summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/nospec-branch.h
AgeCommit message (Collapse)Author
2024-04-08x86/bhi: Mitigate KVM by defaultPawan Gupta
BHI mitigation mode spectre_bhi=auto does not deploy the software mitigation by default. In a cloud environment, it is a likely scenario where userspace is trusted but the guests are not trusted. Deploying system wide mitigation in such cases is not desirable. Update the auto mode to unconditionally mitigate against malicious guests. Deploy the software sequence at VMexit in auto mode also, when hardware mitigation is not available. Unlike the force =on mode, software sequence is not deployed at syscalls in auto mode. Suggested-by: Alexandre Chartre <alexandre.chartre@oracle.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
2024-04-08x86/bhi: Add support for clearing branch history at syscall entryPawan Gupta
Branch History Injection (BHI) attacks may allow a malicious application to influence indirect branch prediction in kernel by poisoning the branch history. eIBRS isolates indirect branch targets in ring0. The BHB can still influence the choice of indirect branch predictor entry, and although branch predictor entries are isolated between modes when eIBRS is enabled, the BHB itself is not isolated between modes. Alder Lake and new processors supports a hardware control BHI_DIS_S to mitigate BHI. For older processors Intel has released a software sequence to clear the branch history on parts that don't support BHI_DIS_S. Add support to execute the software sequence at syscall entry and VMexit to overwrite the branch history. For now, branch history is not cleared at interrupt entry, as malicious applications are not believed to have sufficient control over the registers, since previous register state is cleared at interrupt entry. Researchers continue to poke at this area and it may become necessary to clear at interrupt entry as well in the future. This mitigation is only defined here. It is enabled later. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Co-developed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
2024-03-29x86/bugs: Fix the SRSO mitigation on Zen3/4Borislav Petkov (AMD)
The original version of the mitigation would patch in the calls to the untraining routines directly. That is, the alternative() in UNTRAIN_RET will patch in the CALL to srso_alias_untrain_ret() directly. However, even if commit e7c25c441e9e ("x86/cpu: Cleanup the untrain mess") meant well in trying to clean up the situation, due to micro- architectural reasons, the untraining routine srso_alias_untrain_ret() must be the target of a CALL instruction and not of a JMP instruction as it is done now. Reshuffle the alternative macros to accomplish that. Fixes: e7c25c441e9e ("x86/cpu: Cleanup the untrain mess") Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-03-12Merge tag 'x86-apic-2024-03-12' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 APIC fixup from Dave Hansen: "Revert VERW fixed addressing patch. The reverted commit is not x86/apic material and was cruft left over from a merge. I believe the sequence of events went something like this: - The commit in question was added to x86/urgent - x86/urgent was merged into x86/apic to resolve a conflict - The commit was zapped from x86/urgent, but *not* from x86/apic - x86/apic got pullled (yesterday) I think we need to be a bit more vigilant when zapping things to make sure none of the other branches are depending on the zapped material" * tag 'x86-apic-2024-03-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: Revert "x86/bugs: Use fixed addressing for VERW operand"
2024-03-12Revert "x86/bugs: Use fixed addressing for VERW operand"Dave Hansen
This was reverts commit 8009479ee919b9a91674f48050ccbff64eafedaa. It was originally in x86/urgent, but was deemed wrong so got zapped. But in the meantime, x86/urgent had been merged into x86/apic to resolve a conflict. I didn't notice the merge so didn't zap it from x86/apic and it managed to make it up with the x86/apic material. The reverted commit is known to cause some KASAN problems. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
2024-03-11Merge tag 'x86-core-2024-03-11' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core x86 updates from Ingo Molnar: - The biggest change is the rework of the percpu code, to support the 'Named Address Spaces' GCC feature, by Uros Bizjak: - This allows C code to access GS and FS segment relative memory via variables declared with such attributes, which allows the compiler to better optimize those accesses than the previous inline assembly code. - The series also includes a number of micro-optimizations for various percpu access methods, plus a number of cleanups of %gs accesses in assembly code. - These changes have been exposed to linux-next testing for the last ~5 months, with no known regressions in this area. - Fix/clean up __switch_to()'s broken but accidentally working handling of FPU switching - which also generates better code - Propagate more RIP-relative addressing in assembly code, to generate slightly better code - Rework the CPU mitigations Kconfig space to be less idiosyncratic, to make it easier for distros to follow & maintain these options - Rework the x86 idle code to cure RCU violations and to clean up the logic - Clean up the vDSO Makefile logic - Misc cleanups and fixes * tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits) x86/idle: Select idle routine only once x86/idle: Let prefer_mwait_c1_over_halt() return bool x86/idle: Cleanup idle_setup() x86/idle: Clean up idle selection x86/idle: Sanitize X86_BUG_AMD_E400 handling sched/idle: Conditionally handle tick broadcast in default_idle_call() x86: Increase brk randomness entropy for 64-bit systems x86/vdso: Move vDSO to mmap region x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o x86/retpoline: Ensure default return thunk isn't used at runtime x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32 x86/vdso: Use $(addprefix ) instead of $(foreach ) x86/vdso: Simplify obj-y addition x86/vdso: Consolidate targets and clean-files x86/bugs: Rename CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNK x86/bugs: Rename CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSO x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY => CONFIG_MITIGATION_IBRS_ENTRY x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRY x86/bugs: Rename CONFIG_SLS => CONFIG_MITIGATION_SLS ...
2024-02-26x86/bugs: Use fixed addressing for VERW operandPawan Gupta
The macro used for MDS mitigation executes VERW with relative addressing for the operand. This was necessary in earlier versions of the series. Now it is unnecessary and creates a problem for backports on older kernels that don't support relocations in alternatives. Relocation support was added by commit 270a69c4485d ("x86/alternative: Support relocations in alternatives"). Also asm for fixed addressing is much cleaner than relative RIP addressing. Simplify the asm by using fixed addressing for VERW operand. [ dhansen: tweak changelog ] Closes: https://lore.kernel.org/lkml/20558f89-299b-472e-9a96-171403a83bd6@suse.com/ Fixes: baf8361e5455 ("x86/bugs: Add asm helpers for executing VERW") Reported-by: Nikolay Borisov <nik.borisov@suse.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20240226-verw-arg-fix-v1-1-7b37ee6fd57d%40linux.intel.com
2024-02-19x86/bugs: Use ALTERNATIVE() instead of mds_user_clear static keyPawan Gupta
The VERW mitigation at exit-to-user is enabled via a static branch mds_user_clear. This static branch is never toggled after boot, and can be safely replaced with an ALTERNATIVE() which is convenient to use in asm. Switch to ALTERNATIVE() to use the VERW mitigation late in exit-to-user path. Also remove the now redundant VERW in exc_nmi() and arch_exit_to_user_mode(). Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20240213-delay-verw-v8-4-a6216d83edb7%40linux.intel.com
2024-02-19x86/bugs: Add asm helpers for executing VERWPawan Gupta
MDS mitigation requires clearing the CPU buffers before returning to user. This needs to be done late in the exit-to-user path. Current location of VERW leaves a possibility of kernel data ending up in CPU buffers for memory accesses done after VERW such as: 1. Kernel data accessed by an NMI between VERW and return-to-user can remain in CPU buffers since NMI returning to kernel does not execute VERW to clear CPU buffers. 2. Alyssa reported that after VERW is executed, CONFIG_GCC_PLUGIN_STACKLEAK=y scrubs the stack used by a system call. Memory accesses during stack scrubbing can move kernel stack contents into CPU buffers. 3. When caller saved registers are restored after a return from function executing VERW, the kernel stack accesses can remain in CPU buffers(since they occur after VERW). To fix this VERW needs to be moved very late in exit-to-user path. In preparation for moving VERW to entry/exit asm code, create macros that can be used in asm. Also make VERW patching depend on a new feature flag X86_FEATURE_CLEAR_CPU_BUF. Reported-by: Alyssa Milburn <alyssa.milburn@intel.com> Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20240213-delay-verw-v8-1-a6216d83edb7%40linux.intel.com
2024-02-14Merge branch 'x86/bugs' into x86/core, to pick up pending changes before ↵Ingo Molnar
dependent patches Merge in pending alternatives patching infrastructure changes, before applying more patches. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-02-14Merge tag 'v6.8-rc4' into x86/percpu, to resolve conflicts and refresh the ↵Ingo Molnar
branch Conflicts: arch/x86/include/asm/percpu.h arch/x86/include/asm/text-patching.h Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-02-12x86/retpoline: Ensure default return thunk isn't used at runtimeJosh Poimboeuf
Make sure the default return thunk is not used after all return instructions have been patched by the alternatives because the default return thunk is insufficient when it comes to mitigating Retbleed or SRSO. Fix based on an earlier version by David Kaplan <david.kaplan@amd.com>. [ bp: Fix the compilation error of warn_thunk_thunk being an invisible symbol, hoist thunk macro into calling.h ] Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Co-developed-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231010171020.462211-4-david.kaplan@amd.com Link: https://lore.kernel.org/r/20240104132446.GEZZaxnrIgIyat0pqf@fat_crate.local
2024-01-10x86/bugs: Rename CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNKBreno Leitao
Step 10/10 of the namespace unification of CPU mitigations related Kconfig options. [ mingo: Added one more case. ] Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20231121160740.1249350-11-leitao@debian.org
2024-01-10x86/bugs: Rename CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSOBreno Leitao
Step 9/10 of the namespace unification of CPU mitigations related Kconfig options. Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20231121160740.1249350-10-leitao@debian.org
2024-01-10x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRYBreno Leitao
Step 7/10 of the namespace unification of CPU mitigations related Kconfig options. Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20231121160740.1249350-8-leitao@debian.org
2024-01-10x86/bugs: Rename CONFIG_RETPOLINE => CONFIG_MITIGATION_RETPOLINEBreno Leitao
Step 5/10 of the namespace unification of CPU mitigations related Kconfig options. [ mingo: Converted a few more uses in comments/messages as well. ] Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ariel Miculas <amiculas@cisco.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20231121160740.1249350-6-leitao@debian.org
2024-01-10x86/bugs: Rename CONFIG_CALL_DEPTH_TRACKING => ↵Breno Leitao
CONFIG_MITIGATION_CALL_DEPTH_TRACKING Step 3/10 of the namespace unification of CPU mitigations related Kconfig options. Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20231121160740.1249350-4-leitao@debian.org
2024-01-10x86/bugs: Rename CONFIG_CPU_IBPB_ENTRY => CONFIG_MITIGATION_IBPB_ENTRYBreno Leitao
Step 2/10 of the namespace unification of CPU mitigations related Kconfig options. Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20231121160740.1249350-3-leitao@debian.org
2024-01-03arch/x86: Fix typosBjorn Helgaas
Fix typos, most reported by "codespell arch/x86". Only touches comments, no code changes. Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20240103004011.1758650-1-helgaas@kernel.org
2023-11-30x86/callthunks: Fix and unify call thunks assembly snippetsUros Bizjak
Currently thunk debug macros explicitly define %gs: segment register prefix for their percpu variables. This is not compatible with !CONFIG_SMP, which requires non-prefixed percpu variables. Fix call thunks debug macros to use PER_CPU_VAR macro from percpu.h to conditionally use %gs: segment register prefix, depending on CONFIG_SMP. Finally, unify ASM_ prefixed assembly macros with their non-prefixed variants. With support of %rip-relative relocations in place, call thunk templates allow %rip-relative addressing, so unified assembly snippet can be used everywhere. Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20231105213731.1878100-4-ubizjak@gmail.com
2023-10-30Merge tag 'objtool-core-2023-10-28' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull objtool updates from Ingo Molnar: "Misc fixes and cleanups: - Fix potential MAX_NAME_LEN limit related build failures - Fix scripts/faddr2line symbol filtering bug - Fix scripts/faddr2line on LLVM=1 - Fix scripts/faddr2line to accept readelf output with mapping symbols - Minor cleanups" * tag 'objtool-core-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: scripts/faddr2line: Skip over mapping symbols in output from readelf scripts/faddr2line: Use LLVM addr2line and readelf if LLVM=1 scripts/faddr2line: Don't filter out non-function symbols from readelf objtool: Remove max symbol name length limitation objtool: Propagate early errors objtool: Use 'the fallthrough' pseudo-keyword x86/speculation, objtool: Use absolute relocations for annotations x86/unwind/orc: Remove redundant initialization of 'mid' pointer in __orc_find()
2023-10-20x86/calldepth: Rename __x86_return_skl() to call_depth_return_thunk()Josh Poimboeuf
For consistency with the other return thunks, rename __x86_return_skl() to call_depth_return_thunk(). Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/ae44e9f9976934e3b5b47a458d523ccb15867561.1693889988.git.jpoimboe@kernel.org
2023-10-20x86/nospec: Refactor UNTRAIN_RET[_*]Josh Poimboeuf
Factor out the UNTRAIN_RET[_*] common bits into a helper macro. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/f06d45489778bd49623297af2a983eea09067a74.1693889988.git.jpoimboe@kernel.org
2023-10-20x86/srso: Disentangle rethunk-dependent optionsJosh Poimboeuf
CONFIG_RETHUNK, CONFIG_CPU_UNRET_ENTRY and CONFIG_CPU_SRSO are all tangled up. De-spaghettify the code a bit. Some of the rethunk-related code has been shuffled around within the '.text..__x86.return_thunk' section, but otherwise there are no functional changes. srso_alias_untrain_ret() and srso_alias_safe_ret() ((which are very address-sensitive) haven't moved. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/2845084ed303d8384905db3b87b77693945302b4.1693889988.git.jpoimboe@kernel.org
2023-10-20x86/srso: Unexport untraining functionsJosh Poimboeuf
These functions aren't called outside of retpoline.S. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/1ae080f95ce7266c82cba6d2adde82349b832654.1693889988.git.jpoimboe@kernel.org
2023-10-20x86/srso: Fix unret validation dependenciesJosh Poimboeuf
CONFIG_CPU_SRSO isn't dependent on CONFIG_CPU_UNRET_ENTRY (AMD Retbleed), so the two features are independently configurable. Fix several issues for the (presumably rare) case where CONFIG_CPU_SRSO is enabled but CONFIG_CPU_UNRET_ENTRY isn't. Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation") Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/299fb7740174d0f2335e91c58af0e9c242b4bac1.1693889988.git.jpoimboe@kernel.org
2023-09-22x86/speculation, objtool: Use absolute relocations for annotationsFangrui Song
.discard.retpoline_safe sections do not have the SHF_ALLOC flag. These sections referencing text sections' STT_SECTION symbols with PC-relative relocations like R_386_PC32 [0] is conceptually not suitable. Newer LLD will report warnings for REL relocations even for relocatable links [1]: ld.lld: warning: vmlinux.a(drivers/i2c/busses/i2c-i801.o):(.discard.retpoline_safe+0x120): has non-ABS relocation R_386_PC32 against symbol '' Switch to absolute relocations instead, which indicate link-time addresses. In a relocatable link, these addresses are also output section offsets, used by checks in tools/objtool/check.c. When linking vmlinux, these .discard.* sections will be discarded, therefore it is not a problem that R_X86_64_32 cannot represent a kernel address. Alternatively, we could set the SHF_ALLOC flag for .discard.* sections, but I think non-SHF_ALLOC for sections to be discarded makes more sense. Note: if we decide to never support REL architectures (e.g. arm, i386), we can utilize R_*_NONE relocations (.reloc ., BFD_RELOC_NONE, sym), making .discard.* sections zero-sized. That said, the section content waste is 4 bytes per entry, much smaller than sizeof(Elf{32,64}_Rel). [0] commit 1c0c1faf5692 ("objtool: Use relative pointers for annotations") [1] https://github.com/ClangBuiltLinux/linux/issues/1937 Signed-off-by: Fangrui Song <maskray@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20230920001728.1439947-1-maskray@google.com
2023-08-16x86/cpu/kvm: Provide UNTRAIN_RET_VMPeter Zijlstra
Similar to how it doesn't make sense to have UNTRAIN_RET have two untrain calls, it also doesn't make sense for VMEXIT to have an extra IBPB call. This cures VMEXIT doing potentially unret+IBPB or double IBPB. Also, the (SEV) VMEXIT case seems to have been overlooked. Redefine the meaning of the synthetic IBPB flags to: - ENTRY_IBPB -- issue IBPB on entry (was: entry + VMEXIT) - IBPB_ON_VMEXIT -- issue IBPB on VMEXIT And have 'retbleed=ibpb' set *BOTH* feature flags to ensure it retains the previous behaviour and issues IBPB on entry+VMEXIT. The new 'srso=ibpb_vmexit' option only sets IBPB_ON_VMEXIT. Create UNTRAIN_RET_VM specifically for the VMEXIT case, and have that check IBPB_ON_VMEXIT. All this avoids having the VMEXIT case having to check both ENTRY_IBPB and IBPB_ON_VMEXIT and simplifies the alternatives. Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230814121149.109557833@infradead.org
2023-08-16x86/cpu: Cleanup the untrain messPeter Zijlstra
Since there can only be one active return_thunk, there only needs be one (matching) untrain_ret. It fundamentally doesn't make sense to allow multiple untrain_ret at the same time. Fold all the 3 different untrain methods into a single (temporary) helper stub. Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230814121149.042774962@infradead.org
2023-08-16x86/cpu: Rename srso_(.*)_alias to srso_alias_\1Peter Zijlstra
For a more consistent namespace. [ bp: Fixup names in the doc too. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230814121148.976236447@infradead.org
2023-08-16x86/cpu: Rename original retbleed methodsPeter Zijlstra
Rename the original retbleed return thunk and untrain_ret to retbleed_return_thunk() and retbleed_untrain_ret(). No functional changes. Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230814121148.909378169@infradead.org
2023-08-16x86/cpu: Clean up SRSO return thunk messPeter Zijlstra
Use the existing configurable return thunk. There is absolute no justification for having created this __x86_return_thunk alternative. To clarify, the whole thing looks like: Zen3/4 does: srso_alias_untrain_ret: nop2 lfence jmp srso_alias_return_thunk int3 srso_alias_safe_ret: // aliasses srso_alias_untrain_ret just so add $8, %rsp ret int3 srso_alias_return_thunk: call srso_alias_safe_ret ud2 While Zen1/2 does: srso_untrain_ret: movabs $foo, %rax lfence call srso_safe_ret (jmp srso_return_thunk ?) int3 srso_safe_ret: // embedded in movabs instruction add $8,%rsp ret int3 srso_return_thunk: call srso_safe_ret ud2 While retbleed does: zen_untrain_ret: test $0xcc, %bl lfence jmp zen_return_thunk int3 zen_return_thunk: // embedded in the test instruction ret int3 Where Zen1/2 flush the BTB entry using the instruction decoder trick (test,movabs) Zen3/4 use BTB aliasing. SRSO adds a return sequence (srso_safe_ret()) which forces the function return instruction to speculate into a trap (UD2). This RET will then mispredict and execution will continue at the return site read from the top of the stack. Pick one of three options at boot (evey function can only ever return once). [ bp: Fixup commit message uarch details and add them in a comment in the code too. Add a comment about the srso_select_mitigation() dependency on retbleed_select_mitigation(). Add moar ifdeffery for 32-bit builds. Add a dummy srso_untrain_ret_alias() definition for 32-bit alternatives needing the symbol. ] Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230814121148.842775684@infradead.org
2023-08-16x86/alternative: Make custom return thunk unconditionalPeter Zijlstra
There is infrastructure to rewrite return thunks to point to any random thunk one desires, unwrap that from CALL_THUNKS, which up to now was the sole user of that. [ bp: Make the thunks visible on 32-bit and add ifdeffery for the 32-bit builds. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230814121148.775293785@infradead.org
2023-08-14x86/retpoline,kprobes: Skip optprobe check for indirect jumps with ↵Petr Pavlu
retpolines and IBT The kprobes optimization check can_optimize() calls insn_is_indirect_jump() to detect indirect jump instructions in a target function. If any is found, creating an optprobe is disallowed in the function because the jump could be from a jump table and could potentially land in the middle of the target optprobe. With retpolines, insn_is_indirect_jump() additionally looks for calls to indirect thunks which the compiler potentially used to replace original jumps. This extra check is however unnecessary because jump tables are disabled when the kernel is built with retpolines. The same is currently the case with IBT. Based on this observation, remove the logic to look for calls to indirect thunks and skip the check for indirect jumps altogether if the kernel is built with retpolines or IBT. Remove subsequently the symbols __indirect_thunk_start and __indirect_thunk_end which are no longer needed. Dropping this logic indirectly fixes a problem where the range [__indirect_thunk_start, __indirect_thunk_end] wrongly included also the return thunk. It caused that machines which used the return thunk as a mitigation and didn't have it patched by any alternative ended up not being able to use optprobes in any regular function. Fixes: 0b53c374b9ef ("x86/retpoline: Use -mfunction-return") Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Petr Pavlu <petr.pavlu@suse.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Link: https://lore.kernel.org/r/20230711091952.27944-3-petr.pavlu@suse.com
2023-07-27x86/srso: Add IBPBBorislav Petkov (AMD)
Add the option to mitigate using IBPB on a kernel entry. Pull in the Retbleed alternative so that the IBPB call from there can be used. Also, if Retbleed mitigation is done using IBPB, the same mitigation can and must be used here. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-27x86/srso: Add SRSO_NO supportBorislav Petkov (AMD)
Add support for the CPUID flag which denotes that the CPU is not affected by SRSO. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-27x86/srso: Add a Speculative RAS Overflow mitigationBorislav Petkov (AMD)
Add a mitigation for the speculative return address stack overflow vulnerability found on AMD processors. The mitigation works by ensuring all RET instructions speculate to a controlled location, similar to how speculation is controlled in the retpoline sequence. To accomplish this, the __x86_return_thunk forces the CPU to mispredict every function return using a 'safe return' sequence. To ensure the safety of this mitigation, the kernel must ensure that the safe return sequence is itself free from attacker interference. In Zen3 and Zen4, this is accomplished by creating a BTB alias between the untraining function srso_untrain_ret_alias() and the safe return function srso_safe_ret_alias() which results in evicting a potentially poisoned BTB entry and using that safe one for all function returns. In older Zen1 and Zen2, this is accomplished using a reinterpretation technique similar to Retbleed one: srso_untrain_ret() and srso_safe_ret(). Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-10x86/cfi: Extend {JMP,CAKK}_NOSPEC commentPeter Zijlstra
With the introduction of kCFI these helpers are no longer equivalent to C indirect calls and should be used with care. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Sami Tolvanen <samitolvanen@google.com> Link: https://lkml.kernel.org/r/20230622144321.360957723%40infradead.org
2023-05-31x86/nospec: Shorten RESET_CALL_DEPTHPeter Zijlstra
RESET_CALL_DEPTH is a pretty fat monster and blows up UNTRAIN_RET to 20 bytes: 19: 48 c7 c0 80 00 00 00 mov $0x80,%rax 20: 48 c1 e0 38 shl $0x38,%rax 24: 65 48 89 04 25 00 00 00 00 mov %rax,%gs:0x0 29: R_X86_64_32S pcpu_hot+0x10 Shrink it by 4 bytes: 0: 31 c0 xor %eax,%eax 2: 48 0f ba e8 3f bts $0x3f,%rax 7: 65 48 89 04 25 00 00 00 00 mov %rax,%gs:0x0 Shrink RESET_CALL_DEPTH_FROM_CALL by 5 bytes by only setting %al, the other bits are shifted out (the same could be done for RESET_CALL_DEPTH, but the XOR+BTS sequence has less dependencies due to the zeroing). Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230515093020.729622326@infradead.org
2023-03-23x86,objtool: Separate unret validation from unwind hintsJosh Poimboeuf
The ENTRY unwind hint type is serving double duty as both an empty unwind hint and an unret validation annotation. Unret validation is unrelated to unwinding. Separate it out into its own annotation. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/ff7448d492ea21b86d8a90264b105fbd0d751077.1677683419.git.jpoimboe@kernel.org
2023-03-23objtool: Use relative pointers for annotationsJosh Poimboeuf
They produce the needed relocations while using half the space. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/bed05c64e28200220c9b1754a2f3ce71f73076ea.1677683419.git.jpoimboe@kernel.org
2023-02-23x86: Fix FILL_RETURN_BUFFERPeter Zijlstra
With overlapping alternative validation fixed, objtool promptly complains: vmlinux.o: warning: objtool: __switch_to_asm+0x2c: stack layout conflict in alternatives: .altinstr_replacement+0x47 .rela.altinstructions: 000000000000009c 0000000200000002 R_X86_64_PC32 0000000000000000 .text + 16dc 00000000000000a0 0000000600000002 R_X86_64_PC32 0000000000000000 .altinstr_replacement + 3a 00000000000000a8 0000000200000002 R_X86_64_PC32 0000000000000000 .text + 16dc 00000000000000ac 0000000600000002 R_X86_64_PC32 0000000000000000 .altinstr_replacement + 66 .text: 00000000000016b0 <__switch_to_asm>: 16b0: f3 0f 1e fa endbr64 16b4: 55 push %rbp 16b5: 53 push %rbx 16b6: 41 54 push %r12 16b8: 41 55 push %r13 16ba: 41 56 push %r14 16bc: 41 57 push %r15 16be: 48 89 a7 18 0b 00 00 mov %rsp,0xb18(%rdi) 16c5: 48 8b a6 18 0b 00 00 mov 0xb18(%rsi),%rsp 16cc: 48 8b 9e 28 05 00 00 mov 0x528(%rsi),%rbx 16d3: 65 48 89 1c 25 00 00 00 00 mov %rbx,%gs:0x0 16d8: R_X86_64_32S fixed_percpu_data+0x28 16dc: eb 2a jmp 1708 <__switch_to_asm+0x58> 16de: 90 nop 16df: 90 nop 16e0: 90 nop 16e1: 90 nop 16e2: 90 nop 16e3: 90 nop 16e4: 90 nop 16e5: 90 nop 16e6: 90 nop 16e7: 90 nop 16e8: 90 nop 16e9: 90 nop 16ea: 90 nop 16eb: 90 nop 16ec: 90 nop 16ed: 90 nop 16ee: 90 nop 16ef: 90 nop 16f0: 90 nop 16f1: 90 nop 16f2: 90 nop 16f3: 90 nop 16f4: 90 nop 16f5: 90 nop 16f6: 90 nop 16f7: 90 nop 16f8: 90 nop 16f9: 90 nop 16fa: 90 nop 16fb: 90 nop 16fc: 90 nop 16fd: 90 nop 16fe: 90 nop 16ff: 90 nop 1700: 90 nop 1701: 90 nop 1702: 90 nop 1703: 90 nop 1704: 90 nop 1705: 90 nop 1706: 90 nop 1707: 90 nop 1708: 41 5f pop %r15 170a: 41 5e pop %r14 170c: 41 5d pop %r13 170e: 41 5c pop %r12 1710: 5b pop %rbx 1711: 5d pop %rbp 1712: e9 00 00 00 00 jmp 1717 <__switch_to_asm+0x67> 1713: R_X86_64_PLT32 __switch_to-0x4 .altinstr_replacement: 3a: 49 c7 c4 10 00 00 00 mov $0x10,%r12 41: e8 01 00 00 00 call 47 <.altinstr_replacement+0x47> 46: cc int3 47: e8 01 00 00 00 call 4d <.altinstr_replacement+0x4d> 4c: cc int3 4d: 48 83 c4 10 add $0x10,%rsp 51: 49 ff cc dec %r12 54: 75 eb jne 41 <.altinstr_replacement+0x41> 56: 0f ae e8 lfence 59: 65 48 c7 04 25 00 00 00 00 ff ff ff ff movq $0xffffffffffffffff,%gs:0x0 5e: R_X86_64_32S pcpu_hot+0x10 66: e8 01 00 00 00 call 6c <.altinstr_replacement+0x6c> 6b: cc int3 6c: 48 83 c4 08 add $0x8,%rsp 70: 0f ae e8 lfence As can be seen from the two alternatives, when overlaid, the NOP after the shorter (starting at 66) coinsides with the call at 47, leading to conflicting CFI state for that instruction. By offsetting the shorter alternative by 2 bytes, this alignment is undone. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Tested-by: Nathan Chancellor <nathan@kernel.org> # build only Tested-by: Thomas Weißschuh <linux@weissschuh.net> # compile and run Link: https://lore.kernel.org/r/20230208172245.783099843@infradead.org
2023-01-13cpuidle, nospec: Make mds_idle_clear_cpu_buffers() noinstr cleanPeter Zijlstra
objtool found that the mds_idle_clear_cpu_buffers() method got uninlined by the compiler where it called out into instrumentation: vmlinux.o: warning: objtool: mwait_idle+0x47: call to mds_idle_clear_cpu_buffers() leaves .noinstr.text section vmlinux.o: warning: objtool: acpi_processor_ffh_cstate_enter+0xa2: call to mds_idle_clear_cpu_buffers() leaves .noinstr.text section vmlinux.o: warning: objtool: intel_idle+0x91: call to mds_idle_clear_cpu_buffers() leaves .noinstr.text section vmlinux.o: warning: objtool: intel_idle_s2idle+0x8c: call to mds_idle_clear_cpu_buffers() leaves .noinstr.text section vmlinux.o: warning: objtool: intel_idle_irq+0xaa: call to mds_idle_clear_cpu_buffers() leaves .noinstr.text section Solve this by marking mds_idle_clear_cpu_buffers() as __always_inline. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Tony Lindgren <tony@atomide.com> Tested-by: Ulf Hansson <ulf.hansson@linaro.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20230112195541.233779815@infradead.org
2022-12-14Merge tag 'x86_core_for_v6.2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 core updates from Borislav Petkov: - Add the call depth tracking mitigation for Retbleed which has been long in the making. It is a lighterweight software-only fix for Skylake-based cores where enabling IBRS is a big hammer and causes a significant performance impact. What it basically does is, it aligns all kernel functions to 16 bytes boundary and adds a 16-byte padding before the function, objtool collects all functions' locations and when the mitigation gets applied, it patches a call accounting thunk which is used to track the call depth of the stack at any time. When that call depth reaches a magical, microarchitecture-specific value for the Return Stack Buffer, the code stuffs that RSB and avoids its underflow which could otherwise lead to the Intel variant of Retbleed. This software-only solution brings a lot of the lost performance back, as benchmarks suggest: https://lore.kernel.org/all/20220915111039.092790446@infradead.org/ That page above also contains a lot more detailed explanation of the whole mechanism - Implement a new control flow integrity scheme called FineIBT which is based on the software kCFI implementation and uses hardware IBT support where present to annotate and track indirect branches using a hash to validate them - Other misc fixes and cleanups * tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits) x86/paravirt: Use common macro for creating simple asm paravirt functions x86/paravirt: Remove clobber bitmask from .parainstructions x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit x86/Kconfig: Enable kernel IBT by default x86,pm: Force out-of-line memcpy() objtool: Fix weak hole vs prefix symbol objtool: Optimize elf_dirty_reloc_sym() x86/cfi: Add boot time hash randomization x86/cfi: Boot time selection of CFI scheme x86/ibt: Implement FineIBT objtool: Add --cfi to generate the .cfi_sites section x86: Add prefix symbols for function padding objtool: Add option to generate prefix symbols objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf objtool: Slice up elf_create_section_symbol() kallsyms: Revert "Take callthunks into account" x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces x86/retpoline: Fix crash printing warning x86/paravirt: Fix a !PARAVIRT build warning ...
2022-12-02x86/bugs: Make sure MSR_SPEC_CTRL is updated properly upon resume from S3Pawan Gupta
The "force" argument to write_spec_ctrl_current() is currently ambiguous as it does not guarantee the MSR write. This is due to the optimization that writes to the MSR happen only when the new value differs from the cached value. This is fine in most cases, but breaks for S3 resume when the cached MSR value gets out of sync with the hardware MSR value due to S3 resetting it. When x86_spec_ctrl_current is same as x86_spec_ctrl_base, the MSR write is skipped. Which results in SPEC_CTRL mitigations not getting restored. Move the MSR write from write_spec_ctrl_current() to a new function that unconditionally writes to the MSR. Update the callers accordingly and rename functions. [ bp: Rework a bit. ] Fixes: caa0ff24d5d0 ("x86/bugs: Keep a per-CPU IA32_SPEC_CTRL value") Suggested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@kernel.org> Link: https://lore.kernel.org/r/806d39b0bfec2fe8f50dc5446dff20f5bb24a959.1669821572.git.pawan.kumar.gupta@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-11-01x86: Unconfuse CONFIG_ and X86_FEATURE_ namespacesPeter Zijlstra
Lukas reported someone fat fingered the CONFIG_ symbol; fix er up. Fixes: 5d8213864ade ("x86/retbleed: Add SKL return thunk") Reported-by: Lukas Bulwahn <lukas.bulwahn@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/Y1+fL4qQEIGZEEKB@hirez.programming.kicks-ass.net
2022-10-17x86/ftrace: Make it call depth tracking awarePeter Zijlstra
Since ftrace has trampolines, don't use thunks for the __fentry__ site but instead require that every function called from there includes accounting. This very much includes all the direct-call functions. Additionally, ftrace uses ROP tricks in two places: - return_to_handler(), and - ftrace_regs_caller() when pt_regs->orig_ax is set by a direct-call. return_to_handler() already uses a retpoline to replace an indirect-jump to defeat IBT, since this is a jump-type retpoline, make sure there is no accounting done and ALTERNATIVE the RET into a ret. ftrace_regs_caller() does much the same and gets the same treatment. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111148.927545073@infradead.org
2022-10-17x86/calldepth: Add ret/call counting for debugThomas Gleixner
Add a debuigfs mechanism to validate the accounting, e.g. vs. call/ret balance and to gather statistics about the stuffing to call ratio. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111148.204285506@infradead.org
2022-10-17x86/retpoline: Add SKL retthunk retpolinesPeter Zijlstra
Ensure that retpolines do the proper call accounting so that the return accounting works correctly. Specifically; retpolines are used to replace both 'jmp *%reg' and 'call *%reg', however these two cases do not have the same accounting requirements. Therefore split things up and provide two different retpoline arrays for SKL. The 'jmp *%reg' case needs no accounting, the __x86_indirect_jump_thunk_array[] covers this. The retpoline is changed to not use the return thunk; it's a simple call;ret construct. [ strictly speaking it should do: andq $(~0x1f), PER_CPU_VAR(__x86_call_depth) but we can argue this can be covered by the fuzz we already have in the accounting depth (12) vs the RSB depth (16) ] The 'call *%reg' case does need accounting, the __x86_indirect_call_thunk_array[] covers this. Again, this retpoline avoids the use of the return-thunk, in this case to avoid double accounting. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111147.996634749@infradead.org
2022-10-17x86/retbleed: Add SKL return thunkThomas Gleixner
To address the Intel SKL RSB underflow issue in software it's required to do call depth tracking. Provide a return thunk for call depth tracking on Intel SKL CPUs. The tracking does not use a counter. It uses uses arithmetic shift right on call entry and logical shift left on return. The depth tracking variable is initialized to 0x8000.... when the call depth is zero. The arithmetic shift right sign extends the MSB and saturates after the 12th call. The shift count is 5 so the tracking covers 12 nested calls. On return the variable is shifted left logically so it becomes zero again. CALL RET 0: 0x8000000000000000 0x0000000000000000 1: 0xfc00000000000000 0xf000000000000000 ... 11: 0xfffffffffffffff8 0xfffffffffffffc00 12: 0xffffffffffffffff 0xffffffffffffffe0 After a return buffer fill the depth is credited 12 calls before the next stuffing has to take place. There is a inaccuracy for situations like this: 10 calls 5 returns 3 calls 4 returns 3 calls .... The shift count might cause this to be off by one in either direction, but there is still a cushion vs. the RSB depth. The algorithm does not claim to be perfect, but it should obfuscate the problem enough to make exploitation extremly difficult. The theory behind this is: RSB is a stack with depth 16 which is filled on every call. On the return path speculation "pops" entries to speculate down the call chain. Once the speculative RSB is empty it switches to other predictors, e.g. the Branch History Buffer, which can be mistrained by user space and misguide the speculation path to a gadget. Call depth tracking is designed to break this speculation path by stuffing speculation trap calls into the RSB which are never getting a corresponding return executed. This stalls the prediction path until it gets resteered, The assumption is that stuffing at the 12th return is sufficient to break the speculation before it hits the underflow and the fallback to the other predictors. Testing confirms that it works. Johannes, one of the retbleed researchers. tried to attack this approach but failed. There is obviously no scientific proof that this will withstand future research progress, but all we can do right now is to speculate about it. The SAR/SHL usage was suggested by Andi Kleen. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111147.890071690@infradead.org