Age | Commit message (Collapse) | Author |
|
commit 9636be85cc5b ("x86/hyperv: Fix hyperv_pcpu_input_arg handling when
CPUs go online/offline") introduces a new cpuhp state for hyperv
initialization.
cpuhp_setup_state() returns the state number if state is
CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN and 0 for all other states.
For the hyperv case, since a new cpuhp state was introduced it would
return 0. However, in hv_machine_shutdown(), the cpuhp_remove_state() call
is conditioned upon "hyperv_init_cpuhp > 0". This will never be true and
so hv_cpu_die() won't be called on all CPUs. This means the VP assist page
won't be reset. When the kexec kernel tries to setup the VP assist page
again, the hypervisor corrupts the memory region of the old VP assist page
causing a panic in case the kexec kernel is using that memory elsewhere.
This was originally fixed in commit dfe94d4086e4 ("x86/hyperv: Fix kexec
panic/hang issues").
Get rid of hyperv_init_cpuhp entirely since we are no longer using a
dynamic cpuhp state and use CPUHP_AP_HYPERV_ONLINE directly with
cpuhp_remove_state().
Cc: stable@vger.kernel.org
Fixes: 9636be85cc5b ("x86/hyperv: Fix hyperv_pcpu_input_arg handling when CPUs go online/offline")
Signed-off-by: Anirudh Rayabharam (Microsoft) <anirudh@anirudhrb.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Link: https://lore.kernel.org/r/20240828112158.3538342-1-anirudh@anirudhrb.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20240828112158.3538342-1-anirudh@anirudhrb.com>
|
|
All code has been converted to use the vendor/family/model versions.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240903173443.7962-4-tony.luck@intel.com
|
|
These macros have been replaced by X86_MATCH_VFM[_STEPPING]()
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240903173443.7962-3-tony.luck@intel.com
|
|
Register the "disable virtualization in an emergency" callback just
before KVM enables virtualization in hardware, as there is no functional
need to keep the callbacks registered while KVM happens to be loaded, but
is inactive, i.e. if KVM hasn't enabled virtualization.
Note, unregistering the callback every time the last VM is destroyed could
have measurable latency due to the synchronize_rcu() needed to ensure all
references to the callback are dropped before KVM is unloaded. But the
latency should be a small fraction of the total latency of disabling
virtualization across all CPUs, and userspace can set enable_virt_at_load
to completely eliminate the runtime overhead.
Add a pointer in kvm_x86_ops to allow vendor code to provide its callback.
There is no reason to force vendor code to do the registration, and either
way KVM would need a new kvm_x86_ops hook.
Suggested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Tested-by: Farrah Chen <farrah.chen@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240830043600.127750-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Define cpu_emergency_virt_cb even if the kernel is being built without KVM
support so that KVM can reference the typedef in asm/kvm_host.h without
needing yet more #ifdefs.
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Farrah Chen <farrah.chen@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240830043600.127750-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename x86's the per-CPU vendor hooks used to enable virtualization in
hardware to align with the recently renamed arch hooks.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240830043600.127750-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In order be able to compute the sizes of tasks consistently across all
CPUs in a hybrid system, it is necessary to provide CPU capacity scaling
information to the scheduler via arch_scale_cpu_capacity(). Moreover,
the value returned by arch_scale_freq_capacity() for the given CPU must
correspond to the arch_scale_cpu_capacity() return value for it, or
utilization computations will be inaccurate.
Add support for it through per-CPU variables holding the capacity and
maximum-to-base frequency ratio (times SCHED_CAPACITY_SCALE) that will
be returned by arch_scale_cpu_capacity() and used by scale_freq_tick()
to compute arch_freq_scale for the current CPU, respectively.
In order to avoid adding measurable overhead for non-hybrid x86 systems,
which are the vast majority in the field, whether or not the new hybrid
CPU capacity scaling will be in effect is controlled by a static key.
This static key is set by calling arch_enable_hybrid_capacity_scale()
which also allocates memory for the per-CPU data and initializes it.
Next, arch_set_cpu_capacity() is used to set the per-CPU variables
mentioned above for each CPU and arch_rebuild_sched_domains() needs
to be called for the scheduler to realize that capacity-aware
scheduling can be used going forward.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Tested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> # scale invariance
Link: https://patch.msgid.link/10523497.nUPlyArG6x@rjwysocki.net
[ rjw: Added parens to function kerneldoc comments ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The x86 implementation of range-to-target_node lookup (i.e.
phys_to_target_node() and memory_add_physaddr_to_nid()) relies on
numa_memblks.
Since numa_memblks are now part of the generic code, move these functions
from x86 to mm/numa_memblks.c and select CONFIG_NUMA_KEEP_MEMINFO when
CONFIG_NUMA_MEMBLKS=y for dax and cxl.
[rppt@kernel.org: fix build]
Link: https://lkml.kernel.org/r/ZtVfSt_zloPdDqVB@kernel.org
Link: https://lkml.kernel.org/r/20240807064110.1003856-26-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU]
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Rob Herring (Arm) <robh@kernel.org>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Move numa_emulation code from arch/x86 to mm/numa_emulation.c
This code will be later reused by arch_numa.
No functional changes.
Link: https://lkml.kernel.org/r/20240807064110.1003856-20-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU]
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Rob Herring (Arm) <robh@kernel.org>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Move code dealing with numa_distance array from arch/x86 to
mm/numa_memblks.c
This code will be later reused by arch_numa.
No functional changes.
Link: https://lkml.kernel.org/r/20240807064110.1003856-19-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU]
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Rob Herring (Arm) <robh@kernel.org>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Move code dealing with numa_memblks from arch/x86 to mm/ and add Kconfig
options to let x86 select it in its Kconfig.
This code will be later reused by arch_numa.
No functional changes.
Link: https://lkml.kernel.org/r/20240807064110.1003856-18-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU]
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Rob Herring (Arm) <robh@kernel.org>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
CPU id cannot be negative.
Making it unsigned also aligns with declarations in
include/asm-generic/numa.h used by arm64 and riscv and allows sharing numa
emulation code with these architectures.
Link: https://lkml.kernel.org/r/20240807064110.1003856-17-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU]
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Rob Herring (Arm) <robh@kernel.org>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This is required to make numa emulation code architecture independent so
that it can be moved to generic code in following commits.
Link: https://lkml.kernel.org/r/20240807064110.1003856-16-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU]
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Rob Herring (Arm) <robh@kernel.org>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This is required to make numa emulation code architecture independent so
that it can be moved to generic code in following commits.
Link: https://lkml.kernel.org/r/20240807064110.1003856-15-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU]
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Rob Herring (Arm) <robh@kernel.org>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The definitions of FAKE_NODE_MIN_SIZE and FAKE_NODE_MIN_HASH_MASK are only
used by numa emulation code, make them local to
arch/x86/mm/numa_emulation.c
Link: https://lkml.kernel.org/r/20240807064110.1003856-13-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU]
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Rob Herring (Arm) <robh@kernel.org>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Every architecture that supports NUMA defines node_data in the same way:
struct pglist_data *node_data[MAX_NUMNODES];
No reason to keep multiple copies of this definition and its forward
declarations, especially when such forward declaration is the only thing
in include/asm/mmzone.h for many architectures.
Add definition and declaration of node_data to generic code and drop
architecture-specific versions.
Link: https://lkml.kernel.org/r/20240807064110.1003856-8-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU]
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Rob Herring (Arm) <robh@kernel.org>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
IFM references
There's an erratum that prevents the PAT from working correctly:
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/pentium-dual-core-specification-update.pdf
# Document 316515 Version 010
The kernel currently disables PAT support on those CPUs, but it
does it with some magic numbers.
Replace the magic numbers with the new "IFM" macros.
Make the check refer to the last affected CPU (INTEL_CORE_YONAH)
rather than the first fixed one. This makes it easier to find the
documentation of the erratum since Intel documents where it is
broken and not where it is fixed.
I don't think the Pentium Pro (or Pentium II) is actually affected.
But the old check included them, so it can't hurt to keep doing the
same. I'm also not completely sure about the "Pentium M" CPUs
(models 0x9 and 0xd). But, again, they were included in in the
old checks and were close Pentium III derivatives, so are likely
affected.
While we're at it, revise the comment referring to the erratum name
and making sure it is a quote of the language from the actual errata
doc. That should make it easier to find in the future when the URL
inevitably changes.
Why bother with this in the first place? It actually gets rid of one
of the very few remaining direct references to c->x86{,_model}.
No change in functionality intended.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Link: https://lore.kernel.org/r/20240829220042.1007820-1-dave.hansen@linux.intel.com
|
|
Now that powerpc no longer uses arch_unmap() to handle VDSO unmapping,
there are no meaningful implementions left. Drop support for it entirely,
and update comments which refer to it.
Link: https://lkml.kernel.org/r/20240812082605.743814-3-mpe@ellerman.id.au
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Jeff Xu <jeffxu@google.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Pedro Falcato <pedro.falcato@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Some new helpers will be needed for pud entry updates soon. Introduce
these helpers by referencing the pmd ones. Namely:
- pudp_invalidate(): this helper invalidates a huge pud before a
split happens, so that the invalidated pud entry will make sure no
race will happen (either with software, like a concurrent zap, or
hardware, like a/d bit lost).
- pud_modify(): this helper applies a new pgprot to an existing huge
pud mapping.
For more information on why we need these two helpers, please refer to the
corresponding pmd helpers in the mprotect() code path.
When at it, simplify the pud_modify()/pmd_modify() comments on shadow
stack pgtable entries to reference pte_modify() to avoid duplicating the
whole paragraph three times.
Link: https://lkml.kernel.org/r/20240812181225.1360970-7-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Introduce arch_check_zapped_pud() to sanity check shadow stack on PUD
zaps. It has the same logic as the PMD helper.
One thing to mention is, it might be a good idea to use page_table_check
in the future for trapping wrong setups of shadow stack pgtable entries
[1]. That is left for the future as a separate effort.
[1] https://lore.kernel.org/all/59d518698f664e07c036a5098833d7b56b953305.camel@intel.com
Link: https://lkml.kernel.org/r/20240812181225.1360970-6-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When working on mprotect() on 1G dax entries, I hit an zap bad pud error
when zapping a huge pud that is with PROT_NONE permission.
Here the problem is x86's pud_leaf() requires both PRESENT and PSE bits
set to report a pud entry as a leaf, but that doesn't look right, as it's
not following the pXd_leaf() definition that we stick with so far, where
PROT_NONE entries should be reported as leaves.
To fix it, change x86's pud_leaf() implementation to only check against
PSE bit to report a leaf, irrelevant of whether PRESENT bit is set.
Link: https://lkml.kernel.org/r/20240812181225.1360970-5-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
- x2apic_disable() clears x2apic_state and x2apic_mode unconditionally,
even when the state is X2APIC_ON_LOCKED, which prevents the kernel to
disable it thereby creating inconsistent state.
Reorder the logic so it actually works correctly
- The XSTATE logic for handling LBR is incorrect as it assumes that
XSAVES supports LBR when the CPU supports LBR. In fact both
conditions need to be true. Otherwise the enablement of LBR in the
IA32_XSS MSR fails and subsequently the machine crashes on the next
XRSTORS operation because IA32_XSS is not initialized.
Cache the XSTATE support bit during init and make the related
functions use this cached information and the LBR CPU feature bit to
cure this.
- Cure a long standing bug in KASLR
KASLR uses the full address space between PAGE_OFFSET and vaddr_end
to randomize the starting points of the direct map, vmalloc and
vmemmap regions. It thereby limits the size of the direct map by
using the installed memory size plus an extra configurable margin for
hot-plug memory. This limitation is done to gain more randomization
space because otherwise only the holes between the direct map,
vmalloc, vmemmap and vaddr_end would be usable for randomizing.
The limited direct map size is not exposed to the rest of the kernel,
so the memory hot-plug and resource management related code paths
still operate under the assumption that the available address space
can be determined with MAX_PHYSMEM_BITS.
request_free_mem_region() allocates from (1 << MAX_PHYSMEM_BITS) - 1
downwards. That means the first allocation happens past the end of
the direct map and if unlucky this address is in the vmalloc space,
which causes high_memory to become greater than VMALLOC_START and
consequently causes iounmap() to fail for valid ioremap addresses.
Cure this by exposing the end of the direct map via PHYSMEM_END and
use that for the memory hot-plug and resource management related
places instead of relying on MAX_PHYSMEM_BITS. In the KASLR case
PHYSMEM_END maps to a variable which is initialized by the KASLR
initialization and otherwise it is based on MAX_PHYSMEM_BITS as
before.
- Prevent a data leak in mmio_read(). The TDVMCALL exposes the value of
an initialized variabled on the stack to the VMM. The variable is
only required as output value, so it does not have to exposed to the
VMM in the first place.
- Prevent an array overrun in the resource control code on systems with
Sub-NUMA Clustering enabled because the code failed to adjust the
index by the number of SNC nodes per L3 cache.
* tag 'x86-urgent-2024-09-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Fix arch_mbm_* array overrun on SNC
x86/tdx: Fix data leak in mmio_read()
x86/kaslr: Expose and use the end of the physical memory address space
x86/fpu: Avoid writing LBR bit to IA32_XSS unless supported
x86/apic: Make x2apic_disable() work correctly
|
|
Exit to userspace if a fastpath handler triggers such an exit, which can
happen when skipping the instruction, e.g. due to userspace
single-stepping the guest via KVM_GUESTDBG_SINGLESTEP or because of an
emulation failure.
Fixes: 404d5d7bff0d ("KVM: X86: Introduce more exit_fastpath_completion enum values")
Link: https://lore.kernel.org/r/20240802195120.325560-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Incorporate the _host_ SEV-ES save area into the VMCB as a union with the
legacy save area. The SEV-ES variant used to save/load host state is
larger than the legacy save area, but resides at the same offset. Prefix
the field with "host" to make it as obvious as possible that the SEV-ES
variant in the VMCB is only ever used for host state. Guest state for
SEV-ES VMs is stored in a completely separate page (VMSA), albeit with
the same layout as the host state.
Add a compile-time assert to ensure the VMCB layout is correct, i.e. that
KVM's layout matches the architectural definitions.
No functional change intended.
Link: https://lore.kernel.org/r/20240802204511.352017-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Re-introduce the "split" x2APIC ICR storage that KVM used prior to Intel's
IPI virtualization support, but only for AMD. While not stated anywhere
in the APM, despite stating the ICR is a single 64-bit register, AMD CPUs
store the 64-bit ICR as two separate 32-bit values in ICR and ICR2. When
IPI virtualization (IPIv on Intel, all AVIC flavors on AMD) is enabled,
KVM needs to match CPU behavior as some ICR ICR writes will be handled by
the CPU, not by KVM.
Add a kvm_x86_ops knob to control the underlying format used by the CPU to
store the x2APIC ICR, and tune it to AMD vs. Intel regardless of whether
or not x2AVIC is enabled. If KVM is handling all ICR writes, the storage
format for x2APIC mode doesn't matter, and having the behavior follow AMD
versus Intel will provide better test coverage and ease debugging.
Fixes: 4d1d7942e36a ("KVM: SVM: Introduce logic to (de)activate x2AVIC mode")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Link: https://lore.kernel.org/r/20240719235107.3023592-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When using resctrl on systems with Sub-NUMA Clustering enabled, monitoring
groups may be allocated RMID values which would overrun the
arch_mbm_{local,total} arrays.
This is due to inconsistencies in whether the SNC-adjusted num_rmid value or
the unadjusted value in resctrl_arch_system_num_rmid_idx() is used. The
num_rmid value for the L3 resource is currently:
resctrl_arch_system_num_rmid_idx() / snc_nodes_per_l3_cache
As a simple fix, make resctrl_arch_system_num_rmid_idx() return the
SNC-adjusted, L3 num_rmid value on x86.
Fixes: e13db55b5a0d ("x86/resctrl: Introduce snc_nodes_per_l3_cache")
Signed-off-by: Peter Newman <peternewman@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20240822190212.1848788-1-peternewman@google.com
|
|
Currently, struct snp_guest_msg includes a message header (96 bytes) and
a payload (4000 bytes). There is an implicit assumption here that the
SNP message header will always be 96 bytes, and with that assumption the
payload array size has been set to 4000 bytes - a magic number. If any
new member is added to the SNP message header, the SNP guest message
will span more than a page.
Instead of using a magic number for the payload, declare struct
snp_guest_msg in a way that payload plus the message header do not
exceed a page.
[ bp: Massage. ]
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Nikunj A Dadhania <nikunj@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240731150811.156771-5-nikunj@amd.com
|
|
The FRED RSP0 MSR points to the top of the kernel stack for user level
event delivery. As this is the task stack it needs to be updated when a
task is scheduled in.
The update is done at context switch. That means it's also done when
switching to kernel threads, which is pointless as those never go out to
user space. For KVM threads this means there are two writes to FRED_RSP0 as
KVM has to switch to the guest value before VMENTER.
Defer the update to the exit to user space path and cache the per CPU
FRED_RSP0 value, so redundant writes can be avoided.
Provide fred_sync_rsp0() for KVM to keep the cache in sync with the actual
MSR value after returning from guest to host mode.
[ tglx: Massage change log ]
Suggested-by: Sean Christopherson <seanjc@google.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240822073906.2176342-4-xin@zytor.com
|
|
Per the discussion about FRED MSR writes with WRMSRNS instruction [1],
use the alternatives mechanism to choose WRMSRNS when it's available,
otherwise fallback to WRMSR.
Remove the dependency on X86_FEATURE_WRMSRNS as WRMSRNS is no longer
dependent on FRED.
[1] https://lore.kernel.org/lkml/15f56e6a-6edd-43d0-8e83-bb6430096514@citrix.com/
Use DS prefix to pad WRMSR instead of a NOP. The prefix is ignored. At
least that's the current information from the hardware folks.
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240822073906.2176342-3-xin@zytor.com
|
|
In most cases, ti_work values passed to arch_exit_to_user_mode_prepare()
are zeros, e.g., 99% in kernel build tests. So an obvious optimization is
to test ti_work for zero before processing individual bits in it.
Omit the optimization when FPU debugging is enabled, otherwise the
FPU consistency check is never executed.
Intel 0day tests did not find a perfermance regression with this change.
Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240822073906.2176342-2-xin@zytor.com
|
|
Commit 15a416e8aaa7 ("x86/entry: Treat BUG/WARN as NMI-like entries")
removed the implementation but left the declaration.
Signed-off-by: Yue Haibing <yuehaibing@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240816102219.883297-1-yuehaibing@huawei.com
|
|
mtrr_bp_restore() has been removed in commit 0b9a6a8bedbf ("x86/mtrr: Add a
stop_machine() handler calling only cache_cpu_init()"), but the declaration
was left behind. Remove it.
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240824120234.2516830-1-cuigaosheng1@huawei.com
|
|
Modern (fortified) memcpy() prefers to avoid writing (or reading) beyond
the end of the addressed destination (or source) struct member:
In function ‘fortify_memcpy_chk’,
inlined from ‘syscall_get_arguments’ at ./arch/x86/include/asm/syscall.h:85:2,
inlined from ‘populate_seccomp_data’ at kernel/seccomp.c:258:2,
inlined from ‘__seccomp_filter’ at kernel/seccomp.c:1231:3:
./include/linux/fortify-string.h:580:25: error: call to ‘__read_overflow2_field’ declared with attribute warning: detected read beyond size of field (2nd parameter); maybe use struct_group()? [-Werror=attribute-warning]
580 | __read_overflow2_field(q_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As already done for x86_64 and compat mode, do not use memcpy() to
extract syscall arguments from struct pt_regs but rather just perform
direct assignments. Binary output differences are negligible, and actually
ends up using less stack space:
- sub $0x84,%esp
+ sub $0x6c,%esp
and less text size:
text data bss dec hex filename
10794 252 0 11046 2b26 gcc-32b/kernel/seccomp.o.stock
10714 252 0 10966 2ad6 gcc-32b/kernel/seccomp.o.after
Closes: https://lore.kernel.org/lkml/9b69fb14-df89-4677-9c82-056ea9e706f5@gmail.com/
Reported-by: Mirsad Todorovac <mtodorovac69@gmail.com>
Signed-off-by: Kees Cook <kees@kernel.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Mirsad Todorovac <mtodorovac69@gmail.com>
Link: https://lore.kernel.org/all/20240708202202.work.477-kees%40kernel.org
|
|
Rename all APIs related to feature MSRs from get_msr_feature() to
get_feature_msr(). The APIs get "feature MSRs", not "MSR features".
And unlike kvm_{g,s}et_msr_common(), the "feature" adjective doesn't
describe the helper itself.
No functional change intended.
Link: https://lore.kernel.org/r/20240802181935.292540-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Refactor get_msr_feature() to take the index and data pointer as distinct
parameters in anticipation of eliminating "struct kvm_msr_entry" usage
further up the primary callchain.
No functional change intended.
Link: https://lore.kernel.org/r/20240802181935.292540-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Synthesize a consistency check VM-Exit (VM-Enter) or VM-Abort (VM-Exit) if
L1 attempts to load/store an MSR via the VMCS MSR lists that userspace has
disallowed access to via an MSR filter. Intel already disallows including
a handful of "special" MSRs in the VMCS lists, so denying access isn't
completely without precedent.
More importantly, the behavior is well-defined _and_ can be communicated
the end user, e.g. to the customer that owns a VM running as L1 on top of
KVM. On the other hand, ignoring userspace MSR filters is all but
guaranteed to result in unexpected behavior as the access will hit KVM's
internal state, which is likely not up-to-date.
Unlike KVM-internal accesses, instruction emulation, and dedicated VMCS
fields, the MSRs in the VMCS load/store lists are 100% guest controlled,
thus making it all but impossible to reason about the correctness of
ignoring the MSR filter. And if userspace *really* wants to deny access
to MSRs via the aforementioned scenarios, userspace can hide the
associated feature from the guest, e.g. by disabling the PMU to prevent
accessing PERF_GLOBAL_CTRL via its VMCS field. But for the MSR lists, KVM
is blindly processing MSRs; the MSR filters are the _only_ way for
userspace to deny access.
This partially reverts commit ac8d6cad3c7b ("KVM: x86: Only do MSR
filtering when access MSR by rdmsr/wrmsr").
Cc: Hou Wenlong <houwenlong.hwl@antgroup.com>
Cc: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20240722235922.3351122-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Use vmx_misc_preemption_timer_rate() to get the rate in hardware_setup(),
and open code the rate's bitmask in vmx_misc_preemption_timer_rate() so
that the function looks like all the helpers that grab values from
VMX_BASIC and VMX_MISC MSR values.
No functional change intended.
Cc: Shan Kang <shan.kang@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
[sean: split to separate patch, write changelog]
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the handful of MSR_IA32_VMX_MISC bit defines that are currently in
msr-indx.h to vmx.h so that all of the VMX_MISC defines and wrappers can
be found in a single location.
Opportunistically use BIT_ULL() instead of open coding hex values, add
defines for feature bits that are architecturally defined, and move the
defines down in the file so that they are colocated with the helpers for
getting fields from VMX_MISC.
No functional change intended.
Cc: Shan Kang <shan.kang@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
[sean: split to separate patch, write changelog]
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a helper to encode the VMCS revision, size, and supported memory types
in MSR_IA32_VMX_BASIC, i.e. when synthesizing KVM's supported BASIC MSR
value, and delete the now unused VMCS size and memtype shift macros.
For a variety of reasons, KVM has shifted (pun intended) to using helpers
to *get* information from the VMX MSRs, as opposed to defined MASK and
SHIFT macros for direct use. Provide a similar helper for the nested VMX
code, which needs to *set* information, so that KVM isn't left with a mix
of SHIFT macros and dedicated helpers.
Reported-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track the "basic" capabilities VMX MSR as a single u64 in vmcs_config
instead of splitting it across three fields, that obviously don't combine
into a single 64-bit value, so that KVM can use the macros that define MSR
bits using their absolute position. Replace all open coded shifts and
masks, many of which are relative to the "high" half, with the appropriate
macro.
Opportunistically use VMX_BASIC_32BIT_PHYS_ADDR_ONLY instead of an open
coded equivalent, and clean up the related comment to not reference a
specific SDM section (to the surprise of no one, the comment is stale).
No functional change intended (though obviously the code generation will
be quite different).
Cc: Shan Kang <shan.kang@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
[sean: split to separate patch, write changelog]
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the bit defines for MSR_IA32_VMX_BASIC from msr-index.h to vmx.h so
that they are colocated with other VMX MSR bit defines, and with the
helpers that extract specific information from an MSR_IA32_VMX_BASIC value.
Opportunistically use BIT_ULL() instead of open coding hex values.
Opportunistically rename VMX_BASIC_64 to VMX_BASIC_32BIT_PHYS_ADDR_ONLY,
as "VMX_BASIC_64" is widly misleading. The flag enumerates that addresses
are limited to 32 bits, not that 64-bit addresses are allowed.
Last but not least, opportunistically #define DUAL_MONITOR_TREATMENT so
that all known single-bit feature flags are defined (this will allow
replacing open-coded literals in the future).
Cc: Shan Kang <shan.kang@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
[sean: split to separate patch, write changelog]
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move pat/memtype.c's PAT() macro to msr-index.h as PAT_VALUE(), and use it
in KVM to define the default (Power-On / RESET) PAT value instead of open
coding an inscrutable magic number.
No functional change intended.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240605231918.2915961-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
etc.)
Add defines for the architectural memory types that can be shoved into
various MSRs and registers, e.g. MTRRs, PAT, VMX capabilities MSRs, EPTPs,
etc. While most MSRs/registers support only a subset of all memory types,
the values themselves are architectural and identical across all users.
Leave the goofy MTRR_TYPE_* definitions as-is since they are in a uapi
header, but add compile-time assertions to connect the dots (and sanity
check that the msr-index.h values didn't get fat-fingered).
Keep the VMX_EPTP_MT_* defines so that it's slightly more obvious that the
EPTP holds a single memory type in 3 of its 64 bits; those bits just
happen to be 2:0, i.e. don't need to be shifted.
Opportunistically use X86_MEMTYPE_WB instead of an open coded '6' in
setup_vmcs_config().
No functional change intended.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Advertise AVX10.1 related CPUIDs, i.e. report AVX10 support bit via
CPUID.(EAX=07H, ECX=01H):EDX[bit 19] and new CPUID leaf 0x24H so that
guest OS and applications can query the AVX10.1 CPUIDs directly. Intel
AVX10 represents the first major new vector ISA since the introduction of
Intel AVX512, which will establish a common, converged vector instruction
set across all Intel architectures[1].
AVX10.1 is an early version of AVX10, that enumerates the Intel AVX512
instruction set at 128, 256, and 512 bits which is enabled on
Granite Rapids. I.e., AVX10.1 is only a new CPUID enumeration with no
new functionality. New features, e.g. Embedded Rounding and Suppress
All Exceptions (SAE) will be introduced in AVX10.2.
Advertising AVX10.1 is safe because there is nothing to enable for AVX10.1,
i.e. it's purely a new way to enumerate support, thus there will never be
anything for the kernel to enable. Note just the CPUID checking is changed
when using AVX512 related instructions, e.g. if using one AVX512
instruction needs to check (AVX512 AND AVX512DQ), it can check
((AVX512 AND AVX512DQ) OR AVX10.1) after checking XCR0[7:5].
The versions of AVX10 are expected to be inclusive, e.g. version N+1 is
a superset of version N. Per the spec, the version can never be 0, just
advertise AVX10.1 if it's supported in hardware. Moreover, advertising
AVX10_{128,256,512} needs to land in the same commit as advertising basic
AVX10.1 support, otherwise KVM would advertise an impossible CPU model.
E.g. a CPU with AVX512 but not AVX10.1/512 is impossible per the SDM.
As more and more AVX related CPUIDs are added (it would have resulted in
around 40-50 CPUID flags when developing AVX10), the versioning approach
is introduced. But incrementing version numbers are bad for virtualization.
E.g. if AVX10.2 has a feature that shouldn't be enumerated to guests for
whatever reason, then KVM can't enumerate any "later" features either,
because the only way to hide the problematic AVX10.2 feature is to set the
version to AVX10.1 or lower[2]. But most AVX features are just passed
through and don't have virtualization controls, so AVX10 should not be
problematic in practice, so long as Intel honors their promise that future
versions will be supersets of past versions.
[1] https://cdrdv2.intel.com/v1/dl/getContent/784267
[2] https://lore.kernel.org/all/Zkz5Ak0PQlAN8DxK@google.com/
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Link: https://lore.kernel.org/r/20240819062327.3269720-1-tao1.su@linux.intel.com
[sean: minor changelog tweaks]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
iounmap() on x86 occasionally fails to unmap because the provided valid
ioremap address is not below high_memory. It turned out that this
happens due to KASLR.
KASLR uses the full address space between PAGE_OFFSET and vaddr_end to
randomize the starting points of the direct map, vmalloc and vmemmap
regions. It thereby limits the size of the direct map by using the
installed memory size plus an extra configurable margin for hot-plug
memory. This limitation is done to gain more randomization space
because otherwise only the holes between the direct map, vmalloc,
vmemmap and vaddr_end would be usable for randomizing.
The limited direct map size is not exposed to the rest of the kernel, so
the memory hot-plug and resource management related code paths still
operate under the assumption that the available address space can be
determined with MAX_PHYSMEM_BITS.
request_free_mem_region() allocates from (1 << MAX_PHYSMEM_BITS) - 1
downwards. That means the first allocation happens past the end of the
direct map and if unlucky this address is in the vmalloc space, which
causes high_memory to become greater than VMALLOC_START and consequently
causes iounmap() to fail for valid ioremap addresses.
MAX_PHYSMEM_BITS cannot be changed for that because the randomization
does not align with address bit boundaries and there are other places
which actually require to know the maximum number of address bits. All
remaining usage sites of MAX_PHYSMEM_BITS have been analyzed and found
to be correct.
Cure this by exposing the end of the direct map via PHYSMEM_END and use
that for the memory hot-plug and resource management related places
instead of relying on MAX_PHYSMEM_BITS. In the KASLR case PHYSMEM_END
maps to a variable which is initialized by the KASLR initialization and
otherwise it is based on MAX_PHYSMEM_BITS as before.
To prevent future hickups add a check into add_pages() to catch callers
trying to add memory above PHYSMEM_END.
Fixes: 0483e1fa6e09 ("x86/mm: Implement ASLR for kernel memory regions")
Reported-by: Max Ramanouski <max8rr8@gmail.com>
Reported-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-By: Max Ramanouski <max8rr8@gmail.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/87ed6soy3z.ffs@tglx
|
|
In any normal situation this really shouldn't matter, but in case the
address passed in to masked_user_access_begin() were to be some complex
expression, we should evaluate it fully before doing the 'stac'
instruction.
And even without that issue (which objdump would pick up on for any
really bad case), just in general we should strive to minimize the
amount of code we run with user accesses enabled.
For example, even for the trivial pselect6() case, the code generation
(obviously with a non-debug build) just diff with this ends up being
- stac
mov %rax,%rcx
sar $0x3f,%rcx
or %rax,%rcx
+ stac
mov (%rcx),%r13
mov 0x8(%rcx),%r14
clac
so the area delimeted by the 'stac / clac' pair is now literally just
the two user access instructions, and the address generation has been
moved out to before that code.
This will be much more noticeable if we end up deciding that we can go
back to just inlining "get_user()" using the new masked user access
model. The get_user() pointers can often be more complex expressions
involving kernel memory accesses or even function calls.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The Spectre-v1 mitigations made "access_ok()" much more expensive, since
it has to serialize execution with the test for a valid user address.
All the normal user copy routines avoid this by just masking the user
address with a data-dependent mask instead, but the fast
"unsafe_user_read()" kind of patterms that were supposed to be a fast
case got slowed down.
This introduces a notion of using
src = masked_user_access_begin(src);
to do the user address sanity using a data-dependent mask instead of the
more traditional conditional
if (user_read_access_begin(src, len)) {
model.
This model only works for dense accesses that start at 'src' and on
architectures that have a guard region that is guaranteed to fault in
between the user space and the kernel space area.
With this, the user access doesn't need to be manually checked, because
a bad address is guaranteed to fault (by some architecture masking
trick: on x86-64 this involves just turning an invalid user address into
all ones, since we don't map the top of address space).
This only converts a couple of examples for now. Example x86-64 code
generation for loading two words from user space:
stac
mov %rax,%rcx
sar $0x3f,%rcx
or %rax,%rcx
mov (%rcx),%r13
mov 0x8(%rcx),%r14
clac
where all the error handling and -EFAULT is now purely handled out of
line by the exception path.
Of course, if the micro-architecture does badly at 'clac' and 'stac',
the above is still pitifully slow. But at least we did as well as we
could.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There are two distinct CPU features related to the use of XSAVES and LBR:
whether LBR is itself supported and whether XSAVES supports LBR. The LBR
subsystem correctly checks both in intel_pmu_arch_lbr_init(), but the
XSTATE subsystem does not.
The LBR bit is only removed from xfeatures_mask_independent when LBR is not
supported by the CPU, but there is no validation of XSTATE support.
If XSAVES does not support LBR the write to IA32_XSS causes a #GP fault,
leaving the state of IA32_XSS unchanged, i.e. zero. The fault is handled
with a warning and the boot continues.
Consequently the next XRSTORS which tries to restore supervisor state fails
with #GP because the RFBM has zero for all supervisor features, which does
not match the XCOMP_BV field.
As XFEATURE_MASK_FPSTATE includes supervisor features setting up the FPU
causes a #GP, which ends up in fpu_reset_from_exception_fixup(). That fails
due to the same problem resulting in recursive #GPs until the kernel runs
out of stack space and double faults.
Prevent this by storing the supported independent features in
fpu_kernel_cfg during XSTATE initialization and use that cached value for
retrieving the independent feature bits to be written into IA32_XSS.
[ tglx: Massaged change log ]
Fixes: f0dccc9da4c0 ("x86/fpu/xstate: Support dynamic supervisor feature for LBR")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Mitchell Levy <levymitchell0@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240812-xsave-lbr-fix-v3-1-95bac1bf62f4@gmail.com
|
|
Introduce the quirk KVM_X86_QUIRK_SLOT_ZAP_ALL to allow users to select
KVM's behavior when a memslot is moved or deleted for KVM_X86_DEFAULT_VM
VMs. Make sure KVM behave as if the quirk is always disabled for
non-KVM_X86_DEFAULT_VM VMs.
The KVM_X86_QUIRK_SLOT_ZAP_ALL quirk offers two behavior options:
- when enabled: Invalidate/zap all SPTEs ("zap-all"),
- when disabled: Precisely zap only the leaf SPTEs within the range of the
moving/deleting memory slot ("zap-slot-leafs-only").
"zap-all" is today's KVM behavior to work around a bug [1] where the
changing the zapping behavior of memslot move/deletion would cause VM
instability for VMs with an Nvidia GPU assigned; while
"zap-slot-leafs-only" allows for more precise zapping of SPTEs within the
memory slot range, improving performance in certain scenarios [2], and
meeting the functional requirements for TDX.
Previous attempts to select "zap-slot-leafs-only" include a per-VM
capability approach [3] (which was not preferred because the root cause of
the bug remained unidentified) and a per-memslot flag approach [4]. Sean
and Paolo finally recommended the implementation of this quirk and
explained that it's the least bad option [5].
By default, the quirk is enabled on KVM_X86_DEFAULT_VM VMs to use
"zap-all". Users have the option to disable the quirk to select
"zap-slot-leafs-only" for specific KVM_X86_DEFAULT_VM VMs that are
unaffected by this bug.
For non-KVM_X86_DEFAULT_VM VMs, the "zap-slot-leafs-only" behavior is
always selected without user's opt-in, regardless of if the user opts for
"zap-all".
This is because it is assumed until proven otherwise that non-
KVM_X86_DEFAULT_VM VMs will not be exposed to the bug [1], and most
importantly, it's because TDX must have "zap-slot-leafs-only" always
selected. In TDX's case a memslot's GPA range can be a mixture of "private"
or "shared" memory. Shared is roughly analogous to how EPT is handled for
normal VMs, but private GPAs need lots of special treatment:
1) "zap-all" would require to zap private root page or non-leaf entries or
at least leaf-entries beyond the deleting memslot scope. However, TDX
demands that the root page of the private page table remains unchanged,
with leaf entries being zapped before non-leaf entries, and any dropped
private guest pages must be re-accepted by the guest.
2) if "zap-all" zaps only shared page tables, it would result in private
pages still being mapped when the memslot is gone. This may affect even
other processes if later the gmem fd was whole punched, causing the
pages being freed on the host while still mapped in the TD, because
there's no pgoff to the gfn information to zap the private page table
after memslot is gone.
So, simply go "zap-slot-leafs-only" as if the quirk is always disabled for
non-KVM_X86_DEFAULT_VM VMs to avoid manual opt-in for every VM type [6] or
complicating quirk disabling interface (current quirk disabling interface
is limited, no way to query quirks, or force them to be disabled).
Add a new function kvm_mmu_zap_memslot_leafs() to implement
"zap-slot-leafs-only". This function does not call kvm_unmap_gfn_range(),
bypassing special handling to APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, as
1) The APIC_ACCESS_PAGE_PRIVATE_MEMSLOT cannot be created by users, nor can
it be moved. It is only deleted by KVM when APICv is permanently
inhibited.
2) kvm_vcpu_reload_apic_access_page() effectively does nothing when
APIC_ACCESS_PAGE_PRIVATE_MEMSLOT is deleted.
3) Avoid making all cpus request of KVM_REQ_APIC_PAGE_RELOAD can save on
costly IPIs.
Suggested-by: Kai Huang <kai.huang@intel.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://patchwork.kernel.org/project/kvm/patch/20190205210137.1377-11-sean.j.christopherson@intel.com [1]
Link: https://patchwork.kernel.org/project/kvm/patch/20190205210137.1377-11-sean.j.christopherson@intel.com/#25054908 [2]
Link: https://lore.kernel.org/kvm/20200713190649.GE29725@linux.intel.com/T/#mabc0119583dacf621025e9d873c85f4fbaa66d5c [3]
Link: https://lore.kernel.org/all/20240515005952.3410568-3-rick.p.edgecombe@intel.com [4]
Link: https://lore.kernel.org/all/7df9032d-83e4-46a1-ab29-6c7973a2ab0b@redhat.com [5]
Link: https://lore.kernel.org/all/ZnGa550k46ow2N3L@google.com [6]
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20240703021043.13881-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Disallow read-only memslots for SEV-{ES,SNP} VM types, as KVM can't
directly emulate instructions for ES/SNP, and instead the guest must
explicitly request emulation. Unless the guest explicitly requests
emulation without accessing memory, ES/SNP relies on KVM creating an MMIO
SPTE, with the subsequent #NPF being reflected into the guest as a #VC.
But for read-only memslots, KVM deliberately doesn't create MMIO SPTEs,
because except for ES/SNP, doing so requires setting reserved bits in the
SPTE, i.e. the SPTE can't be readable while also generating a #VC on
writes. Because KVM never creates MMIO SPTEs and jumps directly to
emulation, the guest never gets a #VC. And since KVM simply resumes the
guest if ES/SNP guests trigger emulation, KVM effectively puts the vCPU
into an infinite #NPF loop if the vCPU attempts to write read-only memory.
Disallow read-only memory for all VMs with protected state, i.e. for
upcoming TDX VMs as well as ES/SNP VMs. For TDX, it's actually possible
to support read-only memory, as TDX uses EPT Violation #VE to reflect the
fault into the guest, e.g. KVM could configure read-only SPTEs with RX
protections and SUPPRESS_VE=0. But there is no strong use case for
supporting read-only memslots on TDX, e.g. the main historical usage is
to emulate option ROMs, but TDX disallows executing from shared memory.
And if someone comes along with a legitimate, strong use case, the
restriction can always be lifted for TDX.
Don't bother trying to retroactively apply the restriction to SEV-ES
VMs that are created as type KVM_X86_DEFAULT_VM. Read-only memslots can't
possibly work for SEV-ES, i.e. disallowing such memslots is really just
means reporting an error to userspace instead of silently hanging vCPUs.
Trying to deal with the ordering between KVM_SEV_INIT and memslot creation
isn't worth the marginal benefit it would provide userspace.
Fixes: 26c44aa9e076 ("KVM: SEV: define VM types for SEV and SEV-ES")
Fixes: 1dfe571c12cf ("KVM: SEV: Add initial SEV-SNP support")
Cc: Peter Gonda <pgonda@google.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: Vishal Annapurve <vannapurve@google.com>
Cc: Ackerly Tng <ackerleytng@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240809190319.1710470-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|