Add CPU_SUP_INTEL dependency platform/x86: intel_cht_int33fe: Set driver data platform/x86: intel-hid: fix _DSM function index handling platform/x86: toshiba_acpi: use kobj_to_dev() platform/x86: samsung-laptop: use kobj_to_dev() platform/x86: gigabyte-wmi: Add support for Z490 AORUS ELITE AC and X570 AORUS ELITE WIFI tools/power/x86/intel-speed-select: Fix warning for perf_cap.cpu tools/power/x86/intel-speed-select: Display error on turbo mode disabled Documentation: In-Field Scan platform/x86/intel/ifs: add ABI documentation for IFS trace: platform/x86/intel/ifs: Add trace point to track Intel IFS operations platform/x86/intel/ifs: Add IFS sysfs interface platform/x86/intel/ifs: Add scan test support platform/x86/intel/ifs: Authenticate and copy to secured memory platform/x86/intel/ifs: Check IFS Image sanity platform/x86/intel/ifs: Read IFS firmware image platform/x86/intel/ifs: Add stub driver for In-Field Scan stop_machine: Add stop_core_cpuslocked() for per-core operations x86/msr-index: Define INTEGRITY_CAPABILITIES MSR x86/microcode/intel: Expose collect_cpu_info_early() for IFS ...
2022-05-23Merge tag 'x86_splitlock_for_v5.19_rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 splitlock updates from Borislav Petkov: - Add Raptor Lake to the set of CPU models which support splitlock - Make life miserable for apps using split locks by slowing them down considerably while the rest of the system remains responsive. The hope is it will hurt more and people will really fix their misaligned locks apps. As a result, free a TIF bit. * tag 'x86_splitlock_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/split_lock: Enable the split lock feature on Raptor Lake x86/split-lock: Remove unused TIF_SLD bit x86/split_lock: Make life miserable for split lockers
2022-05-12x86/microcode/intel: Expose collect_cpu_info_early() for IFSJithu Joseph
IFS is a CPU feature that allows a binary blob, similar to microcode, to be loaded and consumed to perform low level validation of CPU circuitry. In fact, it carries the same Processor Signature (family/model/stepping) details that are contained in Intel microcode blobs. In support of an IFS driver to trigger loading, validation, and running of these tests blobs, make the functionality of cpu_signatures_match() and collect_cpu_info_early() available outside of the microcode driver. Add an "intel_" prefix and drop the "_early" suffix from collect_cpu_info_early() and EXPORT_SYMBOL_GPL() it. Add declaration to x86 <asm/cpu.h> Make cpu_signatures_match() an inline function in x86 <asm/cpu.h>, and also give it an "intel_" prefix. No functional change intended. Reviewed-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jithu Joseph <jithu.joseph@intel.com> Co-developed-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Link: https://lore.kernel.org/r/20220506225410.1652287-2-tony.luck@intel.com Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2022-04-27x86/aperfmperf: Make parts of the frequency invariance code unconditionalThomas Gleixner
The frequency invariance support is currently limited to x86/64 and SMP, which is the vast majority of machines. arch_scale_freq_tick() is called every tick on all CPUs and reads the APERF and MPERF MSRs. The CPU frequency getters function do the same via dedicated IPIs. While it could be argued that on systems where frequency invariance support is disabled (32bit, !SMP) the per tick read of the APERF and MPERF MSRs can be avoided, it does not make sense to keep the extra code and the resulting runtime issues of mass IPIs around. As a first step split out the non frequency invariance specific initialization code and the read MSR portion of arch_scale_freq_tick(). The rest of the code is still conditional and guarded with a static key. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lore.kernel.org/r/20220415161206.761988704@linutronix.de
2022-04-27x86/split-lock: Remove unused TIF_SLD bitTony Luck
Changes to the "warn" mode of split lock handling mean that TIF_SLD is never set. Remove the bit, and the functions that use it. Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20220310204854.31752-3-tony.luck@intel.com
2022-03-15x86/ibt,kexec: Disable CET on kexecPeter Zijlstra
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20220308154318.641454603@infradead.org
2022-03-15x86/ibt: Add IBT feature, MSR and #CP handlingPeter Zijlstra
The bits required to make the hardware go.. Of note is that, provided the syscall entry points are covered with ENDBR, #CP doesn't need to be an IST because we'll never hit the syscall gap. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20220308154318.582331711@infradead.org
2021-04-28Merge tag 'perf-core-2021-04-28' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf event updates from Ingo Molnar: - Improve Intel uncore PMU support: - Parse uncore 'discovery tables' - a new hardware capability enumeration method introduced on the latest Intel platforms. This table is in a well-defined PCI namespace location and is read via MMIO. It is organized in an rbtree. These uncore tables will allow the discovery of standard counter blocks, but fancier counters still need to be enumerated explicitly. - Add Alder Lake support - Improve IIO stacks to PMON mapping support on Skylake servers - Add Intel Alder Lake PMU support - which requires the introduction of 'hybrid' CPUs and PMUs. Alder Lake is a mix of Golden Cove ('big') and Gracemont ('small' - Atom derived) cores. The CPU-side feature set is entirely symmetrical - but on the PMU side there's core type dependent PMU functionality. - Reduce data loss with CPU level hardware tracing on Intel PT / AUX profiling, by fixing the AUX allocation watermark logic. - Improve ring buffer allocation on NUMA systems - Put 'struct perf_event' into their separate kmem_cache pool - Add support for synchronous signals for select perf events. The immediate motivation is to support low-overhead sampling-based race detection for user-space code. The feature consists of the following main changes: - Add thread-only event inheritance via perf_event_attr::inherit_thread, which limits inheritance of events to CLONE_THREAD. - Add the ability for events to not leak through exec(), via perf_event_attr::remove_on_exec. - Allow the generation of SIGTRAP via perf_event_attr::sigtrap, extend siginfo with an u64 ::si_perf, and add the breakpoint information to ::si_addr and ::si_perf if the event is PERF_TYPE_BREAKPOINT. The siginfo support is adequate for breakpoints right now - but the new field can be used to introduce support for other types of metadata passed over siginfo as well. - Misc fixes, cleanups and smaller updates. * tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits) signal, perf: Add missing TRAP_PERF case in siginfo_layout() signal, perf: Fix siginfo_t by avoiding u64 on 32-bit architectures perf/x86: Allow for 8<num_fixed_counters<16 perf/x86/rapl: Add support for Intel Alder Lake perf/x86/cstate: Add Alder Lake CPU support perf/x86/msr: Add Alder Lake CPU support perf/x86/intel/uncore: Add Alder Lake support perf: Extend PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE perf/x86/intel: Add Alder Lake Hybrid support perf/x86: Support filter_match callback perf/x86/intel: Add attr_update for Hybrid PMUs perf/x86: Add structures for the attributes of Hybrid PMUs perf/x86: Register hybrid PMUs perf/x86: Factor out x86_pmu_show_pmu_cap perf/x86: Remove temporary pmu assignment in event_init perf/x86/intel: Factor out intel_pmu_check_extra_regs perf/x86/intel: Factor out intel_pmu_check_event_constraints perf/x86/intel: Factor out intel_pmu_check_num_counters perf/x86: Hybrid PMU support for extra_regs perf/x86: Hybrid PMU support for event constraints ...
2021-04-19x86/cpu: Add helper function to get the type of the current hybrid CPURicardo Neri
On processors with Intel Hybrid Technology (i.e., one having more than one type of CPU in the same package), all CPUs support the same instruction set and enumerate the same features on CPUID. Thus, all software can run on any CPU without restrictions. However, there may be model-specific differences among types of CPUs. For instance, each type of CPU may support a different number of performance counters. Also, machine check error banks may be wired differently. Even though most software will not care about these differences, kernel subsystems dealing with these differences must know. Add and expose a new helper function get_this_hybrid_cpu_type() to query the type of the current hybrid CPU. The function will be used later in the perf subsystem. The Intel Software Developer's Manual defines the CPU type as 8-bit identifier. Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Len Brown <len.brown@intel.com> Acked-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/1618237865-33448-3-git-send-email-kan.liang@linux.intel.com
2021-03-28x86/traps: Handle #DB for bus lockFenghua Yu
Bus locks degrade performance for the whole system, not just for the CPU that requested the bus lock. Two CPU features "#AC for split lock" and "#DB for bus lock" provide hooks so that the operating system may choose one of several mitigation strategies. #AC for split lock is already implemented. Add code to use the #DB for bus lock feature to cover additional situations with new options to mitigate. split_lock_detect= #AC for split lock #DB for bus lock off Do nothing Do nothing warn Kernel OOPs Warn once per task and Warn once per task and and continues to run. disable future checking When both features are supported, warn in #AC fatal Kernel OOPs Send SIGBUS to user. Send SIGBUS to user When both features are supported, fatal in #AC ratelimit:N Do nothing Limit bus lock rate to N per second in the current non-root user. Default option is "warn". Hardware only generates #DB for bus lock detect when CPL>0 to avoid nested #DB from multiple bus locks while the first #DB is being handled. So no need to handle #DB for bus lock detected in the kernel. #DB for bus lock is enabled by bus lock detection bit 2 in DEBUGCTL MSR while #AC for split lock is enabled by split lock detection bit 29 in TEST_CTRL MSR. Both breakpoint and bus lock in the same instruction can trigger one #DB. The bus lock is handled before the breakpoint in the #DB handler. Delivery of #DB for bus lock in userspace clears DR6[11], which is set by the #DB handler right after reading DR6. Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Link: https://lore.kernel.org/r/20210322135325.682257-3-fenghua.yu@intel.com
2020-06-15x86/cpu: Reinitialize IA32_FEAT_CTL MSR on BSP during wakeupSean Christopherson
Reinitialize IA32_FEAT_CTL on the BSP during wakeup to handle the case where firmware doesn't initialize or save/restore across S3. This fixes a bug where IA32_FEAT_CTL is left uninitialized and results in VMXON taking a #GP due to VMX not being fully enabled, i.e. breaks KVM. Use init_ia32_feat_ctl() to "restore" IA32_FEAT_CTL as it already deals with the case where the MSR is locked, and because APs already redo init_ia32_feat_ctl() during suspend by virtue of the SMP boot flow being used to reinitialize APs upon wakeup. Do the call in the early wakeup flow to avoid dependencies in the syscore_ops chain, e.g. simply adding a resume hook is not guaranteed to work, as KVM does VMXON in its own resume hook, kvm_resume(), when KVM has active guests. Fixes: 21bd3467a58e ("KVM: VMX: Drop initialization of IA32_FEAT_CTL MSR") Reported-by: Brad Campbell <lists2009@fnarfbargle.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Liam Merwick <liam.merwick@oracle.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Brad Campbell <lists2009@fnarfbargle.com> Cc: stable@vger.kernel.org # v5.6 Link: https://lkml.kernel.org/r/20200608174134.11157-1-sean.j.christopherson@intel.com
2020-04-11x86/split_lock: Provide handle_guest_split_lock()Thomas Gleixner
Without at least minimal handling for split lock detection induced #AC, VMX will just run into the same problem as the VMWare hypervisor, which was reported by Kenneth. It will inject the #AC blindly into the guest whether the guest is prepared or not. Provide a function for guest mode which acts depending on the host SLD mode. If mode == sld_warn, treat it like user space, i.e. emit a warning, disable SLD and mark the task accordingly. Otherwise force SIGBUS. [ bp: Add a !CPU_SUP_INTEL stub for handle_guest_split_lock(). ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Link: https://lkml.kernel.org/r/20200410115516.978037132@linutronix.de Link: https://lkml.kernel.org/r/20200402123258.895628824@linutronix.de
2020-02-20x86/split_lock: Enable split lock detection by kernelPeter Zijlstra (Intel)
A split-lock occurs when an atomic instruction operates on data that spans two cache lines. In order to maintain atomicity the core takes a global bus lock. This is typically >1000 cycles slower than an atomic operation within a cache line. It also disrupts performance on other cores (which must wait for the bus lock to be released before their memory operations can complete). For real-time systems this may mean missing deadlines. For other systems it may just be very annoying. Some CPUs have the capability to raise an #AC trap when a split lock is attempted. Provide a command line option to give the user choices on how to handle this: split_lock_detect= off - not enabled (no traps for split locks) warn - warn once when an application does a split lock, but allow it to continue running. fatal - Send SIGBUS to applications that cause split lock On systems that support split lock detection the default is "warn". Note that if the kernel hits a split lock in any mode other than "off" it will OOPs. One implementation wrinkle is that the MSR to control the split lock detection is per-core, not per thread. This might result in some short lived races on HT systems in "warn" mode if Linux tries to enable on one thread while disabling on the other. Race analysis by Sean Christopherson: - Toggling of split-lock is only done in "warn" mode. Worst case scenario of a race is that a misbehaving task will generate multiple #AC exceptions on the same instruction. And this race will only occur if both siblings are running tasks that generate split-lock #ACs, e.g. a race where sibling threads are writing different values will only occur if CPUx is disabling split-lock after an #AC and CPUy is re-enabling split-lock after *its* previous task generated an #AC. - Transitioning between off/warn/fatal modes at runtime isn't supported and disabling is tracked per task, so hardware will always reach a steady state that matches the configured mode. I.e. split-lock is guaranteed to be enabled in hardware once all _TIF_SLD threads have been scheduled out. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Co-developed-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Co-developed-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20200126200535.GB30377@agluck-desk2.amr.corp.intel.com
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-07-27Merge tag 'for-linus-4.8-rc0-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip Pull xen updates from David Vrabel: "Features and fixes for 4.8-rc0: - ACPI support for guests on ARM platforms. - Generic steal time support for arm and x86. - Support cases where kernel cpu is not Xen VCPU number (e.g., if in-guest kexec is used). - Use the system workqueue instead of a custom workqueue in various places" * tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (47 commits) xen: add static initialization of steal_clock op to xen_time_ops xen/pvhvm: run xen_vcpu_setup() for the boot CPU xen/evtchn: use xen_vcpu_id mapping xen/events: fifo: use xen_vcpu_id mapping xen/events: use xen_vcpu_id mapping in events_base x86/xen: use xen_vcpu_id mapping when pointing vcpu_info to shared_info x86/xen: use xen_vcpu_id mapping for HYPERVISOR_vcpu_op xen: introduce xen_vcpu_id mapping x86/acpi: store ACPI ids from MADT for future usage x86/xen: update cpuid.h from Xen-4.7 xen/evtchn: add IOCTL_EVTCHN_RESTRICT xen-blkback: really don't leak mode property xen-blkback: constify instance of "struct attribute_group" xen-blkfront: prefer xenbus_scanf() over xenbus_gather() xen-blkback: prefer xenbus_scanf() over xenbus_gather() xen: support runqueue steal time on xen arm/xen: add support for vm_assist hypercall xen: update xen headers xen-pciback: drop superfluous variables xen-pciback: short-circuit read path used for merging write values ...
2016-07-25x86/acpi: store ACPI ids from MADT for future usageVitaly Kuznetsov
Currently we don't save ACPI ids (unlike LAPIC ids which go to x86_cpu_to_apicid) from MADT and we may need this information later. Particularly, ACPI ids is the only existent way for a PVHVM Xen guest to figure out Xen's idea of its vCPUs ids before these CPUs boot and in some cases these ids diverge from Linux's cpu ids. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2016-07-15x86/smp: Remove stack_smp_processor_id()Andy Lutomirski
It serves no purpose -- raw_smp_processor_id() works fine. This change will be needed to move thread_info off the stack. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/a2bf4f07fbc30fb32f9f7f3f8f94ad3580823847.1468527351.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-24x86/cpu: Unify CPU family, model, stepping calculationBorislav Petkov
Add generic functions which calc family, model and stepping from the CPUID_1.EAX leaf and stick them into the library we have. Rename those which do call CPUID with the prefix "x86_cpuid" as suggested by Paolo Bonzini. No functionality change. Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1448273546-2567-2-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-11x86: Use common outgoing-CPU-notification codePaul E. McKenney
This commit removes the open-coded CPU-offline notification with new common code. Among other things, this change avoids calling scheduler code using RCU from an offline CPU that RCU is ignoring. It also allows Xen to notice at online time that the CPU did not go offline correctly. Note that Xen has the surviving CPU carry out some cleanup operations, so if the surviving CPU times out, these cleanup operations might have been carried out while the outgoing CPU was still running. It might therefore be unwise to bring this CPU back online, and this commit avoids doing so. Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: <x86@kernel.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: David Vrabel <david.vrabel@citrix.com> Cc: <xen-devel@lists.xenproject.org>
2013-07-14x86: delete __cpuinit usage from all x86 filesPaul Gortmaker
The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-11-14x86, topology: Debug CPU0 hotplugFenghua Yu
CONFIG_DEBUG_HOTPLUG_CPU0 is for debugging the CPU0 hotplug feature. The switch offlines CPU0 as soon as possible and boots userspace up with CPU0 offlined. User can online CPU0 back after boot time. The default value of the switch is off. To debug CPU0 hotplug, you need to enable CPU0 offline/online feature by either turning on CONFIG_BOOTPARAM_HOTPLUG_CPU0 during compilation or giving cpu0_hotplug kernel parameter at boot. It's safe and early place to take down CPU0 after all hotplug notifiers are installed and SMP is booted. Please note that some applications or drivers, e.g. some versions of udevd, during boot time may put CPU0 online again in this CPU0 hotplug debug mode. In this debug mode, setup_local_APIC() may report a warning on max_loops<=0 when CPU0 is onlined back after boot time. This is because pending interrupt in IRR can not move to ISR. The warning is not CPU0 specfic and it can happen on other CPUs as well. It is harmless except the first CPU0 online takes a bit longer time. And so this debug mode is useful to expose this issue. I'll send a seperate patch to fix this generic warning issue. Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Link: http://lkml.kernel.org/r/1352835171-3958-15-git-send-email-fenghua.yu@intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-14x86, hotplug: Wake up CPU0 via NMI instead of INIT, SIPI, SIPIFenghua Yu
Instead of waiting for STARTUP after INITs, BSP will execute the BIOS boot-strap code which is not a desired behavior for waking up BSP. To avoid the boot-strap code, wake up CPU0 by NMI instead. This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined (i.e. physically hot removed and then hot added), NMI won't wake it up. We'll change this code in the future to wake up hard offlined CPU0 if real platform and request are available. AP is still waken up as before by INIT, SIPI, SIPI sequence. Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Link: http://lkml.kernel.org/r/1352896613-25957-1-git-send-email-fenghua.yu@intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2011-02-14x86: Fix mwait_usable section mismatchBorislav Petkov
We use it in non __cpuinit code now too so drop marker. Signed-off-by: Borislav Petkov <borislav.petkov@amd.com> LKML-Reference: <20110211171754.GA21047@aftab> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-01-21x86, hotplug: Fix powersavings with offlined cores on AMDBorislav Petkov
ea53069231f9317062910d6e772cca4ce93de8c8 made a CPU use monitor/mwait when offline. This is not the optimal choice for AMD wrt to powersavings and we'd prefer our cores to halt (i.e. enter C1) instead. For this, the same selection whether to use monitor/mwait has to be used as when we select the idle routine for the machine. With this patch, offlining cores 1-5 on a X6 machine allows core0 to boost again. [ hpa: putting this in urgent since it is a (power) regression fix ] Reported-by: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: stable@kernel.org # 37.x Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Len Brown <lenb@kernel.org> Cc: Venkatesh Pallipadi <venki@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.hl> Signed-off-by: Borislav Petkov <borislav.petkov@amd.com> LKML-Reference: <1295534572-10730-1-git-send-email-bp@amd64.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-08-12x86, cleanup: Remove obsolete boot_cpu_id variableRobert Richter
boot_cpu_id is there for historical reasons and was renamed to boot_cpu_physical_apicid in patch: c70dcb7 x86: change boot_cpu_id to boot_cpu_physical_apicid However, there are some remaining occurrences of boot_cpu_id that are never touched in the kernel and thus its value is always 0. This patch removes boot_cpu_id completely. Signed-off-by: Robert Richter <robert.richter@amd.com> LKML-Reference: <1279731838-1522-8-git-send-email-robert.richter@amd.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2009-01-29x86: generalize boot_cpu_idIngo Molnar
x86/Voyager can boot on non-zero processors. While that can probably be fixed by properly remapping the physical CPU IDs, keep boot_cpu_id for now for easier transition - and expand it to all of x86. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-07x86: smp.h move boot_cpu_id declartion to cpu.hJaswinder Singh Rajput
Impact: cleanup Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-07x86: smp.h move cpu_physical_id declartion to cpu.hJaswinder Singh Rajput
Impact: cleanup Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-07x86: smp.h move safe_smp_processor_id declartion to cpu.hJaswinder Singh Rajput
Impact: cleanup Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-07x86: smp.h move stack_processor_id declartion to cpu.hJaswinder Singh Rajput
Impact: cleanup Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-07x86: smp.h move prefill_possible_map declartion to cpu.hJaswinder Singh Rajput
Impact: cleanup, moving NON-SMP stuff from smp.h Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-22x86: Fix ASM_X86__ header guardsH. Peter Anvin
Change header guards named "ASM_X86__*" to "_ASM_X86_*" since: a. the double underscore is ugly and pointless. b. no leading underscore violates namespace constraints. Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-10-22x86, um: ... and asm-x86 moveAl Viro
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: H. Peter Anvin <hpa@zytor.com>