summaryrefslogtreecommitdiff
path: root/drivers/perf/Makefile
AgeCommit message (Collapse)Author
2024-09-06perf: Add driver for Arm NI-700 interconnect PMURobin Murphy
The Arm NI-700 Network-on-Chip Interconnect has a relatively straightforward design with a hierarchy of voltage, power, and clock domains, where each clock domain then contains a number of interface units and a PMU which can monitor events thereon. As such, it begets a relatively straightforward driver to interface those PMUs with perf. Even more so than with arm-cmn, users will require detailed knowledge of the wider system topology in order to meaningfully analyse anything, since the interconnect itself cannot know what lies beyond the boundary of each inscrutably-numbered interface. Given that, for now they are also expected to refer to the NI-700 documentation for the relevant event IDs to provide as well. An identifier is implemented so we can come back and add jevents if anyone really wants to. Signed-off-by: Robin Murphy <robin.murphy@arm.com> Link: https://lore.kernel.org/r/9933058d0ab8138c78a61cd6852ea5d5ff48e393.1725470837.git.robin.murphy@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2024-07-03perf/arm: Move 32-bit PMU drivers to drivers/perf/Rob Herring (Arm)
It is preferred to put drivers under drivers/ rather than under arch/. The PMU drivers also depend on arm_pmu.c, so it's better to place them all together. Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Rob Herring (Arm) <robh@kernel.org> Link: https://lore.kernel.org/r/20240626-arm-pmu-3-9-icntr-v2-3-c9784b4f4065@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2024-03-04perf: starfive: Add StarLink PMU supportJi Sheng Teoh
This patch adds support for StarFive's StarLink PMU (Performance Monitor Unit). StarLink PMU integrates one or more CPU cores with a shared L3 memory system. The PMU supports overflow interrupt, up to 16 programmable 64bit event counters, and an independent 64bit cycle counter. StarLink PMU is accessed via MMIO. Example Perf stat output: [root@user]# perf stat -a -e /starfive_starlink_pmu/cycles/ \ -e /starfive_starlink_pmu/read_miss/ \ -e /starfive_starlink_pmu/read_hit/ \ -e /starfive_starlink_pmu/release_request/ \ -e /starfive_starlink_pmu/write_hit/ \ -e /starfive_starlink_pmu/write_miss/ \ -e /starfive_starlink_pmu/write_request/ \ -e /starfive_starlink_pmu/writeback/ \ -e /starfive_starlink_pmu/read_request/ \ -- openssl speed rsa2048 Doing 2048 bits private rsa's for 10s: 5 2048 bits private RSA's in 2.84s Doing 2048 bits public rsa's for 10s: 169 2048 bits public RSA's in 2.42s version: 3.0.11 built on: Tue Sep 19 13:02:31 2023 UTC options: bn(64,64) CPUINFO: N/A sign verify sign/s verify/s rsa 2048 bits 0.568000s 0.014320s 1.8 69.8 ///////// Performance counter stats for 'system wide': 649991998 starfive_starlink_pmu/cycles/ 1009690 starfive_starlink_pmu/read_miss/ 1079750 starfive_starlink_pmu/read_hit/ 2089405 starfive_starlink_pmu/release_request/ 129 starfive_starlink_pmu/write_hit/ 70 starfive_starlink_pmu/write_miss/ 194 starfive_starlink_pmu/write_request/ 150080 starfive_starlink_pmu/writeback/ 2089423 starfive_starlink_pmu/read_request/ 27.062755678 seconds time elapsed Signed-off-by: Ji Sheng Teoh <jisheng.teoh@starfivetech.com> Link: https://lore.kernel.org/r/20240229072720.3987876-2-jisheng.teoh@starfivetech.com Signed-off-by: Will Deacon <will@kernel.org>
2023-12-13drivers/perf: add DesignWare PCIe PMU driverShuai Xue
This commit adds the PCIe Performance Monitoring Unit (PMU) driver support for T-Head Yitian SoC chip. Yitian is based on the Synopsys PCI Express Core controller IP which provides statistics feature. The PMU is a PCIe configuration space register block provided by each PCIe Root Port in a Vendor-Specific Extended Capability named RAS D.E.S (Debug, Error injection, and Statistics). To facilitate collection of statistics the controller provides the following two features for each Root Port: - one 64-bit counter for Time Based Analysis (RX/TX data throughput and time spent in each low-power LTSSM state) and - one 32-bit counter for Event Counting (error and non-error events for a specified lane) Note: There is no interrupt for counter overflow. This driver adds PMU devices for each PCIe Root Port. And the PMU device is named based the BDF of Root Port. For example, 30:03.0 PCI bridge: Device 1ded:8000 (rev 01) the PMU device name for this Root Port is dwc_rootport_3018. Example usage of counting PCIe RX TLP data payload (Units of bytes):: $# perf stat -a -e dwc_rootport_3018/Rx_PCIe_TLP_Data_Payload/ average RX bandwidth can be calculated like this: PCIe TX Bandwidth = Rx_PCIe_TLP_Data_Payload / Measure_Time_Window Signed-off-by: Shuai Xue <xueshuai@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Yicong Yang <yangyicong@hisilicon.com> Reviewed-and-tested-by: Ilkka Koskinen <ilkka@os.amperecomputing.com> Link: https://lore.kernel.org/r/20231208025652.87192-5-xueshuai@linux.alibaba.com [will: Fix sparse error due to use of uninitialised 'vsec' symbol in dwc_pcie_match_des_cap()] Signed-off-by: Will Deacon <will@kernel.org>
2023-07-01Merge tag 'cxl-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxlLinus Torvalds
Pull CXL updates from Dan Williams: "The highlights in terms of new functionality are support for the standard CXL Performance Monitor definition that appeared in CXL 3.0, support for device sanitization (wiping all data from a device), secure-erase (re-keying encryption of user data), and support for firmware update. The firmware update support is notable as it reuses the simple sysfs_upload interface to just cat(1) a blob to a sysfs file and pipe that to the device. Additionally there are a substantial number of cleanups and reorganizations to get ready for RCH error handling (RCH == Restricted CXL Host == current shipping hardware generation / pre CXL-2.0 topologies) and type-2 (accelerator / vendor specific) devices. For vendor specific devices they implement a subset of what the generic type-3 (generic memory expander) driver expects. As a result the rework decouples optional infrastructure from the core driver context. For RCH topologies, where the specification working group did not want to confuse pre-CXL-aware operating systems, many of the standard registers are hidden which makes support standard bus features like AER (PCIe Advanced Error Reporting) difficult. The rework arranges for the driver to help the PCI-AER core. Bjorn is on board with this direction but a late regression disocvery means the completion of this functionality needs to cook a bit longer, so it is code reorganizations only for now. Summary: - Add infrastructure for supporting background commands along with support for device sanitization and firmware update - Introduce a CXL performance monitoring unit driver based on the common definition in the specification. - Land some preparatory cleanup and refactoring for the anticipated arrival of CXL type-2 (accelerator devices) and CXL RCH (CXL-v1.1 topology) error handling. - Rework CPU cache management with respect to region configuration (device hotplug or other dynamic changes to memory interleaving) - Fix region reconfiguration vs CXL decoder ordering rules" * tag 'cxl-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl: (51 commits) cxl: Fix one kernel-doc comment cxl/pci: Use correct flag for sanitize polling docs: perf: Minimal introduction the the CXL PMU device and driver perf: CXL Performance Monitoring Unit driver tools/testing/cxl: add firmware update emulation to CXL memdevs tools/testing/cxl: Use named effects for the Command Effect Log tools/testing/cxl: Fix command effects for inject/clear poison cxl: add a firmware update mechanism using the sysfs firmware loader cxl/test: Add Secure Erase opcode support cxl/mem: Support Secure Erase cxl/test: Add Sanitize opcode support cxl/mem: Wire up Sanitization support cxl/mbox: Add sanitization handling machinery cxl/mem: Introduce security state sysfs file cxl/mbox: Allow for IRQ_NONE case in the isr Revert "cxl/port: Enable the HDM decoder capability for switch ports" cxl/memdev: Formalize endpoint port linkage cxl/pci: Unconditionally unmask 256B Flit errors cxl/region: Manage decoder target_type at decoder-attach time cxl/hdm: Default CXL_DEVTYPE_DEVMEM decoders to CXL_DECODER_DEVMEM ...
2023-06-25perf: CXL Performance Monitoring Unit driverJonathan Cameron
CXL rev 3.0 introduces a standard performance monitoring hardware block to CXL. Instances are discovered using CXL Register Locator DVSEC entries. Each CXL component may have multiple PMUs. This initial driver supports a subset of types of counter. It supports counters that are either fixed or configurable, but requires that they support the ability to freeze and write value whilst frozen. Development done with QEMU model which will be posted shortly. Example: $ perf stat -a -e cxl_pmu_mem0.0/h2d_req_snpcur/ -e cxl_pmu_mem0.0/h2d_req_snpdata/ -e cxl_pmu_mem0.0/clock_ticks/ sleep 1 Performance counter stats for 'system wide': 96,757,023,244,321 cxl_pmu_mem0.0/h2d_req_snpcur/ 96,757,023,244,365 cxl_pmu_mem0.0/h2d_req_snpdata/ 193,514,046,488,653 cxl_pmu_mem0.0/clock_ticks/ 1.090539600 seconds time elapsed Reviewed-by: Dave Jiang <dave.jiang@intel.com> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/20230526095824.16336-5-Jonathan.Cameron@huawei.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2023-06-09drivers/perf: imx_ddr: Add support for NXP i.MX9 SoC DDRC PMU driverXu Yang
Add ddr performance monitor support for i.MX93. There are 11 counters for ddr performance events. - Counter 0 is a 64-bit counter that counts only clock cycles. - Counter 1-10 are 32-bit counters that can monitor counter-specific events in addition to counting reference events. For example: perf stat -a -e imx9_ddr0/ddrc_pm_1,counter=1/,imx9_ddr0/ddrc_pm_2,counter=2/ ls Besides, this ddr pmu support AXI filter capability. It's implemented as counter-specific events. It now supports read transaction, write transaction and read beat events which corresponding respecitively to counter 2, 3 and 4. axi_mask and axi_id need to be as event parameters. For example: perf stat -a -I 1000 -e imx9_ddr0/eddrtq_pm_rd_trans_filt,counter=2,axi_mask=ID_MASK,axi_id=ID/ perf stat -a -I 1000 -e imx9_ddr0/eddrtq_pm_wr_trans_filt,counter=3,axi_mask=ID_MASK,axi_id=ID/ perf stat -a -I 1000 -e imx9_ddr0/eddrtq_pm_rd_beat_filt,counter=4,axi_mask=ID_MASK,axi_id=ID/ Signed-off-by: Xu Yang <xu.yang_2@nxp.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20230418102910.2065651-1-xu.yang_2@nxp.com [will: Remove redundant error message on platform_get_irq() failure] Signed-off-by: Will Deacon <will@kernel.org>
2023-03-27arm64: perf: Move PMUv3 driver to drivers/perfMarc Zyngier
Having the ARM PMUv3 driver sitting in arch/arm64/kernel is getting in the way of being able to use perf on ARMv8 cores running a 32bit kernel, such as 32bit KVM guests. This patch moves it into drivers/perf/arm_pmuv3.c, with an include file in include/linux/perf/arm_pmuv3.h. The only thing left in arch/arm64 is some mundane perf stuff. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Zaid Al-Bassam <zalbassam@google.com> Tested-by: Florian Fainelli <f.fainelli@gmail.com> Link: https://lore.kernel.org/r/20230317195027.3746949-2-zalbassam@google.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-21perf/amlogic: Add support for Amlogic meson G12 SoC DDR PMU driverJiucheng Xu
Add support for Amlogic Meson G12 Series SOC - DDR bandwidth PMU driver framework and interfaces. The PMU can not only monitor the total DDR bandwidth, but also individual IP module bandwidth. Signed-off-by: Jiucheng Xu <jiucheng.xu@amlogic.com> Tested-by: Chris Healy <healych@amazon.com> Link: https://lore.kernel.org/r/20221121021602.3306998-1-jiucheng.xu@amlogic.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-15perf: arm_cspmu: Add support for ARM CoreSight PMU driverBesar Wicaksono
Add support for ARM CoreSight PMU driver framework and interfaces. The driver provides generic implementation to operate uncore PMU based on ARM CoreSight PMU architecture. The driver also provides interface to get vendor/implementation specific information, for example event attributes and formating. The specification used in this implementation can be found below: * ACPI Arm Performance Monitoring Unit table: https://developer.arm.com/documentation/den0117/latest * ARM Coresight PMU architecture: https://developer.arm.com/documentation/ihi0091/latest Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Besar Wicaksono <bwicaksono@nvidia.com> Link: https://lore.kernel.org/r/20221111222330.48602-2-bwicaksono@nvidia.com Signed-off-by: Will Deacon <will@kernel.org>
2022-09-22drivers/perf: add DDR Sub-System Driveway PMU driver for Yitian 710 SoCShuai Xue
Add the DDR Sub-System Driveway Performance Monitoring Unit (PMU) driver support for Alibaba T-Head Yitian 710 SoC chip. Yitian supports DDR5/4 DRAM and targets cloud computing and HPC. Each PMU is registered as a device in /sys/bus/event_source/devices, and users can select event to monitor in each sub-channel, independently. For example, ali_drw_21000 and ali_drw_21080 are two PMU devices for two sub-channels of the same channel in die 0. And the PMU device of die 1 is prefixed with ali_drw_400XXXXX, e.g. ali_drw_40021000. Due to hardware limitation, one of DDRSS Driveway PMU overflow interrupt shares the same irq number with MPAM ERR_IRQ. To register DDRSS PMU and MPAM drivers successfully, add IRQF_SHARED flag. Signed-off-by: Shuai Xue <xueshuai@linux.alibaba.com> Co-developed-by: Hongbo Yao <yaohongbo@linux.alibaba.com> Signed-off-by: Hongbo Yao <yaohongbo@linux.alibaba.com> Co-developed-by: Neng Chen <nengchen@linux.alibaba.com> Signed-off-by: Neng Chen <nengchen@linux.alibaba.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Link: https://lore.kernel.org/r/20220818031822.38415-3-xueshuai@linux.alibaba.com Signed-off-by: Will Deacon <will@kernel.org>
2022-03-25Merge tag 'riscv-for-linus-5.18-mw0' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux Pull RISC-V updates from Palmer Dabbelt: - Support for Sv57-based virtual memory. - Various improvements for the MicroChip PolarFire SOC and the associated Icicle dev board, which should allow upstream kernels to boot without any additional modifications. - An improved memmove() implementation. - Support for the new Ssconfpmf and SBI PMU extensions, which allows for a much more useful perf implementation on RISC-V systems. - Support for restartable sequences. * tag 'riscv-for-linus-5.18-mw0' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (36 commits) rseq/selftests: Add support for RISC-V RISC-V: Add support for restartable sequence MAINTAINERS: Add entry for RISC-V PMU drivers Documentation: riscv: Remove the old documentation RISC-V: Add sscofpmf extension support RISC-V: Add perf platform driver based on SBI PMU extension RISC-V: Add RISC-V SBI PMU extension definitions RISC-V: Add a simple platform driver for RISC-V legacy perf RISC-V: Add a perf core library for pmu drivers RISC-V: Add CSR encodings for all HPMCOUNTERS RISC-V: Remove the current perf implementation RISC-V: Improve /proc/cpuinfo output for ISA extensions RISC-V: Do no continue isa string parsing without correct XLEN RISC-V: Implement multi-letter ISA extension probing framework RISC-V: Extract multi-letter extension names from "riscv, isa" RISC-V: Minimal parser for "riscv, isa" strings RISC-V: Correctly print supported extensions riscv: Fixed misaligned memory access. Fixed pointer comparison. MAINTAINERS: update riscv/microchip entry riscv: dts: microchip: add new peripherals to icicle kit device tree ...
2022-03-21RISC-V: Add perf platform driver based on SBI PMU extensionAtish Patra
RISC-V SBI specification added a PMU extension that allows to configure start/stop any pmu counter. The RISC-V perf can use most of the generic perf features except interrupt overflow and event filtering based on privilege mode which will be added in future. It also allows to monitor a handful of firmware counters that can provide insights into firmware activity during a performance analysis. Signed-off-by: Atish Patra <atish.patra@wdc.com> Signed-off-by: Atish Patra <atishp@rivosinc.com> Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-03-21RISC-V: Add a simple platform driver for RISC-V legacy perfAtish Patra
The old RISC-V perf implementation allowed counting of only cycle/instruction counters using perf. Restore that feature by implementing a simple platform driver under a separate config to provide backward compatibility. Any existing software stack will continue to work as it is. However, it provides an easy way out in future where we can remove the legacy driver. Reviewed-by: Anup Patel <anup@brainfault.org> Signed-off-by: Atish Patra <atish.patra@wdc.com> Signed-off-by: Atish Patra <atishp@rivosinc.com> Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-03-21RISC-V: Add a perf core library for pmu driversAtish Patra
Implement a perf core library that can support all the essential perf features in future. It can also accommodate any type of PMU implementation in future. Currently, both SBI based perf driver and legacy driver implemented uses the library. Most of the common perf functionalities are kept in this core library wile PMU specific driver can implement PMU specific features. For example, the SBI specific functionality will be implemented in the SBI specific driver. Reviewed-by: Anup Patel <anup@brainfault.org> Signed-off-by: Atish Patra <atish.patra@wdc.com> Signed-off-by: Atish Patra <atishp@rivosinc.com> Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2022-03-08Merge branch 'for-next/perf-m1' into for-next/perfWill Deacon
Support for the CPU PMUs on the Apple M1. * for-next/perf-m1: drivers/perf: Add Apple icestorm/firestorm CPU PMU driver drivers/perf: arm_pmu: Handle 47 bit counters irqchip/apple-aic: Move PMU-specific registers to their own include file arm64: dts: apple: Add t8303 PMU nodes arm64: dts: apple: Add t8103 PMU interrupt affinities irqchip/apple-aic: Wire PMU interrupts irqchip/apple-aic: Parse FIQ affinities from device-tree dt-bindings: apple,aic: Add affinity description for per-cpu pseudo-interrupts dt-bindings: apple,aic: Add CPU PMU per-cpu pseudo-interrupts dt-bindings: arm-pmu: Document Apple PMU compatible strings
2022-03-08drivers/perf: Add Apple icestorm/firestorm CPU PMU driverMarc Zyngier
Add a new, weird and wonderful driver for the equally weird Apple PMU HW. Although the PMU itself is functional, we don't know much about the events yet, so this can be considered as yet another random number generator... Nonetheless, it can reliably count at least cycles and instructions in the usually wonky big-little way. For anything else, it of course supports raw event numbers. Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Will Deacon <will@kernel.org>
2022-03-08perf/marvell: CN10k DDR performance monitor supportBharat Bhushan
Marvell CN10k DRAM Subsystem (DSS) supports eight event counters for monitoring performance and software can program each counter to monitor any of the defined performance event. Performance events are for interface between the DDR controller and the PHY, interface between the DDR Controller and the CHI interconnect, or within the DDR Controller. Additionally DSS also supports two fixed performance event counters, one for number of ddr reads and other for ddr writes. This patch add basic support for these performance monitoring events on CN10k. Signed-off-by: Bharat Bhushan <bbhushan2@marvell.com> Reviewed-by: Bhaskara Budiredla <bbudiredla@marvell.com> Link: https://lore.kernel.org/r/20220211045346.17894-3-bbhushan2@marvell.com Signed-off-by: Will Deacon <will@kernel.org>
2021-12-14drivers: perf: Add LLC-TAD perf counter supportBhaskara Budiredla
This driver adds support for Last-level cache tag-and-data unit (LLC-TAD) PMU that is featured in some of the Marvell's CN10K infrastructure silicons. The LLC is divided into 2N slices distributed across N Mesh tiles in a single-socket configuration. The driver always configures the same counter for all of the TADs. The user would end up effectively reserving one of eight counters in every TAD to look across all TADs. The occurrences of events are aggregated and presented to the user at the end of an application run. The driver does not provide a way for the user to partition TADs so that different TADs are used for different applications. The event counters are zeroed to start event counting to avoid any rollover issues. TAD perf counters are 64-bit, so it's not currently possible to overflow event counters at current mesh and core frequencies. To measure tad pmu events use perf tool stat command. For instance: perf stat -e tad_dat_msh_in_dss,tad_req_msh_out_any <application> perf stat -e tad_alloc_any,tad_hit_any,tad_tag_rd <application> Signed-off-by: Bhaskara Budiredla <bbudiredla@marvell.com> Link: https://lore.kernel.org/r/20211115043506.6679-2-bbudiredla@marvell.com Signed-off-by: Will Deacon <will@kernel.org>
2020-11-25driver/perf: Add PMU driver for the ARM DMC-620 memory controllerTuan Phan
DMC-620 PMU supports total 10 counters which each is independently programmable to different events and can be started and stopped individually. Currently, it only supports ACPI. Other platforms feel free to test and add support for device tree. Usage example: #perf stat -e arm_dmc620_10008c000/clk_cycle_count/ -C 0 Get perf event for clk_cycle_count counter. #perf stat -e arm_dmc620_10008c000/clkdiv2_allocate,mask=0x1f,match=0x2f, incr=2,invert=1/ -C 0 The above example shows how to specify mask, match, incr, invert parameters for clkdiv2_allocate event. Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Tuan Phan <tuanphan@os.amperecomputing.com> Link: https://lore.kernel.org/r/1604518246-6198-1-git-send-email-tuanphan@os.amperecomputing.com Signed-off-by: Will Deacon <will@kernel.org>
2020-09-28perf: Add Arm CMN-600 PMU driverRobin Murphy
Initial driver for PMU event counting on the Arm CMN-600 interconnect. CMN sports an obnoxiously complex distributed PMU system as part of its debug and trace features, which can do all manner of things like sampling, cross-triggering and generating CoreSight trace. This driver covers the PMU functionality, plus the relevant aspects of watchpoints for simply counting matching flits. Tested-by: Tsahi Zidenberg <tsahee@amazon.com> Tested-by: Tuan Phan <tuanphan@os.amperecomputing.com> Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Will Deacon <will@kernel.org>
2019-06-13drivers/perf: imx_ddr: Add DDR performance counter support to perfFrank Li
Add DDR performance monitor support for iMX8QXP. The PMU consists of 3 programmable event counters and a single dedicated cycle counter. Example usage: $ perf stat -a -e \ imx8_ddr0/read-cycles/,imx8_ddr0/write-cycles/,imx8_ddr0/precharge/ ls - or - $ perf stat -a -e \ imx8_ddr0/cycles/,imx8_ddr0/read-access/,imx8_ddr0/write-access/ ls Other events are supported, and advertised via perf list. Reviewed-by: Andrey Smirnov <andrew.smirnov@gmail.com> Signed-off-by: Frank Li <Frank.Li@nxp.com> [will: rewrote commit message/kconfig and used #defines for dev/cpuhp names] Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-04perf/smmuv3: Add arm64 smmuv3 pmu driverNeil Leeder
Adds a new driver to support the SMMUv3 PMU and add it into the perf events framework. Each SMMU node may have multiple PMUs associated with it, each of which may support different events. SMMUv3 PMCG devices are named as smmuv3_pmcg_<phys_addr_page> where <phys_addr_page> is the physical page address of the SMMU PMCG wrapped to 4K boundary. For example, the PMCG at 0xff88840000 is named smmuv3_pmcg_ff88840 Filtering by stream id is done by specifying filtering parameters with the event. options are: filter_enable - 0 = no filtering, 1 = filtering enabled filter_span - 0 = exact match, 1 = pattern match filter_stream_id - pattern to filter against Example: perf stat -e smmuv3_pmcg_ff88840/transaction,filter_enable=1, filter_span=1,filter_stream_id=0x42/ -a netperf Applies filter pattern 0x42 to transaction events, which means events matching stream ids 0x42 & 0x43 are counted as only upper StreamID bits are required to match the given filter. Further filtering information is available in the SMMU documentation. SMMU events are not attributable to a CPU, so task mode and sampling are not supported. Signed-off-by: Neil Leeder <nleeder@codeaurora.org> Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> [will: fold in review feedback from Robin] [will: rewrite Kconfig text and allow building as a module] Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-06drivers/perf: Add Cavium ThunderX2 SoC UNCORE PMU driverKulkarni, Ganapatrao
This patch adds a perf driver for the PMU UNCORE devices DDR4 Memory Controller(DMC) and Level 3 Cache(L3C). Each PMU supports up to 4 counters. All counters lack overflow interrupt and are sampled periodically. Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com> [will: consistent enum cpuhp_state naming] Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-06drivers/bus: Split Arm CCI driverRobin Murphy
The arm-cci driver is really two entirely separate drivers; one for MCPM port control and the other for the performance monitors. Since they are already relatively self-contained, let's take the plunge and move the PMU parts out to drivers/perf where they belong these days. For non-MCPM systems this leaves a small dependency on the remaining "bus" stub for initial probing and discovery, but we end up with something that still fits the general pattern of its fellow system PMU drivers to ease future maintenance. Moving code to a new file also offers a perfect excuse to modernise the license/copyright headers and clean up some funky linewraps on the way. Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com> Acked-by: Punit Agrawal <punit.agrawal@arm.com> Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-03-06drivers/bus: Move Arm CCN PMU driverRobin Murphy
The arm-ccn driver is purely a perf driver for the CCN PMU, not a bus driver in the sense of the other residents of drivers/bus/, so let's move it to the appropriate place for SoC PMU drivers. Not to mention moving the documentation accordingly as well. Acked-by: Pawel Moll <pawel.moll@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-01-02perf: ARM DynamIQ Shared Unit PMU supportSuzuki K Poulose
Add support for the Cluster PMU part of the ARM DynamIQ Shared Unit (DSU). The DSU integrates one or more cores with an L3 memory system, control logic, and external interfaces to form a multicore cluster. The PMU allows counting the various events related to L3, SCU etc, along with providing a cycle counter. The PMU can be accessed via system registers, which are common to the cores in the same cluster. The PMU registers follow the semantics of the ARMv8 PMU, mostly, with the exception that the counters record the cluster wide events. This driver is mostly based on the ARMv8 and CCI PMU drivers. The driver only supports ARM64 at the moment. It can be extended to support ARM32 by providing register accessors like we do in arch/arm64/include/arm_dsu_pmu.h. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-15Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "The big highlight is support for the Scalable Vector Extension (SVE) which required extensive ABI work to ensure we don't break existing applications by blowing away their signal stack with the rather large new vector context (<= 2 kbit per vector register). There's further work to be done optimising things like exception return, but the ABI is solid now. Much of the line count comes from some new PMU drivers we have, but they're pretty self-contained and I suspect we'll have more of them in future. Plenty of acronym soup here: - initial support for the Scalable Vector Extension (SVE) - improved handling for SError interrupts (required to handle RAS events) - enable GCC support for 128-bit integer types - remove kernel text addresses from backtraces and register dumps - use of WFE to implement long delay()s - ACPI IORT updates from Lorenzo Pieralisi - perf PMU driver for the Statistical Profiling Extension (SPE) - perf PMU driver for Hisilicon's system PMUs - misc cleanups and non-critical fixes" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits) arm64: Make ARMV8_DEPRECATED depend on SYSCTL arm64: Implement __lshrti3 library function arm64: support __int128 on gcc 5+ arm64/sve: Add documentation arm64/sve: Detect SVE and activate runtime support arm64/sve: KVM: Hide SVE from CPU features exposed to guests arm64/sve: KVM: Treat guest SVE use as undefined instruction execution arm64/sve: KVM: Prevent guests from using SVE arm64/sve: Add sysctl to set the default vector length for new processes arm64/sve: Add prctl controls for userspace vector length management arm64/sve: ptrace and ELF coredump support arm64/sve: Preserve SVE registers around EFI runtime service calls arm64/sve: Preserve SVE registers around kernel-mode NEON use arm64/sve: Probe SVE capabilities and usable vector lengths arm64: cpufeature: Move sys_caps_initialised declarations arm64/sve: Backend logic for setting the vector length arm64/sve: Signal handling support arm64/sve: Support vector length resetting for new processes arm64/sve: Core task context handling arm64/sve: Low-level CPU setup ...
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-19perf: hisi: Add support for HiSilicon SoC uncore PMU driverShaokun Zhang
This patch adds support HiSilicon SoC uncore PMU driver framework and interfaces. Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com> Signed-off-by: Anurup M <anurup.m@huawei.com> [will: Fix leader accounting in uncore group validation] Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-18drivers/perf: Add support for ARMv8.2 Statistical Profiling ExtensionWill Deacon
The ARMv8.2 architecture introduces the optional Statistical Profiling Extension (SPE). SPE can be used to profile a population of operations in the CPU pipeline after instruction decode. These are either architected instructions (i.e. a dynamic instruction trace) or CPU-specific uops and the choice is fixed statically in the hardware and advertised to userspace via caps/. Sampling is controlled using a sampling interval, similar to a regular PMU counter, but also with an optional random perturbation to avoid falling into patterns where you continuously profile the same instruction in a hot loop. After each operation is decoded, the interval counter is decremented. When it hits zero, an operation is chosen for profiling and tracked within the pipeline until it retires. Along the way, information such as TLB lookups, cache misses, time spent to issue etc is captured in the form of a sample. The sample is then filtered according to certain criteria (e.g. load latency) that can be specified in the event config (described under format/) and, if the sample satisfies the filter, it is written out to memory as a record, otherwise it is discarded. Only one operation can be sampled at a time. The in-memory buffer is linear and virtually addressed, raising an interrupt when it fills up. The PMU driver handles these interrupts to give the appearance of a ring buffer, as expected by the AUX code. The in-memory trace-like format is self-describing (though not parseable in reverse) and written as a series of records, with each record corresponding to a sample and consisting of a sequence of packets. These packets are defined by the architecture, although some have CPU-specific fields for recording information specific to the microarchitecture. As a simple example, a record generated for a branch instruction may consist of the following packets: 0 (Address) : Virtual PC of the branch instruction 1 (Type) : Conditional direct branch 2 (Counter) : Number of cycles taken from Dispatch to Issue 3 (Address) : Virtual branch target + condition flags 4 (Counter) : Number of cycles taken from Dispatch to Complete 5 (Events) : Mispredicted as not-taken 6 (END) : End of record It is also possible to toggle properties such as timestamp packets in each record. This patch adds support for SPE in the form of a new perf driver. Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-04-11drivers/perf: arm_pmu: add ACPI frameworkMark Rutland
This patch adds framework code to handle parsing PMU data out of the MADT, sanity checking this, and managing the association of CPUs (and their interrupts) with appropriate logical PMUs. For the time being, we expect that only one PMU driver (PMUv3) will make use of this, and we simply pass in a single probe function. This is based on an earlier patch from Jeremy Linton. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-04-11drivers/perf: arm_pmu: split out platform device probe logicMark Rutland
Now that we've split the pdev and DT probing logic from the runtime management, let's move the former into its own file. We gain a few lines due to the copyright header and includes, but this should keep the logic clearly separated, and paves the way for adding ACPI support in a similar fashion. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Jeremy Linton <jeremy.linton@arm.com> [will: rename nr_irqs to avoid conflict with global variable] Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-04-03perf: qcom: Add L3 cache PMU driverAgustin Vega-Frias
This adds a new dynamic PMU to the Perf Events framework to program and control the L3 cache PMUs in some Qualcomm Technologies SOCs. The driver supports a distributed cache architecture where the overall cache for a socket is comprised of multiple slices each with its own PMU. Access to each individual PMU is provided even though all CPUs share all the slices. User space needs to aggregate to individual counts to provide a global picture. The driver exports formatting and event information to sysfs so it can be used by the perf user space tools with the syntaxes: perf stat -a -e l3cache_0_0/read-miss/ perf stat -a -e l3cache_0_0/event=0x21/ Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Agustin Vega-Frias <agustinv@codeaurora.org> [will: fixed sparse issues] Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-08perf: add qcom l2 cache perf events driverNeil Leeder
Adds perf events support for L2 cache PMU. The L2 cache PMU driver is named 'l2cache_0' and can be used with perf events to profile L2 events such as cache hits and misses on Qualcomm Technologies processors. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Neil Leeder <nleeder@codeaurora.org> [will: minimise nesting in l2_cache_associate_cpu_with_cluster] [will: use kstrtoul for unsigned long, remove redunant .owner setting] Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-09-15perf: xgene: Add APM X-Gene SoC Performance Monitoring Unit driverTai Nguyen
This patch adds a driver for the SoC-wide (AKA uncore) PMU hardware found in APM X-Gene SoCs. Signed-off-by: Tai Nguyen <ttnguyen@apm.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com>
2015-07-31arm: perf: factor arm_pmu core out to driversMark Rutland
To enable sharing of the arm_pmu code with arm64, this patch factors it out to drivers/perf/. A new drivers/perf directory is added for performance monitor drivers to live under. MAINTAINERS is updated accordingly. Files added previously without a corresponsing MAINTAINERS update (perf_regs.c, perf_callchain.c, and perf_event.h) are also added. Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Linus Walleij <linus.walleij@linaro.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Russell King <linux@arm.linux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> [will: augmented Kconfig help slightly] Signed-off-by: Will Deacon <will.deacon@arm.com>