summaryrefslogtreecommitdiff
path: root/drivers/firmware/efi/libstub/randomalloc.c
AgeCommit message (Collapse)Author
2024-03-28efi/libstub: Cast away type warning in use of max()Ard Biesheuvel
Avoid a type mismatch warning in max() by switching to max_t() and providing the type explicitly. Fixes: 3cb4a4827596abc82e ("efi/libstub: fix efi_random_alloc() ...") Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2024-03-22efi/libstub: fix efi_random_alloc() to allocate memory at alloc_min or ↵KONDO KAZUMA(近藤 和真)
higher address Following warning is sometimes observed while booting my servers: [ 3.594838] DMA: preallocated 4096 KiB GFP_KERNEL pool for atomic allocations [ 3.602918] swapper/0: page allocation failure: order:10, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0-1 ... [ 3.851862] DMA: preallocated 1024 KiB GFP_KERNEL|GFP_DMA pool for atomic allocation If 'nokaslr' boot option is set, the warning always happens. On x86, ZONE_DMA is small zone at the first 16MB of physical address space. When this problem happens, most of that space seems to be used by decompressed kernel. Thereby, there is not enough space at DMA_ZONE to meet the request of DMA pool allocation. The commit 2f77465b05b1 ("x86/efistub: Avoid placing the kernel below LOAD_PHYSICAL_ADDR") tried to fix this problem by introducing lower bound of allocation. But the fix is not complete. efi_random_alloc() allocates pages by following steps. 1. Count total available slots ('total_slots') 2. Select a slot ('target_slot') to allocate randomly 3. Calculate a starting address ('target') to be included target_slot 4. Allocate pages, which starting address is 'target' In step 1, 'alloc_min' is used to offset the starting address of memory chunk. But in step 3 'alloc_min' is not considered at all. As the result, 'target' can be miscalculated and become lower than 'alloc_min'. When KASLR is disabled, 'target_slot' is always 0 and the problem happens everytime if the EFI memory map of the system meets the condition. Fix this problem by calculating 'target' considering 'alloc_min'. Cc: linux-efi@vger.kernel.org Cc: Tom Englund <tomenglund26@gmail.com> Cc: linux-kernel@vger.kernel.org Fixes: 2f77465b05b1 ("x86/efistub: Avoid placing the kernel below LOAD_PHYSICAL_ADDR") Signed-off-by: Kazuma Kondo <kazuma-kondo@nec.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2024-01-30x86/efistub: Avoid placing the kernel below LOAD_PHYSICAL_ADDRArd Biesheuvel
The EFI stub's kernel placement logic randomizes the physical placement of the kernel by taking all available memory into account, and picking a region at random, based on a random seed. When KASLR is disabled, this seed is set to 0x0, and this results in the lowest available region of memory to be selected for loading the kernel, even if this is below LOAD_PHYSICAL_ADDR. Some of this memory is typically reserved for the GFP_DMA region, to accommodate masters that can only access the first 16 MiB of system memory. Even if such devices are rare these days, we may still end up with a warning in the kernel log, as reported by Tom: swapper/0: page allocation failure: order:10, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0 Fix this by tweaking the random allocation logic to accept a low bound on the placement, and set it to LOAD_PHYSICAL_ADDR. Fixes: a1b87d54f4e4 ("x86/efistub: Avoid legacy decompressor when doing EFI boot") Reported-by: Tom Englund <tomenglund26@gmail.com> Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218404 Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2023-08-07efi/libstub: Add limit argument to efi_random_alloc()Ard Biesheuvel
x86 will need to limit the kernel memory allocation to the lowest 512 MiB of memory, to match the behavior of the existing bare metal KASLR physical randomization logic. So in preparation for that, add a limit parameter to efi_random_alloc() and wire it up. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230807162720.545787-22-ardb@kernel.org
2023-03-23efi/libstub: randomalloc: Return EFI_OUT_OF_RESOURCES on failureArd Biesheuvel
The logic in efi_random_alloc() will iterate over the memory map twice, once to count the number of candidate slots, and another time to locate the chosen slot after randomization. If there is insufficient memory to do the allocation, the second loop will run to completion without actually having located a slot, but we currently return EFI_SUCCESS in this case, as we fail to initialize status to the appropriate error value of EFI_OUT_OF_RESOURCES. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-12-07arm64: efi: Limit allocations to 48-bit addressable physical regionArd Biesheuvel
The UEFI spec does not mention or reason about the configured size of the virtual address space at all, but it does mention that all memory should be identity mapped using a page size of 4 KiB. This means that a LPA2 capable system that has any system memory outside of the 48-bit addressable physical range and follows the spec to the letter may serve page allocation requests from regions of memory that the kernel cannot access unless it was built with LPA2 support and enables it at runtime. So let's ensure that all page allocations are limited to the 48-bit range. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-18efi: libstub: use EFI_LOADER_CODE region when moving the kernel in memoryArd Biesheuvel
The EFI spec is not very clear about which permissions are being given when allocating pages of a certain type. However, it is quite obvious that EFI_LOADER_CODE is more likely to permit execution than EFI_LOADER_DATA, which becomes relevant once we permit booting the kernel proper with the firmware's 1:1 mapping still active. Ostensibly, recent systems such as the Surface Pro X grant executable permissions to EFI_LOADER_CODE regions but not EFI_LOADER_DATA regions. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-09-27efi: libstub: install boot-time memory map as config tableArd Biesheuvel
Expose the EFI boot time memory map to the kernel via a configuration table. This is arch agnostic and enables future changes that remove the dependency on DT on architectures that don't otherwise rely on it. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-09-26efi: libstub: simplify efi_get_memory_map() and struct efi_boot_memmapArd Biesheuvel
Currently, struct efi_boot_memmap is a struct that is passed around between callers of efi_get_memory_map() and the users of the resulting data, and which carries pointers to various variables whose values are provided by the EFI GetMemoryMap() boot service. This is overly complex, and it is much easier to carry these values in the struct itself. So turn the struct into one that carries these data items directly, including a flex array for the variable number of EFI memory descriptors that the boot service may return. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-05-06efi: stub: prefer mirrored memory for randomized allocationsArd Biesheuvel
If the system exposes memory regions with the EFI_MORE_RELIABLE attribute, it is implied that it is intended to be used for allocations that are relatively important, such as the kernel's static image. Since efi_random_alloc() is mostly (only) used for allocating space for the kernel image, let's update it to take this into account, and disregard all memory without the EFI_MORE_RELIABLE attribute if there is sufficient memory available that does have this attribute. Note that this change only affects booting with randomization enabled. In other cases, the EFI stub runs the kernel image in place unless its placement is unsuitable for some reason (i.e., misaligned, or its BSS overlaps with another allocation), and it is left to the bootloader to ensure that the kernel was loaded into EFI_MORE_RELIABLE memory if this is desired. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
2021-07-20arm64: efi: kaslr: Fix occasional random alloc (and boot) failureBenjamin Herrenschmidt
The EFI stub random allocator used for kaslr on arm64 has a subtle bug. In function get_entry_num_slots() which counts the number of possible allocation "slots" for the image in a given chunk of free EFI memory, "last_slot" can become negative if the chunk is smaller than the requested allocation size. The test "if (first_slot > last_slot)" doesn't catch it because both first_slot and last_slot are unsigned. I chose not to make them signed to avoid problems if this is ever used on architectures where there are meaningful addresses with the top bit set. Instead, fix it with an additional test against the allocation size. This can cause a boot failure in addition to a loss of randomisation due to another bug in the arm64 stub fixed separately. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Fixes: 2ddbfc81eac8 ("efi: stub: add implementation of efi_random_alloc()") Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-04-23efi/libstub/random: Increase random alloc granularityArd Biesheuvel
The implementation of efi_random_alloc() arbitrarily truncates the provided random seed to 16 bits, which limits the granularity of the randomly chosen allocation offset in memory. This is currently only an issue if the size of physical memory exceeds 128 GB, but going forward, we will reduce the allocation alignment to 64 KB, and this means we need to increase the granularity to ensure that the random memory allocations are distributed evenly. We will need to switch to 64-bit arithmetic for the multiplication, but this does not result in 64-bit integer intrinsic calls on ARM or on i386. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-04-23efi/libstub/random: Align allocate size to EFI_ALLOC_ALIGNArd Biesheuvel
The EFI stub uses a per-architecture #define for the minimum base and size alignment of page allocations, which is set to 4 KB for all architecures except arm64, which uses 64 KB, to ensure that allocations can always be (un)mapped efficiently, regardless of the page size used by the kernel proper, which could be a kexec'ee The API wrappers around page based allocations assume that this alignment is always taken into account, and so efi_free() will also round up its size argument to EFI_ALLOC_ALIGN. Currently, efi_random_alloc() does not honour this alignment for the allocated size, and so freeing such an allocation may result in unrelated memory to be freed, potentially leading to issues after boot. So let's round up size in efi_random_alloc() as well. Fixes: 2ddbfc81eac84a29 ("efi: stub: add implementation of efi_random_alloc()") Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23efi/libstub: Move efi_random_alloc() into separate source fileArd Biesheuvel
efi_random_alloc() is only used on arm64, but as it shares a source file with efi_random_get_seed(), the latter will pull in the former on other architectures as well. Let's take advantage of the fact that libstub is a static library, and so the linker will only incorporate objects that are needed to satisfy dependencies in other objects. This means we can move the random alloc code to a separate source file that gets built unconditionally, but only used when needed. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>