Age | Commit message (Collapse) | Author |
|
Having both a bitmap and a journal is pointless.
Attempting to do so can corrupt the bitmap if the journal
replay happens before the bitmap is initialized.
Rather than try to avoid this corruption, simply
refuse to allow arrays with both a bitmap and a journal.
So:
- if raid5_run sees both are present, fail.
- if adding a bitmap finds a journal is present, fail
- if adding a journal finds a bitmap is present, fail.
Cc: stable@vger.kernel.org (4.10+)
Signed-off-by: NeilBrown <neilb@suse.com>
Tested-by: Joshua Kinard <kumba@gentoo.org>
Acked-by: Joshua Kinard <kumba@gentoo.org>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
to READ_ONCE()/WRITE_ONCE()
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When reshaping a fully degraded raid5/raid6 to a larger
nubmer of devices, the new device(s) are not in-sync
and so that can make the newly grown stripe appear to be
"failed".
To avoid this, we set the R5_Expanded flag to say "Even though
this device is not fully in-sync, this block is safe so
don't treat the device as failed for this stripe".
This flag is set for data devices, not not for parity devices.
Consequently, if you have a RAID6 with two devices that are partly
recovered and a spare, and start a reshape to include the spare,
then when the reshape gets past the point where the recovery was
up to, it will think the stripes are failed and will get into
an infinite loop, failing to make progress.
So when contructing parity on an EXPAND_READY stripe,
set R5_Expanded.
Reported-by: Curt <lightspd@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
Motivated by the desire to illiminate the imprecise nature of
DM-specific patches being unnecessarily sent to both the MD maintainer
and mailing-list. Which is born out of the fact that DM files also
reside in drivers/md/
Now all MD-specific files in drivers/md/ start with either "raid" or
"md-" and the MAINTAINERS file has been updated accordingly.
Shaohua: don't change module name
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
static checker reports a potential integer overflow. Cap the worker count to
avoid the overflow.
Reported:-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
Pull MD fixes from Shaohua Li:
"Two small patches to fix long-lived raid5 stripe batch bugs, one from
Dennis and the other from me"
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md:
md/raid5: preserve STRIPE_ON_UNPLUG_LIST in break_stripe_batch_list
md/raid5: fix a race condition in stripe batch
|
|
Pull MD updates from Shaohua Li:
"This update mainly fixes bugs:
- Make raid5 ppl support several ppl from Pawel
- Several raid5-cache bug fixes from Song
- Bitmap fixes from Neil and Me
- One raid1/10 regression fix since 4.12 from Me
- Other small fixes and cleanup"
* tag 'md/4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md:
md/bitmap: disable bitmap_resize for file-backed bitmaps.
raid5-ppl: Recovery support for multiple partial parity logs
md: Runtime support for multiple ppls
md/raid0: attach correct cgroup info in bio
lib/raid6: align AVX512 constants to 512 bits, not bytes
raid5: remove raid5_build_block
md/r5cache: call mddev_lock/unlock() in r5c_journal_mode_show
md: replace seq_release_private with seq_release
md: notify about new spare disk in the container
md/raid1/10: reset bio allocated from mempool
md/raid5: release/flush io in raid5_do_work()
md/bitmap: copy correct data for bitmap super
|
|
In release_stripe_plug(), if a stripe_head has its STRIPE_ON_UNPLUG_LIST
set, it indicates that this stripe_head is already in the raid5_plug_cb
list and release_stripe() would be called instead to drop a reference
count. Otherwise, the STRIPE_ON_UNPLUG_LIST bit would be set for this
stripe_head and it will get queued into the raid5_plug_cb list.
Since break_stripe_batch_list() did not preserve STRIPE_ON_UNPLUG_LIST,
A stripe could be re-added to plug list while it is still on that list
in the following situation. If stripe_head A is added to another
stripe_head B's batch list, in this case A will have its
batch_head != NULL and be added into the plug list. After that,
stripe_head B gets handled and called break_stripe_batch_list() to
reset all the batched stripe_head(including A which is still on
the plug list)'s state and reset their batch_head to NULL.
Before the plug list gets processed, if there is another write request
comes in and get stripe_head A, A will have its batch_head == NULL
(cleared by calling break_stripe_batch_list() on B) and be added to
plug list once again.
Signed-off-by: Dennis Yang <dennisyang@qnap.com>
Cc: stable@vger.kernel.org (v4.1+)
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
We have a race condition in below scenario, say have 3 continuous stripes, sh1,
sh2 and sh3, sh1 is the stripe_head of sh2 and sh3:
CPU1 CPU2 CPU3
handle_stripe(sh3)
stripe_add_to_batch_list(sh3)
-> lock(sh2, sh3)
-> lock batch_lock(sh1)
-> add sh3 to batch_list of sh1
-> unlock batch_lock(sh1)
clear_batch_ready(sh1)
-> lock(sh1) and batch_lock(sh1)
-> clear STRIPE_BATCH_READY for all stripes in batch_list
-> unlock(sh1) and batch_lock(sh1)
->clear_batch_ready(sh3)
-->test_and_clear_bit(STRIPE_BATCH_READY, sh3)
--->return 0 as sh->batch == NULL
-> sh3->batch_head = sh1
-> unlock (sh2, sh3)
In CPU1, handle_stripe will continue handle sh3 even it's in batch stripe list
of sh1. By moving sh3->batch_head assignment in to batch_lock, we make it
impossible to clear STRIPE_BATCH_READY before batch_head is set.
Thanks Stephane for helping debug this tricky issue.
Reported-and-tested-by: Stephane Thiell <sthiell@stanford.edu>
Cc: stable@vger.kernel.org (v4.1+)
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
Increase PPL area to 1MB and use it as circular buffer to store PPL. The
entry with highest generation number is the latest one. If PPL to be
written is larger then space left in a buffer, rewind the buffer to the
start (don't wrap it).
Signed-off-by: Pawel Baldysiak <pawel.baldysiak@intel.com>
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
Now raid5_build_block is just called to set the
sector of r5dev, raid5_compute_blocknr can be
used directly for the purpose.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
In raid5, there are scenarios where some ios are deferred to a later
time, and some IO need a flush to complete. To make sure we make
progress with these IOs, we need to call the following functions:
flush_deferred_bios(conf);
r5l_flush_stripe_to_raid(conf->log);
Both of these functions are called in raid5d(), but missing in
raid5_do_work(). As a result, these functions are not called
when multi-threading (group_thread_cnt > 0) is enabled. This patch
adds calls to these function to raid5_do_work().
Note for stable branches:
r5l_flush_stripe_to_raid(conf->log) is need for 4.4+
flush_deferred_bios(conf) is only needed for 4.11+
Cc: stable@vger.kernel.org (4.4+)
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
This way we don't need a block_device structure to submit I/O. The
block_device has different life time rules from the gendisk and
request_queue and is usually only available when the block device node
is open. Other callers need to explicitly create one (e.g. the lightnvm
passthrough code, or the new nvme multipathing code).
For the actual I/O path all that we need is the gendisk, which exists
once per block device. But given that the block layer also does
partition remapping we additionally need a partition index, which is
used for said remapping in generic_make_request.
Note that all the block drivers generally want request_queue or
sometimes the gendisk, so this removes a layer of indirection all
over the stack.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The block layer always remaps partitions before calling into the
->make_request methods of drivers. Thus the call to get_start_sect in
in_chunk_boundary will always return 0 and can be removed.
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Since thread_group worker and raid5d kthread are not in sync, if
worker writes stripe before raid5d then requests will be waiting
for issue_pendig.
Issue observed when building raid5 with ext4, in some build runs
jbd2 would get hung and requests were waiting in the HW engine
waiting to be issued.
Fix this by adding a call to async_tx_issue_pending_all in the
raid5_do_work.
Signed-off-by: Ofer Heifetz <oferh@marvell.com>
Cc: stable@vger.kernel.org
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
Since bio_io_error sets bi_status to BLK_STS_IOERR,
and calls bio_endio, so we can use it directly.
And as mentioned by Shaohua, there are also two
places in raid5.c can use bio_io_error either.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
The raid5 md device is created by the disks which we don't use the total size. For example,
the size of the device is 5G and it just uses 3G of the devices to create one raid5 device.
Then change the chunksize and wait reshape to finish. After reshape finishing stop the raid
and assemble it again. It fails.
mdadm -CR /dev/md0 -l5 -n3 /dev/loop[0-2] --size=3G --chunk=32 --assume-clean
mdadm /dev/md0 --grow --chunk=64
wait reshape to finish
mdadm -S /dev/md0
mdadm -As
The error messages:
[197519.814302] md: loop1 does not have a valid v1.2 superblock, not importing!
[197519.821686] md: md_import_device returned -22
After reshape the data offset is changed. It selects backwards direction in this condition.
In function super_1_load it compares the available space of the underlying device with
sb->data_size. The new data offset gets bigger after reshape. So super_1_load returns -EINVAL.
rdev->sectors is updated in md_finish_reshape. Then sb->data_size is set in super_1_sync based
on rdev->sectors. So add md_finish_reshape in end_reshape.
Signed-off-by: Xiao Ni <xni@redhat.com>
Acked-by: Guoqing Jiang <gqjiang@suse.com>
Cc: stable@vger.kernel.org
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
Pull MD update from Shaohua Li:
- fixed deadlock in MD suspend and a potential bug in bio allocation
(Neil Brown)
- fixed signal issue (Mikulas Patocka)
- fixed typo in FailFast test (Guoqing Jiang)
- other trival fixes
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md:
MD: fix sleep in atomic
MD: fix a null dereference
md: use a separate bio_set for synchronous IO.
md: change the initialization value for a spare device spot to MD_DISK_ROLE_SPARE
md/raid1: remove unused bio in sync_request_write
md/raid10: fix FailFast test for wrong device
md: don't use flush_signals in userspace processes
md: fix deadlock between mddev_suspend() and md_write_start()
|
|
"flags" arguments are often seen as good API design as they allow
easy extensibility.
bioset_create_nobvec() is implemented internally as a variation in
flags passed to __bioset_create().
To support future extension, make the internal structure part of the
API.
i.e. add a 'flags' argument to bioset_create() and discard
bioset_create_nobvec().
Note that the bio_split allocations in drivers/md/raid* do not need
the bvec mempool - they should have used bioset_create_nobvec().
Suggested-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The function flush_signals clears all pending signals for the process. It
may be used by kernel threads when we need to prepare a kernel thread for
responding to signals. However using this function for an userspaces
processes is incorrect - clearing signals without the program expecting it
can cause misbehavior.
The raid1 and raid5 code uses flush_signals in its request routine because
it wants to prepare for an interruptible wait. This patch drops
flush_signals and uses sigprocmask instead to block all signals (including
SIGKILL) around the schedule() call. The signals are not lost, but the
schedule() call won't respond to them.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org
Acked-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
If mddev_suspend() races with md_write_start() we can deadlock
with mddev_suspend() waiting for the request that is currently
in md_write_start() to complete the ->make_request() call,
and md_write_start() waiting for the metadata to be updated
to mark the array as 'dirty'.
As metadata updates done by md_check_recovery() only happen then
the mddev_lock() can be claimed, and as mddev_suspend() is often
called with the lock held, these threads wait indefinitely for each
other.
We fix this by having md_write_start() abort if mddev_suspend()
is happening, and ->make_request() aborts if md_write_start()
aborted.
md_make_request() can detect this abort, decrease the ->active_io
count, and wait for mddev_suspend().
Reported-by: Nix <nix@esperi.org.uk>
Fix: 68866e425be2(MD: no sync IO while suspended)
Cc: stable@vger.kernel.org
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
We've already got a few conflicts and upcoming work depends on some of the
changes that have gone into mainline as regression fixes for this series.
Pull in 4.12-rc5 to resolve these conflicts and make it easier on down stream
trees to continue working on 4.13 changes.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Replace bi_error with a new bi_status to allow for a clear conversion.
Note that device mapper overloaded bi_error with a private value, which
we'll have to keep arround at least for now and thus propagate to a
proper blk_status_t value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The new per-cpu counter for writes_pending is initialised in
md_alloc(), which is not called by dm-raid.
So dm-raid fails when md_write_start() is called.
Move the initialization to the personality modules
that need it. This way it is always initialised when needed,
but isn't unnecessarily initialized (requiring memory allocation)
when the personality doesn't use writes_pending.
Reported-by: Heinz Mauelshagen <heinzm@redhat.com>
Fixes: 4ad23a976413 ("MD: use per-cpu counter for writes_pending")
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
This makes it possible, with appropriate filesystem support, for a
sysadmin to tell what is affected by the mismatch, and whether
it should be ignored (if it's inside a swap partition, for
instance).
We ratelimit to prevent log flooding: if there are so many
mismatches that ratelimiting is necessary, the individual messages
are relatively unlikely to be important (either the machine is
swapping like crazy or something is very wrong with the disk).
Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
Currently, sync of raid456 array cannot make progress when hitting
data in writeback r5cache.
This patch fixes this issue by flushing cached data of the stripe
before processing the sync request. This is achived by:
1. In handle_stripe(), do not set STRIPE_SYNCING if the stripe is
in write back cache;
2. In r5c_try_caching_write(), handle the stripe in sync with write
through;
3. In do_release_stripe(), make stripe in sync write out and send
it to the state machine.
Shaohua: explictly set STRIPE_HANDLE after write out completed
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
For the raid456 with writeback cache, when journal device failed during
normal operation, it is still possible to persist all data, as all
pending data is still in stripe cache. However, it is necessary to handle
journal failure gracefully.
During journal failures, the following logic handles the graceful shutdown
of journal:
1. raid5_error() marks the device as Faulty and schedules async work
log->disable_writeback_work;
2. In disable_writeback_work (r5c_disable_writeback_async), the mddev is
suspended, set to write through, and then resumed. mddev_suspend()
flushes all cached stripes;
3. All cached stripes need to be flushed carefully to the RAID array.
This patch fixes issues within the process above:
1. In r5c_update_on_rdev_error() schedule disable_writeback_work for
journal failures;
2. In r5c_disable_writeback_async(), wait for MD_SB_CHANGE_PENDING,
since raid5_error() updates superblock.
3. In handle_stripe(), allow stripes with data in journal (s.injournal > 0)
to make progress during log_failed;
4. In delay_towrite(), if log failed only process data in the cache (skip
new writes in dev->towrite);
5. In __get_priority_stripe(), process loprio_list during journal device
failures.
6. In raid5_remove_disk(), wait for all cached stripes are flushed before
calling log_exit().
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
This essentially reverts commit b5470dc5fc18 ("md: resolve external
metadata handling deadlock in md_allow_write") with some adjustments.
Since commit 6791875e2e53 ("md: make reconfig_mutex optional for writes
to md sysfs files.") changing array_state to 'active' does not use
mddev_lock() and will not cause a deadlock with md_allow_write(). This
revert simplifies userspace tools that write to sysfs attributes like
"stripe_cache_size" or "consistency_policy" because it removes the need
for special handling for external metadata arrays, checking for EAGAIN
and retrying the write.
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
On mainline, there is no functional difference, just less code, and
symmetric lock/unlock paths.
On PREEMPT_RT builds, this fixes the following warning, seen by
Alexander GQ Gerasiov, due to the sleeping nature of spinlocks.
BUG: sleeping function called from invalid context at kernel/locking/rtmutex.c:993
in_atomic(): 0, irqs_disabled(): 1, pid: 58, name: kworker/u12:1
CPU: 5 PID: 58 Comm: kworker/u12:1 Tainted: G W 4.9.20-rt16-stand6-686 #1
Hardware name: Supermicro SYS-5027R-WRF/X9SRW-F, BIOS 3.2a 10/28/2015
Workqueue: writeback wb_workfn (flush-253:0)
Call Trace:
dump_stack+0x47/0x68
? migrate_enable+0x4a/0xf0
___might_sleep+0x101/0x180
rt_spin_lock+0x17/0x40
add_stripe_bio+0x4e3/0x6c0 [raid456]
? preempt_count_add+0x42/0xb0
raid5_make_request+0x737/0xdd0 [raid456]
Reported-by: Alexander GQ Gerasiov <gq@redlab-i.ru>
Tested-by: Alexander GQ Gerasiov <gq@redlab-i.ru>
Signed-off-by: Julia Cartwright <julia@ni.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
|
|
We can clear 'WantReplacement' flag directly no
matter it's replacement existed or not since the
semantic is same as before.
Also since the disk is removed from array, then
it is straightforward to remove 'WantReplacement'
flag and the comments in raid10/5 can be removed
as well.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
chunk_aligned_read() currently uses fs_bio_set - which is meant for
filesystems to use - and loops if multiple splits are needed, which is
not best practice.
As this is only used for READ requests, not writes, it is unlikely
to cause a problem. However it is best to be consistent in how
we split bios, and to follow the pattern used in raid1/raid10.
So create a private bioset, bio_split, and use it to perform a single
split, submitting the remainder to generic_make_request() for later
processing.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
In case of read-modify-write, partial partity is the same as the result
of ops_run_prexor5(), so we can just copy sh->dev[pd_idx].page into
sh->ppl_page instead of calculating it again.
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
Use resize_stripes() instead of raid5_reset_stripe_cache() to allocate
or free sh->ppl_page at runtime for all stripes in the stripe cache.
raid5_reset_stripe_cache() required suspending the mddev and could
deadlock because of GFP_KERNEL allocations.
Move the 'newsize' check to check_reshape() to allow reallocating the
stripes with the same number of disks. Allocate sh->ppl_page in
alloc_stripe() instead of grow_buffers(). Pass 'struct r5conf *conf' as
a parameter to alloc_stripe() because it is needed to check whether to
allocate ppl_page. Add free_stripe() and use it to free stripes rather
than directly call kmem_cache_free(). Also free sh->ppl_page in
free_stripe().
Set MD_HAS_PPL at the end of ppl_init_log() instead of explicitly
setting it in advance and add another parameter to log_init() to allow
calling ppl_init_log() without the bit set. Don't try to calculate
partial parity or add a stripe to log if it does not have ppl_page set.
Enabling ppl can now be performed without suspending the mddev, because
the log won't be used until new stripes are allocated with ppl_page.
Calling mddev_suspend/resume is still necessary when disabling ppl,
because we want all stripes to finish before stopping the log, but
resize_stripes() can be called after mddev_resume() when ppl is no
longer active.
Suggested-by: NeilBrown <neilb@suse.com>
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
When recoverying a single missing/failed device in a RAID6,
those stripes where the Q block is on the missing device are
handled a bit differently. In these cases it is easy to
check that the P block is correct, so we do. This results
in the P block be destroy. Consequently the P block needs
to be read a second time in order to compute Q. This causes
lots of seeks and hurts performance.
It shouldn't be necessary to re-read P as it can be computed
from the DATA. But we only compute blocks on missing
devices, since c337869d9501 ("md: do not compute parity
unless it is on a failed drive").
So relax the change made in that commit to allow computing
of the P block in a RAID6 which it is the only missing that
block.
This makes RAID6 recovery run much faster as the disk just
"before" the recovering device is no longer seeking
back-and-forth.
Reported-by-tested-by: Brad Campbell <lists2009@fnarfbargle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
When growing raid5 device on machine with small memory, there is chance that
mdadm will be killed and the following bug report can be observed. The same
bug could also be reproduced in linux-4.10.6.
[57600.075774] BUG: unable to handle kernel NULL pointer dereference at (null)
[57600.083796] IP: [<ffffffff81a6aa87>] _raw_spin_lock+0x7/0x20
[57600.110378] PGD 421cf067 PUD 4442d067 PMD 0
[57600.114678] Oops: 0002 [#1] SMP
[57600.180799] CPU: 1 PID: 25990 Comm: mdadm Tainted: P O 4.2.8 #1
[57600.187849] Hardware name: To be filled by O.E.M. To be filled by O.E.M./MAHOBAY, BIOS QV05AR66 03/06/2013
[57600.197490] task: ffff880044e47240 ti: ffff880043070000 task.ti: ffff880043070000
[57600.204963] RIP: 0010:[<ffffffff81a6aa87>] [<ffffffff81a6aa87>] _raw_spin_lock+0x7/0x20
[57600.213057] RSP: 0018:ffff880043073810 EFLAGS: 00010046
[57600.218359] RAX: 0000000000000000 RBX: 000000000000000c RCX: ffff88011e296dd0
[57600.225486] RDX: 0000000000000001 RSI: ffffe8ffffcb46c0 RDI: 0000000000000000
[57600.232613] RBP: ffff880043073878 R08: ffff88011e5f8170 R09: 0000000000000282
[57600.239739] R10: 0000000000000005 R11: 28f5c28f5c28f5c3 R12: ffff880043073838
[57600.246872] R13: ffffe8ffffcb46c0 R14: 0000000000000000 R15: ffff8800b9706a00
[57600.253999] FS: 00007f576106c700(0000) GS:ffff88011e280000(0000) knlGS:0000000000000000
[57600.262078] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[57600.267817] CR2: 0000000000000000 CR3: 00000000428fe000 CR4: 00000000001406e0
[57600.274942] Stack:
[57600.276949] ffffffff8114ee35 ffff880043073868 0000000000000282 000000000000eb3f
[57600.284383] ffffffff81119043 ffff880043073838 ffff880043073838 ffff88003e197b98
[57600.291820] ffffe8ffffcb46c0 ffff88003e197360 0000000000000286 ffff880043073968
[57600.299254] Call Trace:
[57600.301698] [<ffffffff8114ee35>] ? cache_flusharray+0x35/0xe0
[57600.307523] [<ffffffff81119043>] ? __page_cache_release+0x23/0x110
[57600.313779] [<ffffffff8114eb53>] kmem_cache_free+0x63/0xc0
[57600.319344] [<ffffffff81579942>] drop_one_stripe+0x62/0x90
[57600.324915] [<ffffffff81579b5b>] raid5_cache_scan+0x8b/0xb0
[57600.330563] [<ffffffff8111b98a>] shrink_slab.part.36+0x19a/0x250
[57600.336650] [<ffffffff8111e38c>] shrink_zone+0x23c/0x250
[57600.342039] [<ffffffff8111e4f3>] do_try_to_free_pages+0x153/0x420
[57600.348210] [<ffffffff8111e851>] try_to_free_pages+0x91/0xa0
[57600.353959] [<ffffffff811145b1>] __alloc_pages_nodemask+0x4d1/0x8b0
[57600.360303] [<ffffffff8157a30b>] check_reshape+0x62b/0x770
[57600.365866] [<ffffffff8157a4a5>] raid5_check_reshape+0x55/0xa0
[57600.371778] [<ffffffff81583df7>] update_raid_disks+0xc7/0x110
[57600.377604] [<ffffffff81592b73>] md_ioctl+0xd83/0x1b10
[57600.382827] [<ffffffff81385380>] blkdev_ioctl+0x170/0x690
[57600.388307] [<ffffffff81195238>] block_ioctl+0x38/0x40
[57600.393525] [<ffffffff811731c5>] do_vfs_ioctl+0x2b5/0x480
[57600.399010] [<ffffffff8115e07b>] ? vfs_write+0x14b/0x1f0
[57600.404400] [<ffffffff811733cc>] SyS_ioctl+0x3c/0x70
[57600.409447] [<ffffffff81a6ad97>] entry_SYSCALL_64_fastpath+0x12/0x6a
[57600.415875] Code: 00 00 00 00 55 48 89 e5 8b 07 85 c0 74 04 31 c0 5d c3 ba 01 00 00 00 f0 0f b1 17 85 c0 75 ef b0 01 5d c3 90 31 c0 ba 01 00 00 00 <f0> 0f b1 17 85 c0 75 01 c3 55 89 c6 48 89 e5 e8 85 d1 63 ff 5d
[57600.435460] RIP [<ffffffff81a6aa87>] _raw_spin_lock+0x7/0x20
[57600.441208] RSP <ffff880043073810>
[57600.444690] CR2: 0000000000000000
[57600.448000] ---[ end trace cbc6b5cc4bf9831d ]---
The problem is that resize_stripes() releases new stripe_heads before assigning new
slab cache to conf->slab_cache. If the shrinker function raid5_cache_scan() gets called
after resize_stripes() starting releasing new stripes but right before new slab cache
being assigned, it is possible that these new stripe_heads will be freed with the old
slab_cache which was already been destoryed and that triggers this bug.
Signed-off-by: Dennis Yang <dennisyang@qnap.com>
Fixes: edbe83ab4c27 ("md/raid5: allow the stripe_cache to grow and shrink.")
Cc: stable@vger.kernel.org (4.1+)
Reviewed-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
Now that we use the proper REQ_OP_WRITE_ZEROES operation everywhere we can
kill this hack.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Copy & paste from the REQ_OP_WRITE_SAME code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Currently only dm and md/raid5 bios trigger
trace_block_bio_complete(). Now that we have bio_chain() and
bio_inc_remaining(), it is not possible, in general, for a driver to
know when the bio is really complete. Only bio_endio() knows that.
So move the trace_block_bio_complete() call to bio_endio().
Now trace_block_bio_complete() pairs with trace_block_bio_queue().
Any bio for which a 'queue' event is traced, will subsequently
generate a 'complete' event.
There are a few cases where completion tracing is not wanted.
1/ If blk_update_request() has already generated a completion
trace event at the 'request' level, there is no point generating
one at the bio level too. In this case the bi_sector and bi_size
will have changed, so the bio level event would be wrong
2/ If the bio hasn't actually been queued yet, but is being aborted
early, then a trace event could be confusing. Some filesystems
call bio_endio() but do not want tracing.
3/ The bio_integrity code interposes itself by replacing bi_end_io,
then restoring it and calling bio_endio() again. This would produce
two identical trace events if left like that.
To handle these, we introduce a flag BIO_TRACE_COMPLETION and only
produce the trace event when this is set.
We address point 1 above by clearing the flag in blk_update_request().
We address point 2 above by only setting the flag when
generic_make_request() is called.
We address point 3 above by clearing the flag after generating a
completion event.
When bio_split() is used on a bio, particularly in blk_queue_split(),
there is an extra complication. A new bio is split off the front, and
may be handle directly without going through generic_make_request().
The old bio, which has been advanced, is passed to
generic_make_request(), so it will trigger a trace event a second
time.
Probably the best result when a split happens is to see a single
'queue' event for the whole bio, then multiple 'complete' events - one
for each component. To achieve this was can:
- copy the BIO_TRACE_COMPLETION flag to the new bio in bio_split()
- avoid generating a 'queue' event if BIO_TRACE_COMPLETION is already set.
This way, the split-off bio won't create a queue event, the original
won't either even if it re-submitted to generic_make_request(),
but both will produce completion events, each for their own range.
So if generic_make_request() is called (which generates a QUEUED
event), then bi_endio() will create a single COMPLETE event for each
range that the bio is split into, unless the driver has explicitly
requested it not to.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
When journal device of an array fails, the array is forced into read-only
mode. To make the array normal without adding another journal device, we
need to remove journal _feature_ from the array.
This patch allows remove journal _feature_ from an array, For journal
existing journal should be either missing or faulty.
To remove journal feature, it is necessary to remove the journal device
first:
mdadm --fail /dev/md0 /dev/sdb
mdadm: set /dev/sdb faulty in /dev/md0
mdadm --remove /dev/md0 /dev/sdb
mdadm: hot removed /dev/sdb from /dev/md0
Then the journal feature can be removed by echoing into the sysfs file:
cat /sys/block/md0/md/consistency_policy
journal
echo resync > /sys/block/md0/md/consistency_policy
cat /sys/block/md0/md/consistency_policy
resync
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
Signed-off-by: Zhilong Liu <zlliu@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
This test on ->writes_pending cannot be safe as the counter
can be incremented at any moment and cannot be locked against.
Change it to test conf->active_stripes, which at least
can be locked against. More changes are still needed.
A future patch will change ->writes_pending, and testing it here will
be very inconvenient.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
This reverts commit e8d7c33232e5fdfa761c3416539bc5b4acd12db5.
Now that raid5 doesn't abuse bi_phys_segments any more, we no longer
need to impose these limits.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
When a read request, which bypassed the cache, fails, we need to retry
it through the cache.
This involves attaching it to a sequence of stripe_heads, and it may not
be possible to get all the stripe_heads we need at once.
We do what we can, and record how far we got in ->bi_phys_segments so
we can pick up again later.
There is only ever one bio which may have a non-zero offset stored in
->bi_phys_segments, the one that is either active in the single thread
which calls retry_aligned_read(), or is in conf->retry_read_aligned
waiting for retry_aligned_read() to be called again.
So we only need to store one offset value. This can be in a local
variable passed between remove_bio_from_retry() and
retry_aligned_read(), or in the r5conf structure next to the
->retry_read_aligned pointer.
Storing it there allows the last usage of ->bi_phys_segments to be
removed from md/raid5.c.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
a counter
md/raid5 needs to keep track of how many stripe_heads are processing a
bio so that it can delay calling bio_endio() until all stripe_heads
have completed. It currently uses 16 bits of ->bi_phys_segments for
this purpose.
16 bits is only enough for 256M requests, and it is possible for a
single bio to be larger than this, which causes problems. Also, the
bio struct contains a larger counter, __bi_remaining, which has a
purpose very similar to the purpose of our counter. So stop using
->bi_phys_segments, and instead use __bi_remaining.
This means we don't need to initialize the counter, as our caller
initializes it to '1'. It also means we can call bio_endio() directly
as it tests this counter internally.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
We currently gather bios that need to be returned into a bio_list
and call bio_endio() on them all together.
The original reason for this was to avoid making the calls while
holding a spinlock.
Locking has changed a lot since then, and that reason is no longer
valid.
So discard return_io() and various return_bi lists, and just call
bio_endio() directly as needed.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
If a device fails during a write, we must ensure the failure is
recorded in the metadata before the completion of the write is
acknowleged.
Commit c3cce6cda162 ("md/raid5: ensure device failure recorded before
write request returns.") added code for this, but it was
unnecessarily complicated. We already had similar functionality for
handling updates to the bad-block-list, thanks to Commit de393cdea66c
("md: make it easier to wait for bad blocks to be acknowledged.")
So revert most of the former commit, and instead avoid collecting
completed writes if MD_CHANGE_PENDING is set. raid5d() will then flush
the metadata and retry the stripe_head.
As this change can leave a stripe_head ready for handling immediately
after handle_active_stripes() returns, we change raid5_do_work() to
pause when MD_CHANGE_PENDING is set, so that it doesn't spin.
We check MD_CHANGE_PENDING *after* analyse_stripe() as it could be set
asynchronously. After analyse_stripe(), we have collected stable data
about the state of devices, which will be used to make decisions.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
We use md_write_start() to increase the count of pending writes, and
md_write_end() to decrement the count. We currently count bios
submitted to md/raid5. Change it count stripe_heads that a WRITE bio
has been attached to.
So now, raid5_make_request() calls md_write_start() and then
md_write_end() to keep the count elevated during the setup of the
request.
add_stripe_bio() calls md_write_start() for each stripe_head, and the
completion routines always call md_write_end(), instead of only
calling it when raid5_dec_bi_active_stripes() returns 0.
make_discard_request also calls md_write_start/end().
The parallel between md_write_{start,end} and use of bi_phys_segments
can be seen in that:
Whenever we set bi_phys_segments to 1, we now call md_write_start.
Whenever we increment it on non-read requests with
raid5_inc_bi_active_stripes(), we now call md_write_start().
Whenever we decrement bi_phys_segments on non-read requsts with
raid5_dec_bi_active_stripes(), we now call md_write_end().
This reduces our dependence on keeping a per-bio count of active
stripes in bi_phys_segments.
md_write_inc() is added which parallels md_write_start(), but requires
that a write has already been started, and is certain never to sleep.
This can be used inside a spinlocked region when adding to a write
request.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
Allow writing to 'consistency_policy' attribute when the array is
active. Add a new function 'change_consistency_policy' to the
md_personality operations structure to handle the change in the
personality code. Values "ppl" and "resync" are accepted and
turn PPL on and off respectively.
When enabling PPL its location and size should first be set using
'ppl_sector' and 'ppl_size' attributes and a valid PPL header should be
written at this location on each member device.
Enabling or disabling PPL is performed under a suspended array. The
raid5_reset_stripe_cache function frees the stripe cache and allocates
it again in order to allocate or free the ppl_pages for the stripes in
the stripe cache.
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|
|
Add a function to modify the log by removing an rdev when a drive fails
or adding when a spare/replacement is activated as a raid member.
Removing a disk just clears the child log rdev pointer. No new stripes
will be accepted for this child log in ppl_write_stripe() and running io
units will be processed without writing PPL to the device.
Adding a disk sets the child log rdev pointer and writes an empty PPL
header.
Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
|