Age | Commit message (Collapse) | Author |
|
Drop the second snapshot of mmu_invalidate_seq in kvm_faultin_pfn().
Before checking the mismatch of private vs. shared, mmu_invalidate_seq is
saved to fault->mmu_seq, which can be used to detect an invalidation
related to the gfn occurred, i.e. KVM will not install a mapping in page
table if fault->mmu_seq != mmu_invalidate_seq.
Currently there is a second snapshot of mmu_invalidate_seq, which may not
be same as the first snapshot in kvm_faultin_pfn(), i.e. the gfn attribute
may be changed between the two snapshots, but the gfn may be mapped in
page table without hindrance. Therefore, drop the second snapshot as it
has no obvious benefits.
Fixes: f6adeae81f35 ("KVM: x86/mmu: Handle no-slot faults at the beginning of kvm_faultin_pfn()")
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Message-ID: <20240528102234.2162763-1-tao1.su@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Print the SPTEs that correspond to the faulting GPA on an unexpected EPT
Violation #VE to help the user debug failures, e.g. to pinpoint which SPTE
didn't have SUPPRESS_VE set.
Opportunistically assert that the underlying exit reason was indeed an EPT
Violation, as the CPU has *really* gone off the rails if a #VE occurs due
to a completely unexpected exit reason.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240518000430.1118488-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Assert that KVM doesn't set a SPTE to a value that could trigger an EPT
Violation #VE on a non-MMIO SPTE, e.g. to help detect bugs even without
KVM_INTEL_PROVE_VE enabled, and to help debug actual #VE failures.
Note, this will run afoul of TDX support, which needs to reflect emulated
MMIO accesses into the guest as #VEs (which was the whole point of adding
EPT Violation #VE support in KVM). The obvious fix for that is to exempt
MMIO SPTEs, but that's annoyingly difficult now that is_mmio_spte() relies
on a per-VM value. However, resolving that conundrum is a future problem,
whereas getting KVM_INTEL_PROVE_VE healthy is a current problem.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240518000430.1118488-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use SHADOW_NONPRESENT_VALUE when zapping TDP MMU SPTEs with mmu_lock held
for read, tdp_mmu_zap_spte_atomic() was simply missed during the initial
development.
Fixes: 7f01cab84928 ("KVM: x86/mmu: Allow non-zero value for non-present SPTE and removed SPTE")
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
[sean: write changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240518000430.1118488-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM x86 misc changes for 6.10:
- Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID field, which
is unused by hardware, so that KVM can communicate its inability to map GPAs
that set bits 51:48 due to lack of 5-level paging. Guest firmware is
expected to use the information to safely remap BARs in the uppermost GPA
space, i.e to avoid placing a BAR at a legal, but unmappable, GPA.
- Use vfree() instead of kvfree() for allocations that always use vcalloc()
or __vcalloc().
- Don't completely ignore same-value writes to immutable feature MSRs, as
doing so results in KVM failing to reject accesses to MSR that aren't
supposed to exist given the vCPU model and/or KVM configuration.
- Don't mark APICv as being inhibited due to ABSENT if APICv is disabled
KVM-wide to avoid confusing debuggers (KVM will never bother clearing the
ABSENT inhibit, even if userspace enables in-kernel local APIC).
|
|
KVM x86 MMU changes for 6.10:
- Process TDP MMU SPTEs that are are zapped while holding mmu_lock for read
after replacing REMOVED_SPTE with '0' and flushing remote TLBs, which allows
vCPU tasks to repopulate the zapped region while the zapper finishes tearing
down the old, defunct page tables.
- Fix a longstanding, likely benign-in-practice race where KVM could fail to
detect a write from kvm_mmu_track_write() to a shadowed GPTE if the GPTE is
first page table being shadowed.
|
|
KVM VMX changes for 6.10:
- Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to
L1, as per the SDM.
- Move kvm_vcpu_arch's exit_qualification into x86_exception, as the field is
used only when synthesizing nested EPT violation, i.e. it's not the vCPU's
"real" exit_qualification, which is tracked elsewhere.
- Add a sanity check to assert that EPT Violations are the only sources of
nested PML Full VM-Exits.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD
LoongArch KVM changes for v6.10
1. Add ParaVirt IPI support.
2. Add software breakpoint support.
3. Add mmio trace events support.
|
|
A combination of prep work for TDX and SNP, and a clean up of the
page fault path to (hopefully) make it easier to follow the rules for
private memory, noslot faults, writes to read-only slots, etc.
|
|
WARN if __kvm_faultin_pfn() generates a "no slot" pfn, and gracefully
handle the unexpected behavior instead of continuing on with dangerous
state, e.g. tdp_mmu_map_handle_target_level() _only_ checks fault->slot,
and so could install a bogus PFN into the guest.
The existing code is functionally ok, because kvm_faultin_pfn() pre-checks
all of the cases that result in KVM_PFN_NOSLOT, but it is unnecessarily
unsafe as it relies on __gfn_to_pfn_memslot() getting the _exact_ same
memslot, i.e. not a re-retrieved pointer with KVM_MEMSLOT_INVALID set.
And checking only fault->slot would fall apart if KVM ever added a flag or
condition that forced emulation, similar to how KVM handles writes to
read-only memslots.
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240228024147.41573-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Explicitly set "pfn" and "hva" to error values in kvm_mmu_do_page_fault()
to harden KVM against using "uninitialized" values. In quotes because the
fields are actually zero-initialized, and zero is a legal value for both
page frame numbers and virtual addresses. E.g. failure to set "pfn" prior
to creating an SPTE could result in KVM pointing at physical address '0',
which is far less desirable than KVM generating a SPTE with reserved PA
bits set and thus effectively killing the VM.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240228024147.41573-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Explicitly set fault->hva to KVM_HVA_ERR_BAD when handling a "no slot"
fault to ensure that KVM doesn't use a bogus virtual address, e.g. if
there *was* a slot but it's unusable (APIC access page), or if there
really was no slot, in which case fault->hva will be '0' (which is a
legal address for x86).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240228024147.41573-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle the "no memslot" case at the beginning of kvm_faultin_pfn(), just
after the private versus shared check, so that there's no need to
repeatedly query whether or not a slot exists. This also makes it more
obvious that, except for private vs. shared attributes, the process of
faulting in a pfn simply doesn't apply to gfns without a slot.
Opportunistically stuff @fault's metadata in kvm_handle_noslot_fault() so
that it doesn't need to be duplicated in all paths that invoke
kvm_handle_noslot_fault(), and to minimize the probability of not stuffing
the right fields.
Leave the existing handle behind, but convert it to a WARN, to guard
against __kvm_faultin_pfn() unexpectedly nullifying fault->slot.
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240228024147.41573-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the checks related to the validity of an access to a memslot from the
inner __kvm_faultin_pfn() to its sole caller, kvm_faultin_pfn(). This
allows emulating accesses to the APIC access page, which don't need to
resolve a pfn, even if there is a relevant in-progress mmu_notifier
invalidation. Ditto for accesses to KVM internal memslots from L2, which
KVM also treats as emulated MMIO.
More importantly, this will allow for future cleanup by having the
"no memslot" case bail from kvm_faultin_pfn() very early on.
Go to rather extreme and gross lengths to make the change a glorified
nop, e.g. call into __kvm_faultin_pfn() even when there is no slot, as the
related code is very subtle. E.g. fault->slot can be nullified if it
points at the APIC access page, some flows in KVM x86 expect fault->pfn
to be KVM_PFN_NOSLOT, while others check only fault->slot, etc.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240228024147.41573-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Explicitly detect and disallow private accesses to emulated MMIO in
kvm_handle_noslot_fault() instead of relying on kvm_faultin_pfn_private()
to perform the check. This will allow the page fault path to go straight
to kvm_handle_noslot_fault() without bouncing through __kvm_faultin_pfn().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240228024147.41573-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Allow mapping KVM's internal memslots used for EPT without unrestricted
guest into L2, i.e. allow mapping the hidden TSS and the identity mapped
page tables into L2. Unlike the APIC access page, there is no correctness
issue with letting L2 access the "hidden" memory. Allowing these memslots
to be mapped into L2 fixes a largely theoretical bug where KVM could
incorrectly emulate subsequent _L1_ accesses as MMIO, and also ensures
consistent KVM behavior for L2.
If KVM is using TDP, but L1 is using shadow paging for L2, then routing
through kvm_handle_noslot_fault() will incorrectly cache the gfn as MMIO,
and create an MMIO SPTE. Creating an MMIO SPTE is ok, but only because
kvm_mmu_page_role.guest_mode ensure KVM uses different roots for L1 vs.
L2. But vcpu->arch.mmio_gfn will remain valid, and could cause KVM to
incorrectly treat an L1 access to the hidden TSS or identity mapped page
tables as MMIO.
Furthermore, forcing L2 accesses to be treated as "no slot" faults doesn't
actually prevent exposing KVM's internal memslots to L2, it simply forces
KVM to emulate the access. In most cases, that will trigger MMIO,
amusingly due to filling vcpu->arch.mmio_gfn, but also because
vcpu_is_mmio_gpa() unconditionally treats APIC accesses as MMIO, i.e. APIC
accesses are ok. But the hidden TSS and identity mapped page tables could
go either way (MMIO or access the private memslot's backing memory).
Alternatively, the inconsistent emulator behavior could be addressed by
forcing MMIO emulation for L2 access to all internal memslots, not just to
the APIC. But that's arguably less correct than letting L2 access the
hidden TSS and identity mapped page tables, not to mention that it's
*extremely* unlikely anyone cares what KVM does in this case. From L1's
perspective there is R/W memory at those memslots, the memory just happens
to be initialized with non-zero data. Making the memory disappear when it
is accessed by L2 is far more magical and arbitrary than the memory
existing in the first place.
The APIC access page is special because KVM _must_ emulate the access to
do the right thing (emulate an APIC access instead of reading/writing the
APIC access page). And despite what commit 3a2936dedd20 ("kvm: mmu: Don't
expose private memslots to L2") said, it's not just necessary when L1 is
accelerating L2's virtual APIC, it's just as important (likely *more*
imporant for correctness when L1 is passing through its own APIC to L2.
Fixes: 3a2936dedd20 ("kvm: mmu: Don't expose private memslots to L2")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240228024147.41573-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Prioritize private vs. shared gfn attribute checks above slot validity
checks to ensure a consistent userspace ABI. E.g. as is, KVM will exit to
userspace if there is no memslot, but emulate accesses to the APIC access
page even if the attributes mismatch.
Fixes: 8dd2eee9d526 ("KVM: x86/mmu: Handle page fault for private memory")
Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: Chao Peng <chao.p.peng@linux.intel.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240228024147.41573-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
WARN and skip the emulated MMIO fastpath if a private, reserved page fault
is encountered, as private+reserved should be an impossible combination
(KVM should never create an MMIO SPTE for a private access).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240228024147.41573-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Right now the error code is not used when an async page fault is completed.
This is not a problem in the current code, but it is untidy. For protected
VMs, we will also need to check that the page attributes match the current
state of the page, because asynchronous page faults can only occur on
shared pages (private pages go through kvm_faultin_pfn_private() instead of
__gfn_to_pfn_memslot()).
Start by piping the error code from kvm_arch_setup_async_pf() to
kvm_arch_async_page_ready() via the architecture-specific async page
fault data. For now, it can be used to assert that there are no
async page faults on private memory.
Extracted from a patch by Isaku Yamahata.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add and use a synthetic, KVM-defined page fault error code to indicate
whether a fault is to private vs. shared memory. TDX and SNP have
different mechanisms for reporting private vs. shared, and KVM's
software-protected VMs have no mechanism at all. Usurp an error code
flag to avoid having to plumb another parameter to kvm_mmu_page_fault()
and friends.
Alternatively, KVM could borrow AMD's PFERR_GUEST_ENC_MASK, i.e. set it
for TDX and software-protected VMs as appropriate, but that would require
*clearing* the flag for SEV and SEV-ES VMs, which support encrypted
memory at the hardware layer, but don't utilize private memory at the
KVM layer.
Opportunistically add a comment to call out that the logic for software-
protected VMs is (and was before this commit) broken for nested MMUs, i.e.
for nested TDP, as the GPA is an L2 GPA. Punt on trying to play nice with
nested MMUs as there is a _lot_ of functionality that simply doesn't work
for software-protected VMs, e.g. all of the paths where KVM accesses guest
memory need to be updated to be aware of private vs. shared memory.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20240228024147.41573-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
WARN if bits 63:32 are non-zero when handling an intercepted legacy #PF,
as the error code for #PF is limited to 32 bits (and in practice, 16 bits
on Intel CPUS). This behavior is architectural, is part of KVM's ABI
(see kvm_vcpu_events.error_code), and is explicitly documented as being
preserved for intecerpted #PF in both the APM:
The error code saved in EXITINFO1 is the same as would be pushed onto
the stack by a non-intercepted #PF exception in protected mode.
and even more explicitly in the SDM as VMCS.VM_EXIT_INTR_ERROR_CODE is a
32-bit field.
Simply drop the upper bits if hardware provides garbage, as spurious
information should do no harm (though in all likelihood hardware is buggy
and the kernel is doomed).
Handling all upper 32 bits in the #PF path will allow moving the sanity
check on synthetic checks from kvm_mmu_page_fault() to npf_interception(),
which in turn will allow deriving PFERR_PRIVATE_ACCESS from AMD's
PFERR_GUEST_ENC_MASK without running afoul of the sanity check.
Note, this is also why Intel uses bit 15 for SGX (highest bit on Intel CPUs)
and AMD uses bit 31 for RMP (highest bit on AMD CPUs); using the highest
bit minimizes the probability of a collision with the "other" vendor,
without needing to plumb more bits through microcode.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240228024147.41573-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Plumb the full 64-bit error code throughout the page fault handling code
so that KVM can use the upper 32 bits, e.g. SNP's PFERR_GUEST_ENC_MASK
will be used to determine whether or not a fault is private vs. shared.
Note, passing the 64-bit error code to FNAME(walk_addr)() does NOT change
the behavior of permission_fault() when invoked in the page fault path, as
KVM explicitly clears PFERR_IMPLICIT_ACCESS in kvm_mmu_page_fault().
Continue passing '0' from the async #PF worker, as guest_memfd and thus
private memory doesn't support async page faults.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
[mdr: drop references/changes on rebase, update commit message]
Signed-off-by: Michael Roth <michael.roth@amd.com>
[sean: drop truncation in call to FNAME(walk_addr)(), rewrite changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-ID: <20240228024147.41573-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the sanity check that hardware never sets bits that collide with KVM-
define synthetic bits from kvm_mmu_page_fault() to npf_interception(),
i.e. make the sanity check #NPF specific. The legacy #PF path already
WARNs if _any_ of bits 63:32 are set, and the error code that comes from
VMX's EPT Violatation and Misconfig is 100% synthesized (KVM morphs VMX's
EXIT_QUALIFICATION into error code flags).
Add a compile-time assert in the legacy #PF handler to make sure that KVM-
define flags are covered by its existing sanity check on the upper bits.
Opportunistically add a description of PFERR_IMPLICIT_ACCESS, since we
are removing the comment that defined it.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20240228024147.41573-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Exit to userspace with -EFAULT / KVM_EXIT_MEMORY_FAULT if a private fault
triggers emulation of any kind, as KVM doesn't currently support emulating
access to guest private memory. Practically speaking, private faults and
emulation are already mutually exclusive, but there are many flow that
can result in KVM returning RET_PF_EMULATE, and adding one last check
to harden against weird, unexpected combinations and/or KVM bugs is
inexpensive.
Suggested-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240228024147.41573-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add full memory barriers in kvm_mmu_track_write() and account_shadowed()
to plug a (very, very theoretical) race where kvm_mmu_track_write() could
miss a 0->1 transition of indirect_shadow_pages and fail to zap relevant,
*stale* SPTEs.
Without the barriers, because modern x86 CPUs allow (per the SDM):
Reads may be reordered with older writes to different locations but not
with older writes to the same location.
it's possible that the following could happen (terms of values being
visible/resolved):
CPU0 CPU1
read memory[gfn] (=Y)
memory[gfn] Y=>X
read indirect_shadow_pages (=0)
indirect_shadow_pages 0=>1
or conversely:
CPU0 CPU1
indirect_shadow_pages 0=>1
read indirect_shadow_pages (=0)
read memory[gfn] (=Y)
memory[gfn] Y=>X
E.g. in the below scenario, CPU0 could fail to zap SPTEs, and CPU1 could
fail to retry the faulting instruction, resulting in a KVM entering the
guest with a stale SPTE (map PTE=X instead of PTE=Y).
PTE = X;
CPU0:
emulator_write_phys()
PTE = Y
kvm_page_track_write()
kvm_mmu_track_write()
// memory barrier missing here
if (indirect_shadow_pages)
zap();
CPU1:
FNAME(page_fault)
FNAME(walk_addr)
FNAME(walk_addr_generic)
gw->pte = PTE; // X
FNAME(fetch)
kvm_mmu_get_child_sp
kvm_mmu_get_shadow_page
__kvm_mmu_get_shadow_page
kvm_mmu_alloc_shadow_page
account_shadowed
indirect_shadow_pages++
// memory barrier missing here
if (FNAME(gpte_changed)) // if (PTE == X)
return RET_PF_RETRY;
In practice, this bug likely cannot be observed as both the 0=>1
transition and reordering of this scope are extremely rare occurrences.
Note, if the cost of the barrier (which is simply a locked ADD, see commit
450cbdd0125c ("locking/x86: Use LOCK ADD for smp_mb() instead of MFENCE")),
is problematic, KVM could avoid the barrier by bailing earlier if checking
kvm_memslots_have_rmaps() is false. But the odds of the barrier being
problematic is extremely low, *and* the odds of the extra checks being
meaningfully faster overall is also low.
Link: https://lore.kernel.org/r/20240423193114.2887673-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
TDX will use a different shadow PTE entry value for MMIO from VMX. Add a
member to kvm_arch and track value for MMIO per-VM instead of a global
variable. By using the per-VM EPT entry value for MMIO, the existing VMX
logic is kept working. Introduce a separate setter function so that guest
TD can use a different value later.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <229a18434e5d83f45b1fcd7bf1544d79db1becb6.1705965635.git.isaku.yamahata@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
To make use of the same value of shadow_mmio_mask and shadow_present_mask
for TDX and VMX, add Suppress-VE bit to shadow_mmio_mask and
shadow_present_mask so that they can be common for both VMX and TDX.
TDX will require shadow_mmio_mask and shadow_present_mask to include
VMX_SUPPRESS_VE for shared GPA so that EPT violation is triggered for
shared GPA. For VMX, VMX_SUPPRESS_VE doesn't matter for MMIO because the
spte value is defined so as to cause EPT misconfig.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <97cc616b3563cd8277be91aaeb3e14bce23c3649.1705965635.git.isaku.yamahata@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
For TD guest, the current way to emulate MMIO doesn't work any more, as KVM
is not able to access the private memory of TD guest and do the emulation.
Instead, TD guest expects to receive #VE when it accesses the MMIO and then
it can explicitly make hypercall to KVM to get the expected information.
To achieve this, the TDX module always enables "EPT-violation #VE" in the
VMCS control. And accordingly, for the MMIO spte for the shared GPA,
1. KVM needs to set "suppress #VE" bit for the non-present SPTE so that EPT
violation happens on TD accessing MMIO range. 2. On EPT violation, KVM
sets the MMIO spte to clear "suppress #VE" bit so the TD guest can receive
the #VE instead of EPT misconfiguration unlike VMX case. For the shared GPA
that is not populated yet, EPT violation need to be triggered when TD guest
accesses such shared GPA. The non-present SPTE value for shared GPA should
set "suppress #VE" bit.
Add "suppress #VE" bit (bit 63) to SHADOW_NONPRESENT_VALUE and
REMOVED_SPTE. Unconditionally set the "suppress #VE" bit (which is bit 63)
for both AMD and Intel as: 1) AMD hardware doesn't use this bit when
present bit is off; 2) for normal VMX guest, KVM never enables the
"EPT-violation #VE" in VMCS control and "suppress #VE" bit is ignored by
hardware.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <a99cb866897c7083430dce7f24c63b17d7121134.1705965635.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The TDX support will need the "suppress #VE" bit (bit 63) set as the
initial value for SPTE. To reduce code change size, introduce a new macro
SHADOW_NONPRESENT_VALUE for the initial value for the shadow page table
entry (SPTE) and replace hard-coded value 0 for it. Initialize shadow page
tables with their value.
The plan is to unconditionally set the "suppress #VE" bit for both AMD and
Intel as: 1) AMD hardware uses the bit 63 as NX for present SPTE and
ignored for non-present SPTE; 2) for conventional VMX guests, KVM never
enables the "EPT-violation #VE" in VMCS control and "suppress #VE" bit is
ignored by hardware.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <acdf09bf60cad12c495005bf3495c54f6b3069c9.1705965635.git.isaku.yamahata@intel.com>
[Remove unnecessary CONFIG_X86_64 check. - Paolo]
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
- Fix a mostly benign bug in the gfn_to_pfn_cache infrastructure where KVM
would allow userspace to refresh the cache with a bogus GPA. The bug has
existed for quite some time, but was exposed by a new sanity check added in
6.9 (to ensure a cache is either GPA-based or HVA-based).
- Drop an unused param from gfn_to_pfn_cache_invalidate_start() that got left
behind during a 6.9 cleanup.
- Disable support for virtualizing adaptive PEBS, as KVM's implementation is
architecturally broken and can leak host LBRs to the guest.
- Fix a bug where KVM neglects to set the enable bits for general purpose
counters in PERF_GLOBAL_CTRL when initializing the virtual PMU. Both Intel
and AMD architectures require the bits to be set at RESET in order for v2
PMUs to be backwards compatible with software that was written for v1 PMUs,
i.e. for software that will never manually set the global enables.
- Disable LBR virtualization on CPUs that don't support LBR callstacks, as
KVM unconditionally uses PERF_SAMPLE_BRANCH_CALL_STACK when creating the
virtual LBR perf event, i.e. KVM will always fail to create LBR events on
such CPUs.
- Fix a math goof in x86's hugepage logic for KVM_SET_MEMORY_ATTRIBUTES that
results in an array overflow (detected by KASAN).
- Fix a flaw in the max_guest_memory selftest that results in it exhausting
the supply of ucall structures when run with more than 256 vCPUs.
- Mark KVM_MEM_READONLY as supported for RISC-V in set_memory_region_test.
- Fix a bug where KVM incorrectly thinks a TDP MMU root is an indirect shadow
root due KVM unnecessarily clobbering root_role.direct when userspace sets
guest CPUID.
- Fix a dirty logging bug in the where KVM fails to write-protect TDP MMU
SPTEs used for L2 if Page-Modification Logging is enabled for L1 and the L1
hypervisor is NOT using EPT (if nEPT is enabled, KVM doesn't use the TDP MMU
to run L2). For simplicity, KVM always disables PML when running L2, but
the TDP MMU wasn't accounting for root-specific conditions that force write-
protect based dirty logging.
|
|
Drop the "If AD bits are enabled/disabled" verbiage from the comments
above kvm_tdp_mmu_clear_dirty_{slot,pt_masked}() since TDP MMU SPTEs may
need to be write-protected even when A/D bits are enabled. i.e. These
comments aren't technically correct.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20240315230541.1635322-4-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the comments above clear_dirty_gfn_range() and
clear_dirty_pt_masked(), since each is word-for-word identical to the
comment above their parent function.
Leave the comment on the parent functions since they are APIs called by
the KVM/x86 MMU.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20240315230541.1635322-3-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Check kvm_mmu_page_ad_need_write_protect() when deciding whether to
write-protect or clear D-bits on TDP MMU SPTEs, so that the TDP MMU
accounts for any role-specific reasons for disabling D-bit dirty logging.
Specifically, TDP MMU SPTEs must be write-protected when the TDP MMU is
being used to run an L2 (i.e. L1 has disabled EPT) and PML is enabled.
KVM always disables PML when running L2, even when L1 and L2 GPAs are in
the some domain, so failing to write-protect TDP MMU SPTEs will cause
writes made by L2 to not be reflected in the dirty log.
Reported-by: syzbot+900d58a45dcaab9e4821@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=900d58a45dcaab9e4821
Fixes: 5982a5392663 ("KVM: x86/mmu: Use kvm_ad_enabled() to determine if TDP MMU SPTEs need wrprot")
Cc: stable@vger.kernel.org
Cc: Vipin Sharma <vipinsh@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20240315230541.1635322-2-dmatlack@google.com
[sean: massage shortlog and changelog, tweak ternary op formatting]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Set kvm_mmu_page_role.invalid to mark the various MMU root_roles invalid
during CPUID update in order to force a refresh, instead of zeroing out
the entire role. This fixes a bug where kvm_mmu_free_roots() incorrectly
thinks a root is indirect, i.e. not a TDP MMU, due to "direct" being
zeroed, which in turn causes KVM to take mmu_lock for write instead of
read.
Note, paving over the entire role was largely unintentional, commit
7a458f0e1ba1 ("KVM: x86/mmu: remove extended bits from mmu_role, rename
field") simply missed that "invalid" could be set.
Fixes: 576a15de8d29 ("KVM: x86/mmu: Free TDP MMU roots while holding mmy_lock for read")
Reported-by: syzbot+dc308fcfcd53f987de73@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/0000000000009b38080614c49bdb@google.com
Cc: Phi Nguyen <phind.uet@gmail.com>
Link: https://lore.kernel.org/r/20240408231115.1387279-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
The .change_pte() MMU notifier callback was intended as an
optimization. The original point of it was that KSM could tell KVM to flip
its secondary PTE to a new location without having to first zap it. At
the time there was also an .invalidate_page() callback; both of them were
*not* bracketed by calls to mmu_notifier_invalidate_range_{start,end}(),
and .invalidate_page() also doubled as a fallback implementation of
.change_pte().
Later on, however, both callbacks were changed to occur within an
invalidate_range_start/end() block.
In the case of .change_pte(), commit 6bdb913f0a70 ("mm: wrap calls to
set_pte_at_notify with invalidate_range_start and invalidate_range_end",
2012-10-09) did so to remove the fallback from .invalidate_page() to
.change_pte() and allow sleepable .invalidate_page() hooks.
This however made KVM's usage of the .change_pte() callback completely
moot, because KVM unmaps the sPTEs during .invalidate_range_start()
and therefore .change_pte() has no hope of finding a sPTE to change.
Drop the generic KVM code that dispatches to kvm_set_spte_gfn(), as
well as all the architecture specific implementations.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Anup Patel <anup@brainfault.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Reviewed-by: Bibo Mao <maobibo@loongson.cn>
Message-ID: <20240405115815.3226315-2-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add kvm_vcpu_arch.is_amd_compatible to cache if a vCPU's vendor model is
compatible with AMD, i.e. if the vCPU vendor is AMD or Hygon, along with
helpers to check if a vCPU is compatible AMD vs. Intel. To handle Intel
vs. AMD behavior related to masking the LVTPC entry, KVM will need to
check for vendor compatibility on every PMI injection, i.e. querying for
AMD will soon be a moderately hot path.
Note! This subtly (or maybe not-so-subtly) makes "Intel compatible" KVM's
default behavior, both if userspace omits (or never sets) CPUID 0x0 and if
userspace sets a completely unknown vendor. One could argue that KVM
should treat such vCPUs as not being compatible with Intel *or* AMD, but
that would add useless complexity to KVM.
KVM needs to do *something* in the face of vendor specific behavior, and
so unless KVM conjured up a magic third option, choosing to treat unknown
vendors as neither Intel nor AMD means that checks on AMD compatibility
would yield Intel behavior, and checks for Intel compatibility would yield
AMD behavior. And that's far worse as it would effectively yield random
behavior depending on whether KVM checked for AMD vs. Intel vs. !AMD vs.
!Intel. And practically speaking, all x86 CPUs follow either Intel or AMD
architecture, i.e. "supporting" an unknown third architecture adds no
value.
Deliberately don't convert any of the existing guest_cpuid_is_intel()
checks, as the Intel side of things is messier due to some flows explicitly
checking for exactly vendor==Intel, versus some flows assuming anything
that isn't "AMD compatible" gets Intel behavior. The Intel code will be
cleaned up in the future.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240405235603.1173076-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
commit 37b2a6510a48("KVM: use __vcalloc for very large allocations")
replaced kvzalloc()/kvcalloc() with vcalloc(), but didn't replace kvfree()
with vfree().
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Link: https://lore.kernel.org/r/20240131012357.53563-1-lirongqing@baidu.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Use the GuestPhysBits field in CPUID.0x80000008 to communicate the max
mappable GPA to userspace, i.e. the max GPA that is addressable by the
CPU itself. Typically this is identical to the max effective GPA, except
in the case where the CPU supports MAXPHYADDR > 48 but does not support
5-level TDP (the CPU consults bits 51:48 of the GPA only when walking the
fifth level TDP page table entry).
Enumerating the max mappable GPA via CPUID will allow guest firmware to
map resources like PCI bars in the highest possible address space, while
ensuring that the GPA is addressable by the CPU. Without precise
knowledge about the max mappable GPA, the guest must assume that 5-level
paging is unsupported and thus restrict its mappings to the lower 48 bits.
Advertise the max mappable GPA via KVM_GET_SUPPORTED_CPUID as userspace
doesn't have easy access to whether or not 5-level paging is supported,
and to play nice with userspace VMMs that reflect the supported CPUID
directly into the guest.
AMD's APM (3.35) defines GuestPhysBits (EAX[23:16]) as:
Maximum guest physical address size in bits. This number applies
only to guests using nested paging. When this field is zero, refer
to the PhysAddrSize field for the maximum guest physical address size.
Tom Lendacky confirmed that the purpose of GuestPhysBits is software use
and KVM can use it as described above. Real hardware always returns zero.
Leave GuestPhysBits as '0' when TDP is disabled in order to comply with
the APM's statement that GuestPhysBits "applies only to guest using nested
paging". As above, guest firmware will likely create suboptimal mappings,
but that is a very minor issue and not a functional concern.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20240313125844.912415-3-kraxel@redhat.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the exit_qualification field that is used to track information about
in-flight nEPT violations from "struct kvm_vcpu_arch" to "x86_exception",
i.e. associate the information with the actual nEPT violation instead of
the vCPU. To handle bits that are pulled from vmcs.EXIT_QUALIFICATION,
i.e. that are propagated from the "original" EPT violation VM-Exit, simply
grab them from the VMCS on-demand when injecting a nEPT Violation or a PML
Full VM-exit.
Aside from being ugly, having an exit_qualification field in kvm_vcpu_arch
is outright dangerous, e.g. see commit d7f0a00e438d ("KVM: VMX: Report
up-to-date exit qualification to userspace").
Opportunstically add a comment to call out that PML Full and EPT Violation
VM-Exits use the same bit to report NMI blocking information.
Link: https://lore.kernel.org/r/20240209221700.393189-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When zapping TDP MMU SPTEs under read-lock, processes zapped SPTEs *after*
flushing TLBs and after replacing the special REMOVED_SPTE with '0'.
When zapping an SPTE that points to a page table, processing SPTEs after
flushing TLBs minimizes contention on the child SPTEs (e.g. vCPUs won't
hit write-protection faults via stale, read-only child SPTEs), and
processing after replacing REMOVED_SPTE with '0' minimizes the amount of
time vCPUs will be blocked by the REMOVED_SPTE.
Processing SPTEs after setting the SPTE to '0', i.e. in parallel with the
SPTE potentially being replacing with a new SPTE, is safe because KVM does
not depend on completing the processing before a new SPTE is installed, and
the processing is done on a subset of the page tables that is disconnected
from the root, and thus unreachable by other tasks (after the TLB flush).
KVM already relies on similar logic, as kvm_mmu_zap_all_fast() can result
in KVM processing all SPTEs in a given root after vCPUs create mappings in
a new root.
In VMs with a large (400+) number of vCPUs, it can take KVM multiple
seconds to process a 1GiB region mapped with 4KiB entries, e.g. when
disabling dirty logging in a VM backed by 1GiB HugeTLB. During those
seconds, if a vCPU accesses the 1GiB region being zapped it will be
stalled until KVM finishes processing the SPTE and replaces the
REMOVED_SPTE with 0.
Re-ordering the processing does speed up the atomic-zaps somewhat, but
the main benefit is avoiding blocking vCPU threads.
Before:
$ ./dirty_log_perf_test -s anonymous_hugetlb_1gb -v 416 -b 1G -e
...
Disabling dirty logging time: 509.765146313s
$ ./funclatency -m tdp_mmu_zap_spte_atomic
msec : count distribution
0 -> 1 : 0 | |
2 -> 3 : 0 | |
4 -> 7 : 0 | |
8 -> 15 : 0 | |
16 -> 31 : 0 | |
32 -> 63 : 0 | |
64 -> 127 : 0 | |
128 -> 255 : 8 |** |
256 -> 511 : 68 |****************** |
512 -> 1023 : 129 |********************************** |
1024 -> 2047 : 151 |****************************************|
2048 -> 4095 : 60 |*************** |
After:
$ ./dirty_log_perf_test -s anonymous_hugetlb_1gb -v 416 -b 1G -e
...
Disabling dirty logging time: 336.516838548s
$ ./funclatency -m tdp_mmu_zap_spte_atomic
msec : count distribution
0 -> 1 : 0 | |
2 -> 3 : 0 | |
4 -> 7 : 0 | |
8 -> 15 : 0 | |
16 -> 31 : 0 | |
32 -> 63 : 0 | |
64 -> 127 : 0 | |
128 -> 255 : 12 |** |
256 -> 511 : 166 |****************************************|
512 -> 1023 : 101 |************************ |
1024 -> 2047 : 137 |********************************* |
Note, KVM's processing of collapsible SPTEs is still extremely slow and
can be improved. For example, a significant amount of time is spent
calling kvm_set_pfn_{accessed,dirty}() for every last-level SPTE, even
when processing SPTEs that all map the same folio. But avoiding blocking
vCPUs and contending SPTEs is valuable regardless of how fast KVM can
process collapsible SPTEs.
Link: https://lore.kernel.org/all/20240320005024.3216282-1-seanjc@google.com
Cc: Vipin Sharma <vipinsh@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Vipin Sharma <vipinsh@google.com>
Link: https://lore.kernel.org/r/20240307194059.1357377-1-dmatlack@google.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Fix KVM_SET_MEMORY_ATTRIBUTES to not overflow lpage_info array and trigger
KASAN splat, as seen in the private_mem_conversions_test selftest.
When memory attributes are set on a GFN range, that range will have
specific properties applied to the TDP. A huge page cannot be used when
the attributes are inconsistent, so they are disabled for those the
specific huge pages. For internal KVM reasons, huge pages are also not
allowed to span adjacent memslots regardless of whether the backing memory
could be mapped as huge.
What GFNs support which huge page sizes is tracked by an array of arrays
'lpage_info' on the memslot, of ‘kvm_lpage_info’ structs. Each index of
lpage_info contains a vmalloc allocated array of these for a specific
supported page size. The kvm_lpage_info denotes whether a specific huge
page (GFN and page size) on the memslot is supported. These arrays include
indices for unaligned head and tail huge pages.
Preventing huge pages from spanning adjacent memslot is covered by
incrementing the count in head and tail kvm_lpage_info when the memslot is
allocated, but disallowing huge pages for memory that has mixed attributes
has to be done in a more complicated way. During the
KVM_SET_MEMORY_ATTRIBUTES ioctl KVM updates lpage_info for each memslot in
the range that has mismatched attributes. KVM does this a memslot at a
time, and marks a special bit, KVM_LPAGE_MIXED_FLAG, in the kvm_lpage_info
for any huge page. This bit is essentially a permanently elevated count.
So huge pages will not be mapped for the GFN at that page size if the
count is elevated in either case: a huge head or tail page unaligned to
the memslot or if KVM_LPAGE_MIXED_FLAG is set because it has mixed
attributes.
To determine whether a huge page has consistent attributes, the
KVM_SET_MEMORY_ATTRIBUTES operation checks an xarray to make sure it
consistently has the incoming attribute. Since level - 1 huge pages are
aligned to level huge pages, it employs an optimization. As long as the
level - 1 huge pages are checked first, it can just check these and assume
that if each level - 1 huge page contained within the level sized huge
page is not mixed, then the level size huge page is not mixed. This
optimization happens in the helper hugepage_has_attrs().
Unfortunately, although the kvm_lpage_info array representing page size
'level' will contain an entry for an unaligned tail page of size level,
the array for level - 1 will not contain an entry for each GFN at page
size level. The level - 1 array will only contain an index for any
unaligned region covered by level - 1 huge page size, which can be a
smaller region. So this causes the optimization to overflow the level - 1
kvm_lpage_info and perform a vmalloc out of bounds read.
In some cases of head and tail pages where an overflow could happen,
callers skip the operation completely as KVM_LPAGE_MIXED_FLAG is not
required to prevent huge pages as discussed earlier. But for memslots that
are smaller than the 1GB page size, it does call hugepage_has_attrs(). In
this case the huge page is both the head and tail page. The issue can be
observed simply by compiling the kernel with CONFIG_KASAN_VMALLOC and
running the selftest “private_mem_conversions_test”, which produces the
output like the following:
BUG: KASAN: vmalloc-out-of-bounds in hugepage_has_attrs+0x7e/0x110
Read of size 4 at addr ffffc900000a3008 by task private_mem_con/169
Call Trace:
dump_stack_lvl
print_report
? __virt_addr_valid
? hugepage_has_attrs
? hugepage_has_attrs
kasan_report
? hugepage_has_attrs
hugepage_has_attrs
kvm_arch_post_set_memory_attributes
kvm_vm_ioctl
It is a little ambiguous whether the unaligned head page (in the bug case
also the tail page) should be expected to have KVM_LPAGE_MIXED_FLAG set.
It is not functionally required, as the unaligned head/tail pages will
already have their kvm_lpage_info count incremented. The comments imply
not setting it on unaligned head pages is intentional, so fix the callers
to skip trying to set KVM_LPAGE_MIXED_FLAG in this case, and in doing so
not call hugepage_has_attrs().
Cc: stable@vger.kernel.org
Fixes: 90b4fe17981e ("KVM: x86: Disallow hugepages when memory attributes are mixed")
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Chao Peng <chao.p.peng@linux.intel.com>
Link: https://lore.kernel.org/r/20240314212902.2762507-1-rick.p.edgecombe@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Pull kvm updates from Paolo Bonzini:
"S390:
- Changes to FPU handling came in via the main s390 pull request
- Only deliver to the guest the SCLP events that userspace has
requested
- More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same)
- Fix selftests undefined behavior
x86:
- Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can
be programmed *using the architectural encoding*. The enumeration
does NOT say anything about the encoding when the CPU doesn't
report support the event *in general*. It might support it, and it
might support it using the same encoding that made it into the
architectural PMU spec
- Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly
emulates RDMPC, counter availability, and a variety of other
PMC-related behaviors that depend on guest CPUID and therefore are
easier to validate with selftests than with custom guests (aka
kvm-unit-tests)
- Zero out PMU state on AMD if the virtual PMU is disabled, it does
not cause any bug but it wastes time in various cases where KVM
would check if a PMC event needs to be synthesized
- Optimize triggering of emulated events, with a nice ~10%
performance improvement in VM-Exit microbenchmarks when a vPMU is
exposed to the guest
- Tighten the check for "PMI in guest" to reduce false positives if
an NMI arrives in the host while KVM is handling an IRQ VM-Exit
- Fix a bug where KVM would report stale/bogus exit qualification
information when exiting to userspace with an internal error exit
code
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support
- Rework TDP MMU root unload, free, and alloc to run with mmu_lock
held for read, e.g. to avoid serializing vCPUs when userspace
deletes a memslot
- Tear down TDP MMU page tables at 4KiB granularity (used to be
1GiB). KVM doesn't support yielding in the middle of processing a
zap, and 1GiB granularity resulted in multi-millisecond lags that
are quite impolite for CONFIG_PREEMPT kernels
- Allocate write-tracking metadata on-demand to avoid the memory
overhead when a kernel is built with i915 virtualization support
but the workloads use neither shadow paging nor i915 virtualization
- Explicitly initialize a variety of on-stack variables in the
emulator that triggered KMSAN false positives
- Fix the debugregs ABI for 32-bit KVM
- Rework the "force immediate exit" code so that vendor code
ultimately decides how and when to force the exit, which allowed
some optimization for both Intel and AMD
- Fix a long-standing bug where kvm_has_noapic_vcpu could be left
elevated if vCPU creation ultimately failed, causing extra
unnecessary work
- Cleanup the logic for checking if the currently loaded vCPU is
in-kernel
- Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere
in the kernel) are detected earlier and are less likely to hang the
kernel
x86 Xen emulation:
- Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the gpa
but the underlying host virtual address remains the same
- When possible, use a single host TSC value when computing the
deadline for Xen timers in order to improve the accuracy of the
timer emulation
- Inject pending upcall events when the vCPU software-enables its
APIC to fix a bug where an upcall can be lost (and to follow Xen's
behavior)
- Fall back to the slow path instead of warning if "fast" IRQ
delivery of Xen events fails, e.g. if the guest has aliased xAPIC
IDs
RISC-V:
- Support exception and interrupt handling in selftests
- New self test for RISC-V architectural timer (Sstc extension)
- New extension support (Ztso, Zacas)
- Support userspace emulation of random number seed CSRs
ARM:
- Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
- Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
- Conversion of KVM's representation of LPIs to an xarray, utilized
to address serialization some of the serialization on the LPI
injection path
- Support for _architectural_ VHE-only systems, advertised through
the absence of FEAT_E2H0 in the CPU's ID register
- Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
- Set reserved bits as zero in CPUCFG
- Start SW timer only when vcpu is blocking
- Do not restart SW timer when it is expired
- Remove unnecessary CSR register saving during enter guest
- Misc cleanups and fixes as usual
Generic:
- Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
always true on all architectures except MIPS (where Kconfig
determines the available depending on CPU capabilities). It is
replaced either by an architecture-dependent symbol for MIPS, and
IS_ENABLED(CONFIG_KVM) everywhere else
- Factor common "select" statements in common code instead of
requiring each architecture to specify it
- Remove thoroughly obsolete APIs from the uapi headers
- Move architecture-dependent stuff to uapi/asm/kvm.h
- Always flush the async page fault workqueue when a work item is
being removed, especially during vCPU destruction, to ensure that
there are no workers running in KVM code when all references to
KVM-the-module are gone, i.e. to prevent a very unlikely
use-after-free if kvm.ko is unloaded
- Grab a reference to the VM's mm_struct in the async #PF worker
itself instead of gifting the worker a reference, so that there's
no need to remember to *conditionally* clean up after the worker
Selftests:
- Reduce boilerplate especially when utilize selftest TAP
infrastructure
- Add basic smoke tests for SEV and SEV-ES, along with a pile of
library support for handling private/encrypted/protected memory
- Fix benign bugs where tests neglect to close() guest_memfd files"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
selftests: kvm: remove meaningless assignments in Makefiles
KVM: riscv: selftests: Add Zacas extension to get-reg-list test
RISC-V: KVM: Allow Zacas extension for Guest/VM
KVM: riscv: selftests: Add Ztso extension to get-reg-list test
RISC-V: KVM: Allow Ztso extension for Guest/VM
RISC-V: KVM: Forward SEED CSR access to user space
KVM: riscv: selftests: Add sstc timer test
KVM: riscv: selftests: Change vcpu_has_ext to a common function
KVM: riscv: selftests: Add guest helper to get vcpu id
KVM: riscv: selftests: Add exception handling support
LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
LoongArch: KVM: Do not restart SW timer when it is expired
LoongArch: KVM: Start SW timer only when vcpu is blocking
LoongArch: KVM: Set reserved bits as zero in CPUCFG
KVM: selftests: Explicitly close guest_memfd files in some gmem tests
KVM: x86/xen: fix recursive deadlock in timer injection
KVM: pfncache: simplify locking and make more self-contained
KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
KVM: x86/xen: improve accuracy of Xen timers
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series
"mm: zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is
hotplugged as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving
policy wherein we allocate memory across nodes in a weighted fashion
rather than uniformly. This is beneficial in heterogeneous memory
environments appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the
process has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown
situations. The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings"
Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's
series "Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page
faults. He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction
test", Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and
refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
in our handling of DAX on archiecctures which have virtually aliasing
data caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides
dramatic improvements in worst-case mmap_lock hold times during
certain userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability
improvements in his series "Mitigate a vmap lock contention". It
realizes a 12x improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging
of large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages()
to an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which
are configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM
Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
mm/zswap: remove the memcpy if acomp is not sleepable
crypto: introduce: acomp_is_async to expose if comp drivers might sleep
memtest: use {READ,WRITE}_ONCE in memory scanning
mm: prohibit the last subpage from reusing the entire large folio
mm: recover pud_leaf() definitions in nopmd case
selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
selftests/mm: skip uffd hugetlb tests with insufficient hugepages
selftests/mm: dont fail testsuite due to a lack of hugepages
mm/huge_memory: skip invalid debugfs new_order input for folio split
mm/huge_memory: check new folio order when split a folio
mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
mm: fix list corruption in put_pages_list
mm: remove folio from deferred split list before uncharging it
filemap: avoid unnecessary major faults in filemap_fault()
mm,page_owner: drop unnecessary check
mm,page_owner: check for null stack_record before bumping its refcount
mm: swap: fix race between free_swap_and_cache() and swapoff()
mm/treewide: align up pXd_leaf() retval across archs
mm/treewide: drop pXd_large()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardening updates from Kees Cook:
"As is pretty normal for this tree, there are changes all over the
place, especially for small fixes, selftest improvements, and improved
macro usability.
Some header changes ended up landing via this tree as they depended on
the string header cleanups. Also, a notable set of changes is the work
for the reintroduction of the UBSAN signed integer overflow sanitizer
so that we can continue to make improvements on the compiler side to
make this sanitizer a more viable future security hardening option.
Summary:
- string.h and related header cleanups (Tanzir Hasan, Andy
Shevchenko)
- VMCI memcpy() usage and struct_size() cleanups (Vasiliy Kovalev,
Harshit Mogalapalli)
- selftests/powerpc: Fix load_unaligned_zeropad build failure
(Michael Ellerman)
- hardened Kconfig fragment updates (Marco Elver, Lukas Bulwahn)
- Handle tail call optimization better in LKDTM (Douglas Anderson)
- Use long form types in overflow.h (Andy Shevchenko)
- Add flags param to string_get_size() (Andy Shevchenko)
- Add Coccinelle script for potential struct_size() use (Jacob
Keller)
- Fix objtool corner case under KCFI (Josh Poimboeuf)
- Drop 13 year old backward compat CAP_SYS_ADMIN check (Jingzi Meng)
- Add str_plural() helper (Michal Wajdeczko, Kees Cook)
- Ignore relocations in .notes section
- Add comments to explain how __is_constexpr() works
- Fix m68k stack alignment expectations in stackinit Kunit test
- Convert string selftests to KUnit
- Add KUnit tests for fortified string functions
- Improve reporting during fortified string warnings
- Allow non-type arg to type_max() and type_min()
- Allow strscpy() to be called with only 2 arguments
- Add binary mode to leaking_addresses scanner
- Various small cleanups to leaking_addresses scanner
- Adding wrapping_*() arithmetic helper
- Annotate initial signed integer wrap-around in refcount_t
- Add explicit UBSAN section to MAINTAINERS
- Fix UBSAN self-test warnings
- Simplify UBSAN build via removal of CONFIG_UBSAN_SANITIZE_ALL
- Reintroduce UBSAN's signed overflow sanitizer"
* tag 'hardening-v6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (51 commits)
selftests/powerpc: Fix load_unaligned_zeropad build failure
string: Convert helpers selftest to KUnit
string: Convert selftest to KUnit
sh: Fix build with CONFIG_UBSAN=y
compiler.h: Explain how __is_constexpr() works
overflow: Allow non-type arg to type_max() and type_min()
VMCI: Fix possible memcpy() run-time warning in vmci_datagram_invoke_guest_handler()
lib/string_helpers: Add flags param to string_get_size()
x86, relocs: Ignore relocations in .notes section
objtool: Fix UNWIND_HINT_{SAVE,RESTORE} across basic blocks
overflow: Use POD in check_shl_overflow()
lib: stackinit: Adjust target string to 8 bytes for m68k
sparc: vdso: Disable UBSAN instrumentation
kernel.h: Move lib/cmdline.c prototypes to string.h
leaking_addresses: Provide mechanism to scan binary files
leaking_addresses: Ignore input device status lines
leaking_addresses: Use File::Temp for /tmp files
MAINTAINERS: Update LEAKING_ADDRESSES details
fortify: Improve buffer overflow reporting
fortify: Add KUnit tests for runtime overflows
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core x86 updates from Ingo Molnar:
- The biggest change is the rework of the percpu code, to support the
'Named Address Spaces' GCC feature, by Uros Bizjak:
- This allows C code to access GS and FS segment relative memory
via variables declared with such attributes, which allows the
compiler to better optimize those accesses than the previous
inline assembly code.
- The series also includes a number of micro-optimizations for
various percpu access methods, plus a number of cleanups of %gs
accesses in assembly code.
- These changes have been exposed to linux-next testing for the
last ~5 months, with no known regressions in this area.
- Fix/clean up __switch_to()'s broken but accidentally working handling
of FPU switching - which also generates better code
- Propagate more RIP-relative addressing in assembly code, to generate
slightly better code
- Rework the CPU mitigations Kconfig space to be less idiosyncratic, to
make it easier for distros to follow & maintain these options
- Rework the x86 idle code to cure RCU violations and to clean up the
logic
- Clean up the vDSO Makefile logic
- Misc cleanups and fixes
* tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/idle: Select idle routine only once
x86/idle: Let prefer_mwait_c1_over_halt() return bool
x86/idle: Cleanup idle_setup()
x86/idle: Clean up idle selection
x86/idle: Sanitize X86_BUG_AMD_E400 handling
sched/idle: Conditionally handle tick broadcast in default_idle_call()
x86: Increase brk randomness entropy for 64-bit systems
x86/vdso: Move vDSO to mmap region
x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together
x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o
x86/retpoline: Ensure default return thunk isn't used at runtime
x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32
x86/vdso: Use $(addprefix ) instead of $(foreach )
x86/vdso: Simplify obj-y addition
x86/vdso: Consolidate targets and clean-files
x86/bugs: Rename CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNK
x86/bugs: Rename CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSO
x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY => CONFIG_MITIGATION_IBRS_ENTRY
x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRY
x86/bugs: Rename CONFIG_SLS => CONFIG_MITIGATION_SLS
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups, including a large series from Thomas Gleixner to cure
sparse warnings"
* tag 'x86-cleanups-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/nmi: Drop unused declaration of proc_nmi_enabled()
x86/callthunks: Use EXPORT_PER_CPU_SYMBOL_GPL() for per CPU variables
x86/cpu: Provide a declaration for itlb_multihit_kvm_mitigation
x86/cpu: Use EXPORT_PER_CPU_SYMBOL_GPL() for x86_spec_ctrl_current
x86/uaccess: Add missing __force to casts in __access_ok() and valid_user_address()
x86/percpu: Cure per CPU madness on UP
smp: Consolidate smp_prepare_boot_cpu()
x86/msr: Add missing __percpu annotations
x86/msr: Prepare for including <linux/percpu.h> into <asm/msr.h>
perf/x86/amd/uncore: Fix __percpu annotation
x86/nmi: Remove an unnecessary IS_ENABLED(CONFIG_SMP)
x86/apm_32: Remove dead function apm_get_battery_status()
x86/insn-eval: Fix function param name in get_eff_addr_sib()
|
|
They're not used anymore, drop all of them.
Link: https://lkml.kernel.org/r/20240305043750.93762-10-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
pud_large() is always defined as pud_leaf(). Merge their usages. Chose
pud_leaf() because pud_leaf() is a global API, while pud_large() is not.
Link: https://lkml.kernel.org/r/20240305043750.93762-9-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
pmd_large() is always defined as pmd_leaf(). Merge their usages. Chose
pmd_leaf() because pmd_leaf() is a global API, while pmd_large() is not.
Link: https://lkml.kernel.org/r/20240305043750.93762-8-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Sparse complains rightfully about the missing declaration which has been
placed sloppily into the usage site:
bugs.c:2223:6: sparse: warning: symbol 'itlb_multihit_kvm_mitigation' was not declared. Should it be static?
Add it to <asm/spec-ctrl.h> where it belongs and remove the one in the KVM code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240304005104.787173239@linutronix.de
|