Age | Commit message (Collapse) | Author |
|
In order to use sched_clock() from noinstr code, mark it and all it's
implenentations noinstr.
The whole pvclock thing (used by KVM/Xen) is a bit of a pain,
since it calls out to watchdogs, create a
pvclock_clocksource_read_nowd() variant doesn't do that and can be
noinstr.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230126151323.702003578@infradead.org
|
|
When the "nopv" command line parameter is used, it should not waste
memory for kvmclock.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1646727529-11774-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When Linux runs as an Isolated VM on Hyper-V, it supports AMD SEV-SNP
but it's partially enlightened, i.e. cc_platform_has(
CC_ATTR_GUEST_MEM_ENCRYPT) is true but sev_active() is false.
Commit 4d96f9109109 per se is good, but with it now
kvm_setup_vsyscall_timeinfo() -> kvmclock_init_mem() calls
set_memory_decrypted(), and later gets stuck when trying to zere out
the pages pointed by 'hvclock_mem', if Linux runs as an Isolated VM on
Hyper-V. The cause is that here now the Linux VM should no longer access
the original guest physical addrss (GPA); instead the VM should do
memremap() and access the original GPA + ms_hyperv.shared_gpa_boundary:
see the example code in drivers/hv/connection.c: vmbus_connect() or
drivers/hv/ring_buffer.c: hv_ringbuffer_init(). If the VM tries to
access the original GPA, it keepts getting injected a fault by Hyper-V
and gets stuck there.
Here the issue happens only when the VM has >=65 vCPUs, because the
global static array hv_clock_boot[] can hold 64 "struct
pvclock_vsyscall_time_info" (the sizeof of the struct is 64 bytes), so
kvmclock_init_mem() only allocates memory in the case of vCPUs > 64.
Since the 'hvclock_mem' pages are only useful when the kvm clock is
supported by the underlying hypervisor, fix the issue by returning
early when Linux VM runs on Hyper-V, which doesn't support kvm clock.
Fixes: 4d96f9109109 ("x86/sev: Replace occurrences of sev_active() with cc_platform_has()")
Tested-by: Andrea Parri (Microsoft) <parri.andrea@gmail.com>
Signed-off-by: Andrea Parri (Microsoft) <parri.andrea@gmail.com>
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Message-Id: <20220225084600.17817-1-decui@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Even if "no-kvmclock" is passed in cmdline parameter, the guest kernel
still allocates hvclock_mem which is scaled by the number of vCPUs,
let's check kvmclock enable in advance to avoid this memory waste.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1645520523-30814-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
I made the actual CPU bringup go nice and fast... and then Linux spends
half a minute printing stupid nonsense about clocks and steal time for
each of 256 vCPUs. Don't do that. Nobody cares.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211209150938.3518-12-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Replace uses of sev_active() with the more generic cc_platform_has()
using CC_ATTR_GUEST_MEM_ENCRYPT. If future support is added for other
memory encryption technologies, the use of CC_ATTR_GUEST_MEM_ENCRYPT
can be updated, as required.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210928191009.32551-7-bp@alien8.de
|
|
There're other modules might use hv_clock_per_cpu variable like ptp_kvm,
so move it into kvmclock.h and export the symbol to make it visiable to
other modules.
Signed-off-by: Zelin Deng <zelin.deng@linux.alibaba.com>
Cc: <stable@vger.kernel.org>
Message-Id: <1632892429-101194-2-git-send-email-zelin.deng@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Crash shutdown handler only disables kvmclock and steal time, other PV
features remain active so we risk corrupting memory or getting some
side-effects in kdump kernel. Move crash handler to kvm.c and unify
with CPU offline.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210414123544.1060604-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currenly, we disable kvmclock from machine_shutdown() hook and this
only happens for boot CPU. We need to disable it for all CPUs to
guard against memory corruption e.g. on restore from hibernate.
Note, writing '0' to kvmclock MSR doesn't clear memory location, it
just prevents hypervisor from updating the location so for the short
while after write and while CPU is still alive, the clock remains usable
and correct so we don't need to switch to some other clocksource.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210414123544.1060604-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 alternatives/paravirt updates from Borislav Petkov:
"First big cleanup to the paravirt infra to use alternatives and thus
eliminate custom code patching.
For that, the alternatives infrastructure is extended to accomodate
paravirt's needs and, as a result, a lot of paravirt patching code
goes away, leading to a sizeable cleanup and simplification.
Work by Juergen Gross"
* tag 'x86_alternatives_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/paravirt: Have only one paravirt patch function
x86/paravirt: Switch functions with custom code to ALTERNATIVE
x86/paravirt: Add new PVOP_ALT* macros to support pvops in ALTERNATIVEs
x86/paravirt: Switch iret pvops to ALTERNATIVE
x86/paravirt: Simplify paravirt macros
x86/paravirt: Remove no longer needed 32-bit pvops cruft
x86/paravirt: Add new features for paravirt patching
x86/alternative: Use ALTERNATIVE_TERNARY() in _static_cpu_has()
x86/alternative: Support ALTERNATIVE_TERNARY
x86/alternative: Support not-feature
x86/paravirt: Switch time pvops functions to use static_call()
static_call: Add function to query current function
static_call: Move struct static_call_key definition to static_call_types.h
x86/alternative: Merge include files
x86/alternative: Drop unused feature parameter from ALTINSTR_REPLACEMENT()
|
|
# lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 88
On-line CPU(s) list: 0-63
Off-line CPU(s) list: 64-87
# cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-5.10.0-rc3-tlinux2-0050+ root=/dev/mapper/cl-root ro
rd.lvm.lv=cl/root rhgb quiet console=ttyS0 LANG=en_US .UTF-8 no-kvmclock-vsyscall
# echo 1 > /sys/devices/system/cpu/cpu76/online
-bash: echo: write error: Cannot allocate memory
The per-cpu vsyscall pvclock data pointer assigns either an element of the
static array hv_clock_boot (#vCPU <= 64) or dynamically allocated memory
hvclock_mem (vCPU > 64), the dynamically memory will not be allocated if
kvmclock vsyscall is disabled, this can result in cpu hotpluged fails in
kvmclock_setup_percpu() which returns -ENOMEM. It's broken for no-vsyscall
and sometimes you end up with vsyscall disabled if the host does something
strange. This patch fixes it by allocating this dynamically memory
unconditionally even if vsyscall is disabled.
Fixes: 6a1cac56f4 ("x86/kvm: Use __bss_decrypted attribute in shared variables")
Reported-by: Zelin Deng <zelin.deng@linux.alibaba.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: stable@vger.kernel.org#v4.19-rc5+
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1614130683-24137-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The time pvops functions are the only ones left which might be
used in 32-bit mode and which return a 64-bit value.
Switch them to use the static_call() mechanism instead of pvops, as
this allows quite some simplification of the pvops implementation.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210311142319.4723-5-jgross@suse.com
|
|
This macro is useless, and could cause gcc warning:
arch/x86/kernel/kvmclock.c:47:0: warning: macro "HV_CLOCK_SIZE" is not
used [-Wunused-macros]
Let's remove it.
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <1604651963-10067-1-git-send-email-alex.shi@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Switch to the generic VDSO clock mode storage.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> (VDSO parts)
Acked-by: Juergen Gross <jgross@suse.com> (Xen parts)
Acked-by: Paolo Bonzini <pbonzini@redhat.com> (KVM parts)
Link: https://lkml.kernel.org/r/20200207124403.152039903@linutronix.de
|
|
All architectures which use the generic VDSO code have their own storage
for the VDSO clock mode. That's pointless and just requires duplicate code.
X86 abuses the function which retrieves the architecture specific clock
mode storage to mark the clocksource as used in the VDSO. That's silly
because this is invoked on every tick when the VDSO data is updated.
Move this functionality to the clocksource::enable() callback so it gets
invoked once when the clocksource is installed. This allows to make the
clock mode storage generic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com> (Hyper-V parts)
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> (VDSO parts)
Acked-by: Juergen Gross <jgross@suse.com> (Xen parts)
Link: https://lkml.kernel.org/r/20200207124402.934519777@linutronix.de
|
|
The invariant TSC bit has the following meaning:
"The time stamp counter in newer processors may support an enhancement,
referred to as invariant TSC. Processor's support for invariant TSC
is indicated by CPUID.80000007H:EDX[8]. The invariant TSC will run
at a constant rate in all ACPI P-, C-. and T-states. This is the
architectural behavior moving forward. On processors with invariant TSC
support, the OS may use the TSC for wall clock timer services (instead
of ACPI or HPET timers). TSC reads are much more efficient and do not
incur the overhead associated with a ring transition or access to a
platform resource."
IOW, TSC does not change frequency. In such case, and with
TSC scaling hardware available to handle migration, it is possible
to use the TSC clocksource directly, whose system calls are
faster.
Reduce the rating of kvmclock clocksource to allow TSC clocksource
to be the default if invariant TSC is exposed.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
v2: Use feature bits and tsc_unstable() check (Sean Christopherson)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
VMs may show incorrect uptime and dmesg printk offsets on hypervisors with
unstable clock. The problem is produced when VM is rebooted without exiting
from qemu.
The fix is to calculate clock offset not only for stable clock but for
unstable clock as well, and use kvm_sched_clock_read() which substracts
the offset for both clocks.
This is safe, because pvclock_clocksource_read() does the right thing and
makes sure that clock always goes forward, so once offset is calculated
with unstable clock, we won't get new reads that are smaller than offset,
and thus won't get negative results.
Thank you Jon DeVree for helping to reproduce this issue.
Fixes: 857baa87b642 ("sched/clock: Enable sched clock early")
Cc: stable@vger.kernel.org
Reported-by: Dominique Martinet <asmadeus@codewreck.org>
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Update the verbose license text with the matching SPDX
license identifier.
Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
[Changed deprecated GPL-2.0+ to GPL-2.0-or-later. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 paravirt updates from Ingo Molnar:
"Two main changes:
- Remove no longer used parts of the paravirt infrastructure and put
large quantities of paravirt ops under a new config option
PARAVIRT_XXL=y, which is selected by XEN_PV only. (Joergen Gross)
- Enable PV spinlocks on Hyperv (Yi Sun)"
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyperv: Enable PV qspinlock for Hyper-V
x86/hyperv: Add GUEST_IDLE_MSR support
x86/paravirt: Clean up native_patch()
x86/paravirt: Prevent redefinition of SAVE_FLAGS macro
x86/xen: Make xen_reservation_lock static
x86/paravirt: Remove unneeded mmu related paravirt ops bits
x86/paravirt: Move the Xen-only pv_mmu_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move the pv_irq_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move the Xen-only pv_cpu_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move items in pv_info under PARAVIRT_XXL umbrella
x86/paravirt: Introduce new config option PARAVIRT_XXL
x86/paravirt: Remove unused paravirt bits
x86/paravirt: Use a single ops structure
x86/paravirt: Remove clobbers from struct paravirt_patch_site
x86/paravirt: Remove clobbers parameter from paravirt patch functions
x86/paravirt: Make paravirt_patch_call() and paravirt_patch_jmp() static
x86/xen: Add SPDX identifier in arch/x86/xen files
x86/xen: Link platform-pci-unplug.o only if CONFIG_XEN_PVHVM
x86/xen: Move pv specific parts of arch/x86/xen/mmu.c to mmu_pv.c
x86/xen: Move pv irq related functions under CONFIG_XEN_PV umbrella
|
|
The recent removal of the memblock dependency from kvmclock caused a SEV
guest regression because the wall_clock and hv_clock_boot variables are
no longer mapped decrypted when SEV is active.
Use the __bss_decrypted attribute to put the static wall_clock and
hv_clock_boot in the .bss..decrypted section so that they are mapped
decrypted during boot.
In the preparatory stage of CPU hotplug, the per-cpu pvclock data pointer
assigns either an element of the static array or dynamically allocated
memory for the pvclock data pointer. The static array are now mapped
decrypted but the dynamically allocated memory is not mapped decrypted.
However, when SEV is active this memory range must be mapped decrypted.
Add a function which is called after the page allocator is up, and
allocate memory for the pvclock data pointers for the all possible cpus.
Map this memory range as decrypted when SEV is active.
Fixes: 368a540e0232 ("x86/kvmclock: Remove memblock dependency")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/1536932759-12905-3-git-send-email-brijesh.singh@amd.com
|
|
Instead of using six globally visible paravirt ops structures combine
them in a single structure, keeping the original structures as
sub-structures.
This avoids the need to assemble struct paravirt_patch_template at
runtime on the stack each time apply_paravirt() is being called (i.e.
when loading a module).
[ tglx: Made the struct and the initializer tabular for readability sake ]
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel@lists.xenproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: akataria@vmware.com
Cc: rusty@rustcorp.com.au
Cc: boris.ostrovsky@oracle.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20180828074026.820-9-jgross@suse.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
|
|
kvm_get_preset_lpj() is only called from kvmclock_init(), so mark it __init
as well.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář<rkrcmar@redhat.com>
Cc: <kvm@vger.kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/20180730075421.22830-3-douly.fnst@cn.fujitsu.com
|
|
The previous removal of the memblock dependency from kvmclock introduced a
static data array sized 64bytes * CONFIG_NR_CPUS. That's wasteful on large
systems when kvmclock is not used.
Replace it with:
- A static page sized array of pvclock data. It's page sized because the
pvclock data of the boot cpu is mapped into the VDSO so otherwise random
other data would be exposed to the vDSO
- A PER_CPU variable of pvclock data pointers. This is used to access the
pcvlock data storage on each CPU.
The setup is done in two stages:
- Early boot stores the pointer to the static page for the boot CPU in
the per cpu data.
- In the preparatory stage of CPU hotplug assign either an element of
the static array (when the CPU number is in that range) or allocate
memory and initialize the per cpu pointer.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-8-pasha.tatashin@oracle.com
|
|
There is no point to have this in the kvm code itself and call it from
there. This can be called from an initcall and the parameter is cleared
when the hypervisor is not KVM.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-7-pasha.tatashin@oracle.com
|
|
The kvmclock parameter is init data and the other variables are not
modified after init.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-6-pasha.tatashin@oracle.com
|
|
- Cleanup the mrs write for wall clock. The type casts to (int) are sloppy
because the wrmsr parameters are u32 and aside of that wrmsrl() already
provides the high/low split for free.
- Remove the pointless get_cpu()/put_cpu() dance from various
functions. Either they are called during early init where CPU is
guaranteed to be 0 or they are already called from non preemptible
context where smp_processor_id() can be used safely
- Simplify the convoluted check for kvmclock in the init function.
- Mark the parameter parsing function __init. No point in keeping it
around.
- Convert to pr_info()
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-5-pasha.tatashin@oracle.com
|
|
The return value is pointless because the wrmsr cannot fail if
KVM_FEATURE_CLOCKSOURCE or KVM_FEATURE_CLOCKSOURCE2 are set.
kvm_register_clock() is only called locally so wants to be static.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-4-pasha.tatashin@oracle.com
|
|
There is no requirement for wall_clock data to be page aligned or page
sized.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-3-pasha.tatashin@oracle.com
|
|
KVM clock is initialized later compared to other hypervisor clocks because
it has a dependency on the memblock allocator.
Bring it in line with other hypervisors by using memory from the BSS
instead of allocating it.
The benefits:
- Remove ifdef from common code
- Earlier availability of the clock
- Remove dependency on memblock, and reduce code
The downside:
- Static allocation of the per cpu data structures sized NR_CPUS * 64byte
Will be addressed in follow up patches.
[ tglx: Split out from larger series ]
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-2-pasha.tatashin@oracle.com
|
|
Pull kvm fixes from Paolo Bonzini:
"Miscellaneous bugfixes, plus a small patchlet related to Spectre v2"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvmclock: fix TSC calibration for nested guests
KVM: VMX: Mark VMXArea with revision_id of physical CPU even when eVMCS enabled
KVM: irqfd: fix race between EPOLLHUP and irq_bypass_register_consumer
KVM/Eventfd: Avoid crash when assign and deassign specific eventfd in parallel.
x86/kvmclock: set pvti_cpu0_va after enabling kvmclock
x86/kvm/Kconfig: Ensure CRYPTO_DEV_CCP_DD state at minimum matches KVM_AMD
kvm: nVMX: Restore exit qual for VM-entry failure due to MSR loading
x86/kvm/vmx: don't read current->thread.{fs,gs}base of legacy tasks
KVM: VMX: support MSR_IA32_ARCH_CAPABILITIES as a feature MSR
|
|
Inside a nested guest, access to hardware can be slow enough that
tsc_read_refs always return ULLONG_MAX, causing tsc_refine_calibration_work
to be called periodically and the nested guest to spend a lot of time
reading the ACPI timer.
However, if the TSC frequency is available from the pvclock page,
we can just set X86_FEATURE_TSC_KNOWN_FREQ and avoid the recalibration.
'refine' operation.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
[Commit message rewritten. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
pvti_cpu0_va is the address of shared kvmclock data structure.
pvti_cpu0_va is currently kept unset (1) on 32 bit systems, (2) when
kvmclock vsyscall is disabled, and (3) if kvmclock is not stable.
This poses a problem, because kvm_ptp needs pvti_cpu0_va, but (1) can
work on 32 bit, (2) has little relation to the vsyscall, and (3) does
not need stable kvmclock (although kvmclock won't be used for system
clock if it's not stable, so kvm_ptp is pointless in that case).
Expose pvti_cpu0_va whenever kvmclock is enabled to allow all users to
work with it.
This fixes a regression found on Gentoo: https://bugs.gentoo.org/658544.
Fixes: 9f08890ab906 ("x86/pvclock: add setter for pvclock_pvti_cpu0_va")
Cc: stable@vger.kernel.org
Reported-by: Andreas Steinmetz <ast@domdv.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The x86 platform operations are fairly isolated, so it's easy to change
them from using timespec to timespec64. It has been checked that all the
users and callers are safe, and there is only one critical function that is
broken beyond 2106:
pvclock_read_wallclock() uses a 32-bit number of seconds since the epoch
to communicate the boot time between host and guest in a virtual
environment. This will work until 2106, but fixing this is outside the
scope of this change, Add a comment at least.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Radim Krčmář <rkrcmar@redhat.com>
Acked-by: Jan Kiszka <jan.kiszka@siemens.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: jailhouse-dev@googlegroups.com
Cc: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Cc: y2038@lists.linaro.org
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: xen-devel@lists.xenproject.org
Cc: John Stultz <john.stultz@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Link: https://lkml.kernel.org/r/20180427201435.3194219-1-arnd@arndb.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
"Xen features and fixes for v4.15-rc1
Apart from several small fixes it contains the following features:
- a series by Joao Martins to add vdso support of the pv clock
interface
- a series by Juergen Gross to add support for Xen pv guests to be
able to run on 5 level paging hosts
- a series by Stefano Stabellini adding the Xen pvcalls frontend
driver using a paravirtualized socket interface"
* tag 'for-linus-4.15-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (34 commits)
xen/pvcalls: fix potential endless loop in pvcalls-front.c
xen/pvcalls: Add MODULE_LICENSE()
MAINTAINERS: xen, kvm: track pvclock-abi.h changes
x86/xen/time: setup vcpu 0 time info page
x86/xen/time: set pvclock flags on xen_time_init()
x86/pvclock: add setter for pvclock_pvti_cpu0_va
ptp_kvm: probe for kvm guest availability
xen/privcmd: remove unused variable pageidx
xen: select grant interface version
xen: update arch/x86/include/asm/xen/cpuid.h
xen: add grant interface version dependent constants to gnttab_ops
xen: limit grant v2 interface to the v1 functionality
xen: re-introduce support for grant v2 interface
xen: support priv-mapping in an HVM tools domain
xen/pvcalls: remove redundant check for irq >= 0
xen/pvcalls: fix unsigned less than zero error check
xen/time: Return -ENODEV from xen_get_wallclock()
xen/pvcalls-front: mark expected switch fall-through
xen: xenbus_probe_frontend: mark expected switch fall-throughs
xen/time: do not decrease steal time after live migration on xen
...
|
|
Right now there is only a pvclock_pvti_cpu0_va() which is defined
on kvmclock since:
commit dac16fba6fc5
("x86/vdso: Get pvclock data from the vvar VMA instead of the fixmap")
The only user of this interface so far is kvm. This commit adds a
setter function for the pvti page and moves pvclock_pvti_cpu0_va
to pvclock, which is a more generic place to have it; and would
allow other PV clocksources to use it, such as Xen.
While moving pvclock_pvti_cpu0_va into pvclock, rename also this
function to pvclock_get_pvti_cpu0_va (including its call sites)
to be symmetric with the setter (pvclock_set_pvti_cpu0_va).
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
|
|
The guest physical memory area holding the struct pvclock_wall_clock and
struct pvclock_vcpu_time_info are shared with the hypervisor. It
periodically updates the contents of the memory.
When SEV is active, the encryption attributes from the shared memory pages
must be cleared so that both hypervisor and guest can access the data.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lkml.kernel.org/r/20171020143059.3291-18-brijesh.singh@amd.com
|
|
kvm does not support setting the RTC, so the correct result is -ENODEV.
Returning -1 will cause sync_cmos_clock to keep trying to set the RTC
every second.
Signed-off-by: Jason Gunthorpe <jgg@ziepe.ca>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
<linux/sched/clock.h>
We are going to split <linux/sched/clock.h> out of <linux/sched.h>, which
will have to be picked up from other headers and .c files.
Create a trivial placeholder <linux/sched/clock.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Pull KVM updates from Paolo Bonzini:
"4.11 is going to be a relatively large release for KVM, with a little
over 200 commits and noteworthy changes for most architectures.
ARM:
- GICv3 save/restore
- cache flushing fixes
- working MSI injection for GICv3 ITS
- physical timer emulation
MIPS:
- various improvements under the hood
- support for SMP guests
- a large rewrite of MMU emulation. KVM MIPS can now use MMU
notifiers to support copy-on-write, KSM, idle page tracking,
swapping, ballooning and everything else. KVM_CAP_READONLY_MEM is
also supported, so that writes to some memory regions can be
treated as MMIO. The new MMU also paves the way for hardware
virtualization support.
PPC:
- support for POWER9 using the radix-tree MMU for host and guest
- resizable hashed page table
- bugfixes.
s390:
- expose more features to the guest
- more SIMD extensions
- instruction execution protection
- ESOP2
x86:
- improved hashing in the MMU
- faster PageLRU tracking for Intel CPUs without EPT A/D bits
- some refactoring of nested VMX entry/exit code, preparing for live
migration support of nested hypervisors
- expose yet another AVX512 CPUID bit
- host-to-guest PTP support
- refactoring of interrupt injection, with some optimizations thrown
in and some duct tape removed.
- remove lazy FPU handling
- optimizations of user-mode exits
- optimizations of vcpu_is_preempted() for KVM guests
generic:
- alternative signaling mechanism that doesn't pound on
tsk->sighand->siglock"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (195 commits)
x86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64
x86/paravirt: Change vcp_is_preempted() arg type to long
KVM: VMX: use correct vmcs_read/write for guest segment selector/base
x86/kvm/vmx: Defer TR reload after VM exit
x86/asm/64: Drop __cacheline_aligned from struct x86_hw_tss
x86/kvm/vmx: Simplify segment_base()
x86/kvm/vmx: Get rid of segment_base() on 64-bit kernels
x86/kvm/vmx: Don't fetch the TSS base from the GDT
x86/asm: Define the kernel TSS limit in a macro
kvm: fix page struct leak in handle_vmon
KVM: PPC: Book3S HV: Disable HPT resizing on POWER9 for now
KVM: Return an error code only as a constant in kvm_get_dirty_log()
KVM: Return an error code only as a constant in kvm_get_dirty_log_protect()
KVM: Return directly after a failed copy_from_user() in kvm_vm_compat_ioctl()
KVM: x86: remove code for lazy FPU handling
KVM: race-free exit from KVM_RUN without POSIX signals
KVM: PPC: Book3S HV: Turn "KVM guest htab" message into a debug message
KVM: PPC: Book3S PR: Ratelimit copy data failure error messages
KVM: Support vCPU-based gfn->hva cache
KVM: use separate generations for each address space
...
|
|
To be used by KVM PTP driver.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Mike reported that he could trigger the WARN_ON_ONCE() in
set_sched_clock_stable() using hotplug.
This exposed a fundamental problem with the interface, we should never
mark the TSC stable if we ever find it to be unstable. Therefore
set_sched_clock_stable() is a broken interface.
The reason it existed is that not having it is a pain, it means all
relevant architecture code needs to call clear_sched_clock_stable()
where appropriate.
Of the three architectures that select HAVE_UNSTABLE_SCHED_CLOCK ia64
and parisc are trivial in that they never called
set_sched_clock_stable(), so add an unconditional call to
clear_sched_clock_stable() to them.
For x86 the story is a lot more involved, and what this patch tries to
do is ensure we preserve the status quo. So even is Cyrix or Transmeta
have usable TSC they never called set_sched_clock_stable() so they now
get an explicit mark unstable.
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9881b024b7d7 ("sched/clock: Delay switching sched_clock to stable")
Link: http://lkml.kernel.org/r/20170119133633.GB6536@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
There is no point in having an extra type for extra confusion. u64 is
unambiguous.
Conversion was done with the following coccinelle script:
@rem@
@@
-typedef u64 cycle_t;
@fix@
typedef cycle_t;
@@
-cycle_t
+u64
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When booting a kvm guest on AMD with the latest kernel the following
messages are displayed in the boot log:
tsc: Unable to calibrate against PIT
tsc: HPET/PMTIMER calibration failed
aa297292d708 ("x86/tsc: Enumerate SKL cpu_khz and tsc_khz via CPUID")
introduced a change to account for a difference in cpu and tsc frequencies for
Intel SKL processors. Before this change the native tsc set
x86_platform.calibrate_tsc to native_calibrate_tsc() which is a hardware
calibration of the tsc, and in tsc_init() executed
tsc_khz = x86_platform.calibrate_tsc();
cpu_khz = tsc_khz;
The kvm code changed x86_platform.calibrate_tsc to kvm_get_tsc_khz() and
executed the same tsc_init() function. This meant that KVM guests did not
execute the native hardware calibration function.
After aa297292d708, there are separate native calibrations for cpu_khz and
tsc_khz. The code sets x86_platform.calibrate_tsc to native_calibrate_tsc()
which is now an Intel specific calibration function, and
x86_platform.calibrate_cpu to native_calibrate_cpu() which is the "old"
native_calibrate_tsc() function (ie, the native hardware calibration
function).
tsc_init() now does
cpu_khz = x86_platform.calibrate_cpu();
tsc_khz = x86_platform.calibrate_tsc();
if (tsc_khz == 0)
tsc_khz = cpu_khz;
else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
cpu_khz = tsc_khz;
The kvm code should not call the hardware initialization in
native_calibrate_cpu(), as it isn't applicable for kvm and it didn't do that
prior to aa297292d708.
This patch resolves this issue by setting x86_platform.calibrate_cpu to
kvm_get_tsc_khz().
v2: I had originally set x86_platform.calibrate_cpu to
cpu_khz_from_cpuid(), however, pbonzini pointed out that the CPUID leaf
in that function is not available in KVM. I have changed the function
pointer to kvm_get_tsc_khz().
Fixes: aa297292d708 ("x86/tsc: Enumerate SKL cpu_khz and tsc_khz via CPUID")
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: Len Brown <len.brown@intel.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: "Christopher S. Hall" <christopher.s.hall@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Guided by grsecurity's analogous __read_only markings in arch/x86,
this applies several uses of __ro_after_init to structures that are
only updated during __init, and const for some structures that are
never updated. Additionally extends __init markings to some functions
that are only used during __init, and cleans up some missing C99 style
static initializers.
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brad Spengler <spender@grsecurity.net>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Brown <david.brown@linaro.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Emese Revfy <re.emese@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: PaX Team <pageexec@freemail.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-hardening@lists.openwall.com
Link: http://lkml.kernel.org/r/20160808232906.GA29731@www.outflux.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Adam Buchbinder <adam.buchbinder@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: trivial@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/4933029991103ae44672c82b97a20035f5c1fe4f.1449702533.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/9d37826fdc7e2d2809efe31d5345f97186859284.1449702533.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Newer KVM won't be exposing PVCLOCK_COUNTS_FROM_ZERO anymore.
The purpose of that flags was to start counting system time from 0 when
the KVM clock has been initialized.
We can achieve the same by selecting one read as the initial point.
A simple subtraction will work unless the KVM clock count overflows
earlier (has smaller width) than scheduler's cycle count. We should be
safe till x86_128.
Because PVCLOCK_COUNTS_FROM_ZERO was enabled only on new hypervisors,
setting sched clock as stable based on PVCLOCK_TSC_STABLE_BIT might
regress on older ones.
I presume we don't need to change kvm_clock_read instead of introducing
kvm_sched_clock_read. A problem could arise in case sched_clock is
expected to return the same value as get_cycles, but we should have
merged those clocks in that case.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|